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Quantum Monte Carlo simulations of fermions are hampered by the notorious sign problem whose most
striking manifestation is an exponential growth of sampling errors with the number of particles. With the sign
problem known to be an NP-hard problem and any generic solution thus highly elusive, the Monte Carlo sampling
of interacting many-fermion systems is commonly thought to be restricted to a small class of model systems for
which a sign-free basis has been identified. Here we demonstrate that entanglement measures, in particular the
so-called Rényi entropies, can intrinsically exhibit a certain robustness against the sign problem in auxiliary-field
quantum Monte Carlo approaches and possibly allow for the identification of global ground-state properties via
their scaling behavior even in the presence of a strong sign problem. We corroborate these findings via numerical
simulations of fermionic quantum phase transitions of spinless fermions on the honeycomb lattice at and below
half filling.
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I. INTRODUCTION

While strongly correlated many-fermion systems exhibit
some of the most intriguing collective phenomena such
as the formation of high-temperature superconductors [1],
non-Fermi liquids [2], or Mott insulators with fractionalized
excitations [3], their quantitative microscopic understanding
remains one of the grand open challenges of theoretical con-
densed matter physics. With controlled analytical approaches
being scarce, one might naturally turn to numerical analysis
tools. However, the workhorse of many-particle simulations
for bosonic or spin degrees of freedom—quantum Monte
Carlo sampling techniques—is plagued by the notorious sign
problem for fermionic systems, as realized early on [4,5]. In
short, the sign problem originates from the natural occurrence
of negative statistical weights in the fermionic path integral
representation tracing back to the minus signs associated with
fermion exchange statistics. Ignoring these negative signs to
allow for an interpretation as Boltzmann weights in a Monte
Carlo approach leads to an exponential growth of statistical
errors, and thus computing time, with the number of particles
and inverse temperature.

Ever since the early days of quantum Monte Carlo (QMC)
simulations it has remained an open problem whether one can
systematically overcome this exponential barrier and recover
polynomial scaling behavior in fermionic quantum Monte
Carlo simulations. Most often, this question is phrased in
terms of the quest to identify a basis transformation that
leads to a sign-free basis. The idea here is that the sign
problem is not an intrinsic property of the quantum system
but is representation dependent as (at least) the eigenbasis
of a many-fermion system (in which the Hamiltonian is
diagonal) will not exhibit a sign problem. However, it has
been demonstrated that generically identifying such a sign-free
basis for an arbitrary many-fermion system is an NP-hard
problem [6], making any generic solution highly elusive.
Specific examples of such basis transformations, applicable
to certain restricted families of many-fermion systems, have,
however, been identified over the years. This includes the
meron cluster representation of the Hubbard model in a
limited range of attractive and repulsive parameters [7], the

fermion bag formulation of four-fermion field theories [8],
and, most recently, a Majorana fermion decomposition for
the study of SU(N ) models with odd N over a wide range
of parameters [9]. The lack of a systematic way to identify
such basis transformations and its proven NP hardness have
led to the common perception that, despite its fundamental
importance, it is impossible to directly address the fermion
sign problem. Instead, numerical efforts have been poured
into the development of sophisticated numerical schemes
aimed at pushing the exponential barrier to larger system
sizes and smaller temperature scales to possibly explore so-far
unaccessible regimes of fermionic many-particle systems. Ex-
amples of such an approach include the recent development of
continuous-time path integral methods for quantum impurity
models now commonly employed in dynamical mean-field
calculations of strongly correlated electron systems [10], the
systematic optimization of trial wave functions for ground
state algorithms [11], or the early development of diffusion
Monte Carlo techniques in conjunction with the fixed-node
approximation [12]. Simultaneously, analytical efforts have
aimed at identifying abstract, sign-problem free model sys-
tems that allow us to capture universal low-energy features
of microscopic models with a sign problem, such as the
discussion of the onset of antiferromagnetism in metals [13].
Finally, with the influx of quantum information theory
concepts into the description of condensed matter systems
orthogonal algorithmic approaches have been devised such
as the variational approximation of many-fermion systems
via projected entangled-pair states [14], which are now on
the cusp of outperforming more traditional variational Monte
Carlo approaches [15].

Here we return to the original sign problem and explore an
alternative route to overcome it. Our guiding idea is to explore
whether extracting global information about the ground state
of a many-fermion system via its entanglement properties—
such as the general classification whether it exhibits gapless
modes, conventional or topological order—possibly comes
with a smaller sign problem than the measurement of ex-
pectation values of observables aimed at providing a full
ground-state characterization such as order parameters or
two-point correlation functions. This information theoretical
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angle on the sign problem is rooted in the observation that
in the Monte Carlo calculation of entanglement entropies the
sign problem enters, as we will explain below, in an additive
instead of multiplicative way as for conventional observables.
We find that for certain Monte Carlo flavors, in particular
auxiliary-field quantum Monte Carlo approaches, this can
lead to a considerable suppression of the sign problem as we
demonstrate for spinless fermion models on the honeycomb
lattice at and below half filling. This observation might point
a way to an amenable probe of global ground-state properties
of interacting many-fermion systems even in the presence of a
strong sign problem.

II. SIGN PROBLEM

To start our discussion we provide a brief formal overview
of the sign problem. It is rooted in the mapping of the
quantum system to an equivalent classical system where,
for fermionic systems, one might encounter configurations
associated with negative or even complex Boltzmann weights.
The latter makes it a priori impossible to interpret these
statistical weights as probabilities guiding the sampling of
a Markov chain of configurations, which is at the core of
every Monte Carlo approach. The sign problem arises if one
enforces these statistical weights to be positive (and real) by
taking their absolute values and interprets these absolute values
as the probabilities guiding the Markov process. This is best
illustrated by considering an observable O, for which one
wants to calculate a Monte Carlo estimate of its expectation
value 〈O〉. For each of the configurationsC of the Markov chain
encountered with a Boltzmann weight p(C), one measures
the observable O(C) as well as the sign σ (C) = sgn p(C) of
the Boltzmann weight associated with the configuration. The
actual expectation value of the observable 〈O〉 can then be
reconstructed [4] as

〈O〉 =
∑

O(C)p(C)∑
p(C)

=
∑

O(C)σ (C)|p(C)|∑
σ (C)|p(C)| = 〈O · σ 〉abs

〈σ 〉abs

(1)

from measurements 〈. . .〉abs in the modified ensemble with
absolute statistical weights |p(C)|. However, it remains practi-
cally impossible to efficiently do this reconstruction of the
actual expectation value, since the average sign 〈σ 〉abs in
general decreases exponentially [5],

〈σ 〉abs = exp (−β N �f ), (2)

with the number of particles N and inverse temperature β.
The additional factor �f = ffermion − fabs is the difference
in the free energy densities of the original fermionic system
and the one with absolute weights. In the context of world-
line Monte Carlo approaches the latter generically describes
a bosonic system, which one obtains by ignoring all π -phase
contributions arising from fermionic particle exchanges. The
resulting exponential growth of statistical errors invalidates the
polynomial scaling of the Monte Carlo approach.

III. ENTANGLEMENT ENTROPIES

To access global information about the ground state of a
many-fermion system, we consider the entanglement entropy

for a bipartition of the system into a subsystem A and its
complement. It is now well appreciated that these quantum
information measures allow us to broadly classify the nature
of a quantum many-body system via (subleading) corrections
to its predominant boundary scaling law [16], such as the
formation of a Fermi surface via (multiplicative) logarithmic
corrections [17,18] or the emergence of topological order via
O(1) corrections [19,20]. Our particular focus is on the family
of Rényi entropies with an integer index n � 2

Sn(A) = 1

1 − n
log Tr

(
ρn

A

)
, (3)

which generalize the well-known von Neumann entropy
(corresponding to the limit n → 1). The primary reason to
consider these Rényi entropies in lieu of the more familiar von
Neumann entropy is that the Rényi entropies can be formulated
via the so-called replica technique [21,22] as the ratio of two
partition sums. Considering the second Rényi entropy with
n = 2, i.e., S2(A) = − log (Tr(ρ2

A)), we have

S2(A) = − log
Z[A,2,T ]

Z2
≡ − log

Z1

Z0
, (4)

where Z1 = Z[A,2,T ] is the partition sum of the replicated
system and Z0 = Z2 is the square of the partition function
of the original system. This representation of the Rényi
entropy via the replica technique is also at the heart of its
numerical calculation in quantum Monte Carlo techniques and
has recently been adopted to various flavors [23], in particular
fermionic auxiliary field techniques [24,25]. Here our interest
in this replica representation arises when considering a
quantum system with a fermion sign problem. For such a
system the partition sum Z can be split into a product of a
partition sum Zabs = ∑

C |p(C)|, where all weights p(C) of
the original partition sum have been taken as their absolute
values, and the expectation value of the sign

Z =
∑
C

p(C) =
∑
C

σ (C)|p(C)| = Zabs · 〈σ 〉abs. (5)

Inserting this expression in the replica representation of the
Rényi entropy (4) one readily obtains

S2(A) = − log

(
Zabs

1

Zabs
0

· 〈σ1〉abs

〈σ0〉abs

)
= − log

Zabs
1

Zabs
0

− log
〈σ1〉abs

〈σ0〉abs

= Sabs
2 (A) + Sσ

2 (A). (6)

Thus, the Rényi entropy for a system with a sign problem
separates into two additive contributions, one coming from
the partition sum with absolute weights and one arising
from the sign [26]. This additive behavior, which has earlier
been discussed in the context of variational Monte Carlo
approaches [27], should be contrasted to the multiplicative
contribution of the sign to the calculation of conventional
observables (1). This additive splitting also raises the imme-
diate question of how contributions to the scaling behavior
of the Rényi entropy S2(A) are split among the two terms,
in particular whether the boundary law scaling or any of its
subleading contributions can arise solely from the sign con-
tribution Sσ

2 (A). Or could it be sufficient to only consider the
absolute partition sum and its associated entanglement entropy
Sabs

2 (A), which can be computed from a QMC simulation in
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a straightforward manner? While we have no general answer
to these questions, we will present in the following numerical
evidence from auxiliary-field QMC calculations that shows
that for some model systems the entanglement entropy of the
absolute partition sum can indeed produce the expected scaling
behavior of the Rényi entropy including subleading terms.

IV. SPINLESS DIRAC FERMIONS

As a model system we consider spinless fermions on the
honeycomb lattice subject to a nearest-neighbor repulsive
interaction V described by a Hamiltonian

H = −t
∑
〈i,j〉

(c†i cj + c
†
j ci ) + V

∑
〈i,j〉

ninj . (7)

At half filling 〈n〉 = 1/2 this model exhibits a fermionic
quantum phase transition, likely in the Gross-Neveu uni-
versality class [28,29], from a Dirac semimetal for small
repulsion V to a charge density wave state for large V , as
recently discussed in various numerical works [30]. What
makes this spinless fermion system particularly interesting
for us is that it exhibits a severe sign problem in the
complex-fermion basis underlying conventional auxiliary field
(or determinantal) QMC techniques [31], which will be our
method of choice, while the system can also be recast in a
Majorana fermion representation without sign problem [9].
This allows to benchmark our results for the sign-ignoring
entanglement entropies Sabs

2 (A) obtained for the complex-
fermion case with numerically exact data for S2(A) from
the Majorana fermion approach and in particular distill the
sign contribution Sσ

2 (A) to the Rényi entropy (6). Such a
comparison of the entanglement entropies is shown in Fig. 1 for
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FIG. 1. Upper panel: Sign-ignoring entanglement entropy Sabs
2 (L)

for spinless fermions on the honeycomb lattice at half filling subject
to a nearest-neighbor repulsive interaction V . The latter drives a
transition from a Dirac semimetal for V < Vc ≈ 1.356(1) (indicated
by the vertical gray line) to a charge density wave for V > Vc. The
sign-ignoring data is from projector auxiliary-field QMC calculations
using a real-valued Hubbard-Stratonovich transformation at θ = 40.
Sign-free reference data from Majorana-QMC simulations at θ = 20
is indicated by the gray dots. Lower panel: The average sign 〈σ 〉abs

indicating the strength of the sign problem.

various system sizes [32] where we cut a system of dimension
2 × L × 3 into a strip A of dimension 2 × L × 1 and its
complement (see the Appendix for an illustration). While
the entanglement entropies show almost perfect agreement
in the charge density wave for V > Vc ≈ 1.356(1) [30], there
is a noticeable difference for the Dirac semimetal phase (for
V < Vc). This discrepancy partially reflects the strength of the
sign problem in the two phases indicated in the lower panel of
Fig. 1, with the average sign 〈σ 〉abs almost dropping to zero in
the Dirac semimetal phase (indicating a strong sign problem),
while the average sign quickly recovers (approaching unity)
beyond the phase transition into the charge density wave. Note,
however, that the deviation of the sign-ignoring entanglement
entropy Sabs

2 (A) from the correct entanglement entropy S2(A)
(calculated in the sign-free Majorana representation) remains
almost constant with increasing system size. This immediately
raises the question how the expected scaling behavior of the
entanglement entropy S2(A) is split into contributions from
the sign-ignoring entanglement entropy Sabs

2 (A) and the sign
entropy Sσ

2 (A). To probe in particular the scaling behavior of
Sabs

2 (A) we consider the spinless fermion system of Eq. (7)
at two different fillings. At half filling 〈n〉 = 1/2 (and small
V ) the system exhibits a Dirac cone with the entanglement
entropy expected to follow a boundary law S2(L) = a� + . . .

with the length of the boundary, in our case � = L (and a

some nonuniversal prefactor). At one-third filling 〈n〉 = 1/3
(and small V ) the partially filled band structure exhibits a
Fermi surface with a nodal line of gapless modes, which
leads to a violation of the boundary law with a multi-
plicative, logarithmic correction arising in the entanglement
entropy [17,18], i.e. S2(L) = a� log � + . . . , where a is again
some nonuniversal prefactor. In Fig. 2 we show numerical

FIG. 2. Scaling of the sign-ignoring entanglement entropy with
system size of a spinless fermion system on the honeycomb lattice
with a small nearest-neighbor repulsive interaction V/t = 0.1. The
system exhibits semimetallic states with a Dirac cone at half
filling and a nodal line at one-third filling. Data is from projector
auxiliary-field QMC calculations using a complex-valued Hubbard-
Stratonovich transformation at θ = 1, for which there is a severe sign
problem with 〈σ 〉abs ≈ 0 for any finite V and all but the smallest
system sizes. Error bars are smaller than the symbol sizes.
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results for the sign-ignoring entanglement entropies Sabs
2 (A)

calculated for cuts A of dimension 2 × L × L/3 in a system of
2 × L × L sites (see the Appendix for an illustration). The data
in this plot is obtained from auxiliary-field QMC calculations
using a complex-valued Hubbard-Stratonovich transformation,
which allows for the calculation of considerably larger system
sizes than simulations based on the real-valued Hubbard-
Stratonovich transformation—however, these complex-valued
calculations are known [31] to come with a much more severe
sign problem, with 〈σ 〉abs suppressed to zero for any finite
V and all but the smallest system sizes. Remarkably, our
numerical results of Fig. 2 suggest that the sign-ignoring
entanglement entropies Sabs

2 (A) completely reflect the scaling
behavior of the full entanglement entropy S2(A), with the data
for the half-filled case clearly seen to flatten out for large
system sizes indicative of the boundary-law scaling, while the
data for the one-third filled case nicely follows the logarithmic
scaling behavior expected for the total entanglement entropy
S2(L). This behavior should be contrasted to the results of
a recent variational Monte Carlo study [27] of model wave
functions for gapless spin liquids obtained from a Gutzwiller
projection of a Fermi sea. In this study, the authors found
that even the leading order term is not generically robust
against the sign problem as the multiplicative logarithmic
contribution to the entanglement entropy for a system with
gapless nodal lines was solely arising in the sign contribution
Sσ

2 (A).
Finally, we present results for the quantum phase transition

driven by the nearest-neighbor repulsion V in the one-third
filled spinless fermion model (7). Figure 3 shows results for
the sign-ignoring entanglement entropy Sabs

2 (A)/L for system
sizes up to 15 × 30 = 450 sites (and 150 fermions), well
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FIG. 3. Upper panel: Sign-ignoring entanglement entropy
Sabs

2 (L)/L for spinless fermions on the honeycomb lattice at one-third
filling subject to a nearest-neighbor repulsive interaction V . The
numerical data is obtained from projector auxiliary-field QMC calcu-
lations using a complex-valued Hubbard-Stratonovich transformation
at θ = 20, for which there is a severe sign problem for all coupling
parameters and system sizes as indicated by the vanishing average
sign 〈σ 〉abs shown in the lower panel. The gray bar indicates our best
estimate for the region in which the logarithmic contribution vanishes
and the system starts to exhibit pure area law behavior.

beyond the system size limit of any other numerical fermion
technique. With increasing V a clear transition in the scaling
behavior is seen, going from the logarithmic scaling behavior
for the nodal liquid at small V to a clean boundary law for
larger V (with all curves collapsing onto each other) indicative
of an ordinary charge-ordered state. This allows us to estimate
the location of this fermionic quantum phase transition to be
roughly located at Vc/t ≈ 0.58 ± 0.04 as indicated by the
vertical bar in Fig. 3 [34].

V. DISCUSSION

It is important to note that the ignorance of negative signs
in the interpretation of statistical weights manifests itself
differently in various Monte Carlo flavors. In auxiliary-field
QMC techniques the weight of a configuration is given by
the determinant of the free fermion problem in the Hubbard
Stratonovich field. It should be noted that at this level the
propagation of the fermions in imaginary time, including
all fermionic exchange terms invoked by the Hamiltonian,
have been fully taken into account, but finally condensed
into the single number, which is the determinant. Thus,
ignoring the sign of the determinant still allows us to capture
some of the essential physics of a fermionic system. This
should be contrasted to other Monte Carlo flavors, such as
world-line QMC techniques where the ignorance of negative
statistical weights readily implies that one considers bosonic
instead of fermionic exchange statistics throughout and that
the actual meaning of coupling terms in a Hamiltonian
are fundamentally altered, e.g., when effectively considering
ferromagnetic couplings in lieu of antiferromagnetic ones. In
a similar spirit, one cannot expect that variational Monte Carlo
approaches will be particularly robust when ignoring negative
statistical weights, which readily implies that one fully ignores
the sign structure of the underlying wavefunction (up to the
nodal structure). We believe that this distinction underlies
the observation that Rényi entropies, e.g., for frustrated spin
systems, cannot be calculated in a similarly efficient way
for world-line QMC approaches as presented here and is
also the source of the stark difference in the splitting of
entanglement contributions observed for nodal line wave
functions reported here and in earlier work on gapless spin
liquids [27].

While our numerical results indicate the tantalizing pos-
sibility that it might indeed be possible to extract global
information about the ground state of a many-fermion system
from auxiliary-field QMC simulations even in the presence of
a severe sign problem, we do want to point out that it will
require further thought to understand whether this holds for a
restricted class of wave functions only or might apply in more
generality. From the point of view of algorithmic complexity
theory, it would be interesting to have some guidance into
whether the calculation of global ground state properties, such
as the entanglement entropy, might generally be considered
to be in a different complexity class than the calculation of
ordinary observables. We hope that our work will spur further
activity to launch a new attack on the long-standing fermion
sign problem.
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APPENDIX A: AUXILIARY-FIELD MONTE CARLO
SIMULATIONS

The core numerical technique used in our work is an
auxiliary-field (or determinantal) quantum Monte Carlo tech-
nique. This technique generally comes in two distinct variants
that allow simulations either at finite temperatures in the
grand-canonical ensemble or directly in the ground state,
respectively. In finite temperature simulations, the object of
interest is the partition sum

Z = Trρ = Tre−βH , (A1)

while ground-state simulations employ a projective approach
on a trial wave function |ψT 〉

|ψ〉 = lim
β→∞

e−θH |ψT 〉. (A2)

Note that the inverse temperature β and the projection time θ

can be treated on equal footing in the following discussion
(in which we typically refer to the inverse temperature).
We perform a Trotter-Suzuki decomposition of the inverse
temperature (or projection time) into N discrete steps of size
�τ = β/N

e−βH =
N∏

i=1

e−�τH .

In general, neither of the two expressions (A1) or (A2)
can be evaluated directly because of quartic terms in the
Hamiltonian, such as a density-density interaction. Employing
a Hubbard-Stratonovich transformation, we turn the quartic
terms into quadratic ones at the cost of introducing an auxiliary
field—the Hubbard-Stratonovich field. Such a decoupling can
be performed in various channels. For Hubbard models, one
may use the magnetization channel, breaking SU(2) symmetry,
at the advantage of dealing with real numbers only. Another
possibility that retains the SU(2) symmetry is using the charge
channel which leads to complex numbers in the simulation.
The intricacies of the two different decouplings are detailed in
Ref. [31]. Performing a Hubbard-Stratonovich transformation
entails an integration over the Hubbard Stratonovich field,
which is performed stochastically within the Monte Carlo pro-
cedure. In the finite temperature algorithm, we will also have to
evaluate the trace of the fermion states, which can be performed
exactly, since the fermions are free after the decoupling. This
ultimately results in one determinant per field configuration,
hence the alternative name determinantal quantum Monte
Carlo. In the ground state algorithm, the determinant arises as
the result of an inner product of the wave function with itself.
More details on the sampling procedure and measurement of
observables can be found in the aforementioned literature [31].

APPENDIX B: REPLICA TECHNIQUE

While the replica technique for the calculation of
entanglement entropies has been employed in various
analytical and numerical calculation schemes based on its
representation in a path integral/world-line formalism [22,23],
its adaptation to auxiliary field techniques is somewhat more
involved as the fermions and their world lines are traced
out and cease to be the central objects. One recent approach
to circumvent this problem is to exploit the fact that the
fermions after the Hubbard Stratonovich transformation are
noninteracting and adopt the correlation matrix method [24,35]
to implement the replica trick. This approach, however, turns
out to be hampered by large statistical errors and only works
well for weakly interacting systems [25,36]. An alternative
approach, applicable also to the strong coupling regime, was
developed by us in an earlier work [25], which demonstrates
that one can overcome this problem by directly implementing
the replica trick with the help of a modified simulation cell.
The basic idea makes use of the fact that world lines from A

and B may interact only in restricted intervals of time, i.e.,
in either one of the intervals (0,β) or (β,2β). By “unfolding”
the simulation cell, we can simulate precisely the same
world-line dynamics if we modify the Hamiltonian in such a
way that degrees of freedom in the two parts B and B ′ only
propagate during one of the two intervals in imaginary time,
respectively. The peculiar boundary conditions in imaginary
time have thus been exchanged with a Hamiltonian that
depends on imaginary time but that can readily be simulated
within the standard DQMC framework, thus allowing us to
use the replica trick directly.

APPENDIX C: CONVERGENCE PROPERTIES OF
ENTANGLEMENT ENTROPY AND THE SIGN

OBSERVABLE

To demonstrate the severity of the sign problem in our
model systems, we here provide a detailed exposition of the

FIG. 4. Sign-ignoring entanglement entropy Sabs
2 (L) (upper

panel) and expectation values of the two signs 〈σ0〉 and 〈σ1〉 (lower
panel) for spinless fermions on a 2 × 3 × 3 honeycomb lattice at half
filling at V = 1.0. Results were obtained using project auxiliary-
field QMC calculations using a complex Hubbard-Stratonovich
transformation and plotted against the projection time θ .
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FIG. 5. Geometries of the honeycomb lattice and its bipartitions
into subsystems A (shaded in blue) and B used in (a) Fig. 1 and (b)
Fig. 2 of the main text, respectively.

expectation value of the signs 〈σ0〉 and 〈σ1〉 with regard to the
projection parameter θ in the zero-temperature auxiliary-field
quantum Monte Carlo approach (see Methods section) and
demonstrate its impact on the convergence of the sign-ignoring
entanglement entropy Sabs

2 (L). Figure 4 shows the represen-
tative behavior of these two observables by considering a
small cluster of spinless fermions on a honeycomb lattice of
size 2 × 3 × 3 at half filling and a nearest-neighbor repulsive
interaction of V = 1.0. The data reveals several systematic
trends that we observe across the entire parameter regime and
all system sizes. First, one finds that for an extended regime of
the projection parameter θ (see Methods section) the curves for
〈σ0〉 and 〈σ1〉 fall on top of each other, before possibly drifting
apart for the largest values of θ (not visible here), which
in turn gives rise to a finite sign entanglement entropy Sσ

2 .
Second, one finds that 〈σ0〉 and 〈σ1〉 almost vanish well before
Sabs

2 (L) converges. These vanishingly small expectation values
〈σ0〉 ≈ 0 and 〈σ1〉 ≈ 0 render any direct attempt to determine
the sign entanglement entropy Sσ

2 with a meaningful error bar
impossible.

APPENDIX D: LATTICE GEOMETRIES AND CUTS

The lattice geometries and their corresponding cuts are
depicted in Fig. 5. For the half-filled case, it is crucial to
capture the Dirac node in the discretized dispersion relation,
which requires the width and height of the lattice to be a
multiple of 3. For the initial comparison of DQMC using a

FIG. 6. Scaling of free spinless fermions on the honeycomb
lattice at half and one-third filling using the same geometries as
described in the previous section.

real valued Hubbard Stratonovich transformation and the sign
problem free Majorana algorithm shown in Fig. 1 of the main
text, we used a lattice of size 2 × L × W and set W = 3,
varying only L. For Fig. 2 of the main text, we were interested
in comparing the leading order of contribution to the boundary
law. We thus chose a lattice of size 2 × L × L, i.e., keeping
the aspect ratio constant when increasing the system size. The
cut is chosen to be free of corners that potentially contribute
subleading terms to the area law which we want to avoid for
the time being.

APPENDIX E: COMPARISON WITH FREE FERMIONS

For comparison with Fig. 2 in the main text, we employed
the correlation matrix method [35] to study the scaling
properties of the second Renyi entropy for free fermions. The
results are shown in Fig. 6 and were obtained for the same
geometries and cut types (cf. Fig. 5) as those in the main text.
The two figures are strikingly similar, with the sign-ignoring
simulation reproducing the general form of the scaling relation
including the oscillatory even-odd behavior. Although the data
was obtained for two different values of the nearest-neighbor
repulsion V , namely V = 0.0 in 6 and V = 0.1 in Fig. 2 of the
main text, the results shown in Fig. 1 and Fig. 3 of the main text
suggest that the free fermion scaling persists for finite values
of V .
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