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From the perspective of quantum many-body physics, the Floquet code of Hastings and Haah can be thought
of as a measurement-only version of the Kitaev honeycomb model where a periodic sequence of two-qubit XX,
YY, and ZZ measurements dynamically stabilizes a toric code state with two logical qubits. However, the most
striking feature of the Kitaev model is its intrinsic fractionalization of quantum spins into an emergent gauge
field and itinerant Majorana fermions that form a Dirac liquid, which is absent in the Floquet code. Here we
demonstrate that by varying the measurement strength of the honeycomb Floquet code one can observe features
akin to the fractionalization physics of the Kitaev model at finite temperature. Introducing coherent errors to
weaken the measurements we observe three consecutive stages that reveal qubit fractionalization (for weak
measurements), the formation of a Majorana liquid (for intermediate measurement strength), and Majorana
pairing together with gauge ordering (for strong measurements). Our analysis is based on a mapping of the
imperfect Floquet code to random Gaussian fermionic circuits (networks) that can be Monte Carlo sampled,
exposing two crossover peaks. With an eye on circuit implementations, our analysis demonstrates that the
Floquet code, in contrast to the toric code, does not immediately break down to a trivial state under weak
measurements, but instead gives way to a long-range entangled Majorana liquid state.

In the theory of quantum error correction, it has long been
appreciated that measurements can not only extract informa-
tion from a quantum system, but they can also play a converse
role in protecting quantum information. This latter idea has
been embodied in stabilizer codes [1], such as Kitaev’s toric
code [2], which allow to encode logical qubit(s) in a larger
number of system qubits via a set of commuting measure-
ment operations. More recently, these concepts have been
expanded by the introduction of Floquet codes [3–11], a dis-
tinct class of error correcting codes that dynamically stabilize
logical qubits via a time-periodic sequence of non-commuting
measurement operations. The principal example of Hastings
and Haah [3], which shows that a crucial benefit of such a
dynamical approach is that the required measurements can
be reduced to two-qubit measurements, relies on three con-
secutive rounds of XX, YY, and ZZ checks along the bonds
of the honeycomb lattice. As such this system bears a fun-
damental connection to the Kitaev honeycomb model [12],
which has been widely studied for its spin liquid ground states
[13], arising from the fractionalization of quantum spins as a
result of the frustration induced by the competition of non-
commuting terms in the Hamiltonian. The honeycomb Flo-
quet code of Hastings and Haah connects to this physics by
stabilizing a gapped toric code-like state in each individual
measurement round, akin to the strong bond anisotropy limit
of the Kitaev model phase diagram. With the code’s three-
fold time and space periodicity a non-trivial dynamics ensues
[4, 8–10], which in the Hamiltonian language corresponds to
jumping between the topological ground-state phases in the
corners of its triangular phase diagram [14]. The honeycomb
Floquet code thereby “misses” what is arguably the most in-
teresting conceptual feature of the Kitaev honeycomb model
– the emergence of a gapless spin liquid, in which emergent
Majorana fermions (coupled to a static gauge field) exhibit a
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Dirac dispersion. One reason for this is the strict temporal
structure of the Floquet code, as it has recently been demon-
strated that a random measurement-only variant of the Kitaev
model [15–17] with no spatio/temporal ordering of XX, YY,
and ZZ measurements (but an underlying assignment of parity
checks to bond types) leads to a Majorana liquid with charac-
teristic L lnL entanglement structure (where L is the linear
dimension, proportional to the code distance, of the system).

In this manuscript, we pursue an alternative route to the rich
physics of fractionalization and emergent Majorana liquids by
working directly with the honeycomb Floquet code, but tun-
ing the measurement strength away from the strong, projective
measurements assumed in the code. Instead we explore the
physics induced by weak measurements via injecting coherent
noise into the system and moving the code away from Clifford
stabilizer states [1]. The phenomenology of such weak mea-
surements on the quantum correlations of many-qubit states
has recently been theoretically explored in the context of GHZ
states [18, 19], identifying a mapping to the Nishimori physics
of classical spin glass models [20] which, crucially, allows
to connect the measurement strength to a temperature scale.
We demonstrate that a similar connection can be made for
the honeycomb Floquet code with weak measurements, al-
lowing us to induce physics akin to the finite-temperature phe-
nomenology of the Kitaev model, in which the fractionaliza-
tion of spins and the formation of gauge ordering lead to two
distinct thermal signatures [21, 22]. At the same time, giving
up strong measurements effectively moves the steady state of
the modified Floquet code away from the corners of the cor-
responding ground-state phase diagram towards its center. In-
deed, our numerical simulations on finite system sizes indicate
a pseudo-threshold at which the code breaks down due to flux
proliferation, and the Majorana fermions escape the confine-
ment of projective measurements forming a Majorana liquid –
the signature of which again is an L lnL entanglement struc-
ture observed in the entanglement negativity of the ensuing
mixed state.
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FIG. 1. Model. (a) Quantum circuit. On a hexagon lattice, the
plaquettes are tricolored into red (R), green (G), blue (B) islands,
bridged by complementary R, G, B bonds, respectively. The Floquet
circuit [4] is composed of repeated, sequential 2-qubit parity mea-
surements in a color dependent basis: R → Z, G → Y, B → X ,
respectively, as visualized by each layer for one time step. Both the
time and the spatial dimensions are period-3 translation invariant.
The hexagonal operators (e.g. Ŵ =∏j∈7Zj for R) wrapped by two
layers deduce from the bond measurement outcomes. (b) Fermion
and flux. The qubits fractionalize into Majorana fermions evolv-
ing in a Gaussian circuit under the background gauge flux tubes.
A negative bond measurement outcome sij,r = −1 fluctuates a lo-
cal flux loop. (c) Schematic phase diagram. Increasing the cir-
cuit depth r purifies the circuit-stabilized state, effectively lowering
the relevant temperature scale to zero. It leads to an entanglement
dichotomy of a long-range entangled Majorana liquid phase at in-
termediate measurement strength and a short-range dimerized Majo-
rana phase with toric code for strong measurements. The schematics
show typical configurations of the Majoranas, going from unpaired,
localized modes over long-range pairs to tightly bound local dimers.

Protocol.– The Hastings and Haah Floquet code [3] con-
sists of system qubits on the sites of a honeycomb lat-
tice, which are subject to a time-periodic sequence of non-
commuting parity measurements following a Kekulé, tricol-
oring of the bonds [4, 14], as illustrated in Fig. 1(a). This
translation invariant spacetime sequence is designed such that
(after initialization) every measurement round allows to in-
directly extract information about one of the three types of
plaquette fluxes, the crucial ingredient to stabilize the three
alternating toric code states. The two-qubit (weak) measure-
ments can be implemented by introducing auxiliary qubits on
every bond and coupling them to the system qubits via two-
qubit unitaries [18, 23] (for details see SM [24]). The resultant
non-unitary two-body Kraus operator (each brick in Fig. 1a)
on the system qubits then reads

Kµ
ij(sij) ≡ exp(−

τ

2
sijσ

µ
i σ

µ
j ) /
√
2 cosh(τ) , (1)

where µ = x, y, z, and s = ±1 is the measurement outcome of
the auxiliary qubit, and τ ∈ [0,+∞) characterizes the strength
of measurement that is controlled by a unitary entangling gate
parameter t ∈ [0, π/4]: tanh(τ/2) = tan(t) where t = π/4

corresponds to the strong, projective measurement limit. Af-
ter each measurement round, the auxiliary qubits are reset and
recycled for next round, generating a dynamical sequence of
measurement outcomes in the form of a spacetime resolved
binary number, which we denote as s. The product of Eq. (1)
along such a recorded sequence defines a Kraus operator Ks

as back-action, with spacetime random bond disorder, to the
quantum state of system qubits. Due to the back-action, the
quantum expectation value is (weakly or strongly) correlated
with the classical readout. For example, the parity expectation
can be found in SM [24]. Most importantly, every two consec-
utive rounds of measurements envelop a set of plaquettes (of
the same color), where the plaquette operator Ŵ = ∏j∈7 σµ

j
is correlated with the product of the measurement outcomes
Ws =∏ij∈7 sij around the plaquette (thus monitoring the pla-
quette flux), indicated in the interval between two time steps in
Fig. 1(a). Without loss of generality we consider periodic spa-
tial boundary conditions, initiate the state from a maximally
mixed state, and run the protocol up to a (deep) circuit depth
r = L [25].

Majorana fermions and gauge field.– To discuss the many-
body physics induced by this Floquet protocol, we resort to
the parton language familiar from Kitaev’s analytical solution
of the Hamiltonian system [12]. As such, we note that like
the quantum spins in the Hamiltonian language, the system
qubits of the measurement protocol at hand can be mapped to
a Majorana fermion coupled to a gauge field, which remains
subject to a gauge constraint [13, 26]. Here such a parton
construction maps the (2+1)D quantum circuit to a Gaussian
fermion circuit [27–29], coupled to a gauge flux. To be con-
crete, each Kraus operator is decomposed into a block diag-
onal form: Ks = ∑uKsu ⊗ ∣u⟩ ⟨u∣, where uij = ±1 is the
internal Ising gauge field on the bonds, and Ksu is a free-
fermion evolution coupled to the product of s and u. Con-
ventionally, the Majorana fermion experiences a conserved
static flux tube from u that stretches straight in time dimen-
sion [12], but the measurement record s can fluctuate in time,
creating local loop of flux tube su experienced by Majo-
rana, schematically illustrated in Fig. 1(b). As a result, the
post-measurement state of a given measurement record s is
ρ̂s = 1

P (s) ∑u psuρsu ⊗ ∣u⟩ ⟨u∣ , where c is the Majorana
fermion on the system qubit sites. ρsu is a normalized Gaus-
sian fermion matrix describing a channel

ρsu ∶=
1

psu
KsuK

†
su =

1

Bpsu
exp(−β

4
cHsuc) , (2)

where B = (2 cosh(τ))(r+1)N/2 is a normalization constant,
β = r+1 denotes the circuit-depth, and the channel probability
is proportional to the Majorana partition function

psu = Tr (e−
β
4 cHsuc) /B , (3)

where Hsu is an N -by-N -dimensional single-fermion matrix.
The probability of a given measurement record is obtained by
summing over the internal gauge field P (s) = ∑u psu. Eq. (2)
can be interpreted as an effective Hamiltonian 1

4
cHsuc at in-

verse temperature β, depending on the measurement strength
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FIG. 2. Code stability and purification. (a) Gauge flux observable. Circles show [⟨Ŵ ⟩2] that manifests the purification of fluxes. The
solid curves denote an analytic ansatz (see main text). The vertical lines denote a “pseudo-threshold” by taking the value of [⟨Ŵ ⟩2] = 1/2,
terminating a gray shaded stable code regime. Inset: Rescaling collapses all data on top of sin(2t)12 (red line). (b) Double peaks of
fluctuation. The two-peak structure signals the fractionalization of qubits into Majorana fermions and gauge fields. The first peak signals the
fluctuations of Majorana fermions, while the second peak captures the fluctuations of the gauge field. The gray shades guide the eyes to the
stable code zone (right panel) and a weakly monitored zone (left panel), whereas the intermediate window indicates an emergent Majorana
liquid. The gray vertical lines on the left zone denote the peak locations for each finite size; the gray vertical lines on the right zone denote the
pseudo-thresholds determined in (a) which agree well with the peak of fluctuations. (c) Majorana entropy per site in unit of ln 2, where the
circles denote Monte Carlo results while solid lines denote a fitted scaling form S/N = exp (−ar/Lz). Note that since time/circuit depth and
system size are locked r = L, the tendency of the lines not only reflects the system-size dependence but also the purification dynamics. The
latter clearly exhibits a system-size dependence in the weakly monitored regime, indicative of critical scaling. Fits of the entropy density for
each t to a critical scaling form with a dynamical critical exponent z, which determines the purification timescale, leads to the results shown
in the inset. Note that z → 1 for weak measurements indicating Lorentz invariance, but drops below 1,i.e. faster than ballistic, for intermediate
measurement strengths.

t ∈ [0, π/4]. This effective Hamiltonian thereby relates the dy-
namically evolving, instantaneous state to a finite-temperature
Gibbs state [30].

Shifting attention from the qubit basis to the Majorana ba-
sis, we will dub the spacetime fluctuating su a gauge trajec-
tory. The trajectory probability psu is gauge invariant under a
local gauge transformation: cj → −cj , uij → −uij ∀i, which
does not change the flux configuration. Note that the en-
semble of measurement records {s} has an additional (0+1)-
dimensional subsystem symmetry: at all times a flip for a fixed
bond sij,r → −sij,r,∀r leaves the probability P (s) invariant,
i.e. P (s) = P (su).

Quantum Monte Carlo sampling.– The key observation is
that each decomposed gauge trajectory has positive semi-
definite probability Eq. (3), which can be polynomially com-
puted by tracing out the fermions from the Gaussian fermion
circuit [24, 31, 32] and serves as a micro-step for a sign-
problem free Monte Carlo sampling [22]. Distinct from
the finite-temperature Kitaev Hamiltonian, we here have two
types of bond variables s and u. Thus we need to perform a
two-step nested Monte Carlo sampling: first sample an equi-
librium ensemble of s (loops in Fig. 1(b)) via a Markov chain,
and then, secondly, branch out from the equilibrium Markov
chain to sample the time independent u (straight tubes in
Fig. 1(b)) while fixing an s instance [24]. This numerically
is quite costly, as the sampling space u consists of 3L2 bits
while s consists of L2(L + 1) bits.

Two stage purification.– Due to the intrinsic randomness
induced by measurements, a typical post-measurement state
exhibits a random gauge flux configuration. Akin to an arbi-
trary toric code eigenstate, such a post-measurement state can

be characterized by a non-linear [33] (Edwards-Anderson) or-
der parameter of the flux observable

[⟨Ŵ ⟩2] =∑
s

P (s)⟨Ŵ ⟩2s =∑
s,u

ps ⋅ psu
P (s)

(∏
l∈7

ul) . (4)

Here we use ⟨⋯⟩ to denote the quantum average (tracing out
fermions and internal gauge field) and [⋯] to denote the mea-
surement average. Note that Eq. (4) involves two probability
functions psu and ps expressing the expectation value of (i)
pumping a static gauge field u onto (ii) the background of
a gauge trajectory s favored by the Majorana fermions [34].
Projective measurements at t = π/4 yield ⟨Ŵ ⟩ =Ws = ±1 (the
sign depending on the measurement outcome), a vanishing
measurement average [⟨Ŵ ⟩] = 0 with variance [⟨Ŵ ⟩2] = 1.
From the Majorana fermion perspective, a zero net flux state is
favored in this limit because of ⟨Ŵ ⟩Ws = +1 (akin to the Lieb
theorem for the corresponding Hamiltonian ground state).
This implies that, for projective measurements (t = π/4), the
flux induced by s is screened by the internal gauge field u.

As shown in Fig. 2(a) this flux order parameter remains
close to 1 as we decrease the measurement strength, but even-
tually drops to zero for intermediate measurement strength.
This decaying pattern can be qualitatively explained by ex-
ponentially fast purification with a constant rate of extracting
information about the conserved gauge flux [15, 16, 35, 36].
We can define a proxy of the flux entropy, where the exponen-
tial decaying factor can be deduced

Su ∶= − log2
1 + [⟨Ŵ ⟩2]

2
≈ (− log2

1 + sin(2t)12

2
)

r+1
4

,
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which appears to capture the numerical behavior quite well,
see the data collapse shown inset of Fig. 2(a). Importantly,
even when the flux purifies ⟨Ŵ ⟩2 → 1 after sufficiently long
times, for non-projective measurements t < π/4, the internal
gauge field u can no longer screen the fluctuating π flux loops
(encoded in the measurement outcomes s).

We take the location for [⟨Ŵ ⟩2] = 50% as an empirical
pseudo-threshold for the crossover, at which the toric code dy-
namically stabilized by the Floquet code breaks down [18, 35,
36]. With increasing system size and number of measurement
rounds, this pseudo-threshold slowly moves towards smaller t,
indicating that one can counterbalance the detrimental effect
of weak measurements using deeper (and larger) codes.

To explore the state stabilized beyond this threshold, we
rely on a similar diagnostic as for the finite-temperature
Kitaev Hamiltonian where the specific heat, indicating the
strengths of thermal energy fluctuations, is a useful measure to
separate the temperature scales of gauge ordering (typically at
temperatures of around 1/100th of the coupling strength) and
spin fractionalization (at a temperature corresponding to the
coupling stength) [22, 26]. To diagnose fluctuations in the
quantum circuit under weak measurement akin to the finite-
temperature Hamiltonian, we look at the variation of the mean
“energy” E = ∑su psuEsu of the effective Hamiltonian (2).
Its variation is contributed by two parts [22]

Cv =
β2

N
([⟨E2

su⟩] − [⟨Esu⟩2] + [⟨(∆E)2su⟩]) , (5)

where the first two terms quantify the fluctuations of energy
among the internal gauge space, and the last term accounts
for the energy fluctuations in the Majorana fermion space.
Numerical results are shown in Fig. 2(b), where two peaks
arise. Moving t < π/4 out of the Clifford limit of strong
measurements, the induced coherent noise first gives rise to
a peak that capture the flux fluctuations at large t, which is
followed by a peak reflecting the fractionalization of qubits
into Majorana fermions at small t. To see the purification of
the Majorana fermions more directly, we compute its entropy
as Sc = β(E−F ), where F the Majorana free energy averaged
over su. As shown in Fig. 2(c), the purification of Majorana
fermions (indicated by a decrease of this entropy) indeed sets
in at the smaller measurement strength t coinciding with the
lower peak of the fluctuations. Even for small circuits and
depths we find a power-law decay with a long characteristic
timescale ∝ Lz , where the dynamical exponent z varies with
measurement strength at small t and vanishes at large t, see
the inset of Fig. 2(c).

The two peak fluctuations, alongside the separation of pu-
rification of Majorana fermion and gauge flux are reminiscent
of the Kitaev Hamiltonian at finite temperature [22]. But
distinct from the Hamiltonian where the Majorana fermions
acquire coherence at a temperature that does not scale with the
system size, the quantum circuit takes Lz long time to purify
the Majorana fermions. We will discuss in the following that
this is in fact due to the formation of a Majorana liquid phase
(at intermediate measurement strength), more entangled than
the emerging Kitaev spin liquid [12].

Majorana liquid.– At intermediate measurement strengths,
between the two peaks, there is an interesting entanglement
dichotomy. Whereas the fluxes proliferate akin to a high
temperature toric code leading to only short-range entangle-
ment [37], the Majorana fermions give rise to long-range en-
tanglement via the formation of a liquid state as we will now
demonstrate. Distilling the entanglement structure at inter-
mediate measurement strength is a subtle issue owing to the
mixed nature of the purified state here. Instead of consider-
ing the entanglement entropy we turn to the the entanglement
negativity [38], which is an effective probe of entanglement
in a mixed state, as it allows to filter out the thermal contri-
bution [39] and can be readily generalized to fermionic sys-
tems [40–42]. For its calculation, we bipartite the torus into
two cylinders of equal lengths (see Fig. 3(a) inset) denoted as
A and its complement Ā and perform a partial time reversal
RA [40] for the fermions in A, which transforms the fermionic
density matrix to ρRA

su . The response under such a transforma-
tion indicates the entanglement between A and Ā, which is

measurement strengthweak strong

L /2
A

(b) (c)

(a)

FIG. 3. Majorana liquid. (a) Entanglement negativity. For
intermediate measurement strengths, the entanglement negativity
grows beyond area law with increasing system size, following an
L lnL scaling (b). For strong measurements, the dynamically sta-
bilized toric code state corresponding to a gapped dimerized Ma-
jorana state, the entanglement negativity pivots to an area law and
in the Clifford limit t = π/4 saturates at E = L(ln 2)/3 (see main
text). (b) The peak of negativity at intermediate t = 0.125π scales
E ≈ (0.18L+ 1.10L lnL)(ln 2)/3. Additional plots of the entangle-
ment negativity scaling for a wide range of measurement strengths
t can be found in the SM. (c) The real-space Majorana correlations
decay with a power-law at t = 0.125π.
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encoded in the negativity of its spectrum defined as

E =∑
su

psu ⋅ ln ∥ρRA
su ∥1 , (6)

where ∥ρRA
su ∥1 = lnTr

√
ρRA
su ρRA†

su . Here we average over all
the spacetime gauge configurations to obtain a typical nega-
tivity. As shown in Fig. 3(a), the entanglement of the typi-
cal fermion state grows monotonically with increasing circuit
depth r+1, but non-monotonically upon varying the measure-
ment strength t. Near the Clifford limit t = π/4, the neg-
ativity saturates to an area-law E → L ln(2)/3. This limit
can be easily understood, since the Majorana fermions form
a “valence bond crystal” of uncorrelated tightly bound dimers
on one of the three bond types in every measurement round
(Fig. 1(c)), with 2L/3 dimers across the entanglement cut,
each of which contributes half a bit of entanglement ln(2)/2.
By tuning t < π/4, the injected coherent error softens the
Majorana dimers in each time step, which allows the Majo-
rana fermion to propagate to a longer distance in spacetime,
purifying to a more entangled fermion state. In the inter-
mediate regime around t ∼ π/8, the entanglement negativity
clearly grows beyond area law, consistent with a E ∝ L lnL
scaling with the system size as shown in Fig. 3(a,b) – rem-
iniscent to what is expected for a system with a Fermi sur-
face [43, 44]. This is further supported by the observation
of power-law decaying Majorana correlations in real space,
shown in Fig. 3(c) for t = π/8. Upon further decreasing the
measurement strength, the prefactor of the L lnL scaling con-
tinuously decreases down to zero, similar to the phenomenol-
ogy of a Fermi surface shrinking to a Dirac point. We cau-
tion, however, that it takes deeper circuits of depth r ∼ L/t
than what we have been able to simulate to fully purify in
the scaling limit t ≪ 1. We expect a Majorana entangle-
ment phase transition (not necessarily at the same location
as the pseudo-threshold defined for the flux ordering transi-
tion [45]) that separates the L lnL entangled phase in the in-
termediate measurement regime from the area law phase in
the strong measurement regime. This phase transition could
be related to the physics of 3D Anderson localization transi-
tions [46], as the Gaussian fermionic circuits can be mapped
to a 3D Chalker-Coddington network model [28] with corre-
lated Born disorder [47, 48], a generalization of the 2D ran-
dom bond Ising model [18, 49, 50]. We leave it as a future
study to elucidate the nature of the fermionic entanglement
transition [47, 48, 51, 52].

Discussion.– Let us close with a broader discussion of the
conceptual connection of the honeycomb Floquet code and
the Kitaev spin liquid (KSL). The two systems can be distin-
guished by their intrinsic frustration, a measure to what extent
a state satisfies every local generator of its underlying Hamil-
tonian or circuit, respectively. While for the Kitaev spin liquid
frustration is unavoidable, resulting in long-range entangle-

ment, the (instantaneous) toric code state dynamically stabi-
lized by the Floquet code is frustration-free in essence. It is
the weak measurement in the modified Floquet code that un-
locks its frustration [18], manifesting itself in the proliferation
of gauge fluxes that interfere with the Majoranas. As a con-
sequence, the Majorana fermions following typical gauge tra-
jectories can reach a highly entangled liquid state with L lnL
entanglement scaling. This state with its super-area-law en-
tanglement turns out to be more entangled than the KSL with
its area-law entanglement [24, 53, 54] (independent of tem-
perature). If one wants to recover the KSL in a circuit, one
would have to post-select the clean trajectory s = +1 (with
ordered or disordered u for zero or finite temperature, respec-
tively) from the ensemble of trajectories, i.e. the KSL is in
fact a tiny subset of the ensemble of states out of the weak
measurement Floquet protocol [55].

In a similar vein, we can distinguish the emergent Majo-
rana liquid in the weak measurement Floquet protocol from
the one observed in the random projective measurement-only
variant of the Kitaev model [15–17, 56] (with no spatiotempo-
ral ordering of XX, YY, and ZZ measurements). Despite their
similarity of an L lnL entanglement scaling, they show very
different levels of coherence and frustration. While the latter
uses randomized Clifford measurements, which allow for the
teleportation of Majoranas (leading to long-range entangle-
ment), the Majoranas are not truly itinerant but localized in a
long-range valence bond crystal, this being frustration-free in
disguise. In contrast, in going beyond the Clifford limit the
weak measurement Floquet protocol allows long-range Ma-
jorana dimers to superpose as in a resonating valence bond
liquid [57, 58], typically a highly frustrated scenario.

These two distinctions above show that the concepts of
frustration and (non-)Cliffordness are deeply connected to
one another, and with the latter also intrinsically linked to the
concept of magic [59, 60], this points to a unifying organizing
principle for entangled states of matter.
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entropy, Phys. Rev. Lett. 128, 050402 (2022).

[60] P. Niroula, C. D. White, Q. Wang, S. Johri, D. Zhu, C. Mon-
roe, C. Noel, and M. J. Gullans, Phase transition in magic with
random quantum circuits, (2023), arXiv:2304.10481.

[61] G.-Y. Zhu and S. Trebst, Data for “Qubit fractionalization
and emergent Majorana liquid in the honeycomb Floquet
code induced by coherent errors and weak measurements”
10.5281/zenodo.10116115 (2023).

[62] A. Zabalo, M. J. Gullans, J. H. Wilson, R. Vasseur, A. W. W.
Ludwig, S. Gopalakrishnan, D. A. Huse, and J. H. Pixley, Op-

erator Scaling Dimensions and Multifractality at Measurement-
Induced Transitions, Phys. Rev. Lett. 128, 050602 (2022).

[63] C. R. Laumann, A. W. W. Ludwig, D. A. Huse, and S. Trebst,
Disorder-induced Majorana metal in interacting non-Abelian
anyon systems, Phys. Rev. B 85, 161301 (2012).

[64] C. N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, Thermally
induced metallic phase in a gapped quantum spin liquid: Monte
Carlo study of the Kitaev model with parity projection, Phys.
Rev. B 99, 045142 (2019).

[65] S. J. Garratt, Z. Weinstein, and E. Altman, Measurements con-
spire nonlocally to restructure critical quantum states, (2022),
arXiv:2207.09476.

https://doi.org/10.1103/PhysRevA.99.022310
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://arxiv.org/abs/2302.12820
https://arxiv.org/abs/2302.09094
https://doi.org/10.1103/PhysRevB.63.104422
https://doi.org/10.1103/PhysRevB.65.054425
https://doi.org/10.1103/PhysRevB.65.054425
https://arxiv.org/abs/2309.12405
https://arxiv.org/abs/2309.12391
https://doi.org/10.1103/PhysRevLett.105.080501
https://doi.org/10.1103/PhysRevLett.105.080501
https://doi.org/10.1088/1742-5468/2015/02/P02010
https://doi.org/10.1088/1742-5468/2015/02/P02010
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/PhysRevLett.128.050402
https://arxiv.org/abs/2304.10481
https://doi.org/10.5281/zenodo.10116115
https://doi.org/10.1103/PhysRevLett.128.050602
https://doi.org/10.1103/PhysRevB.85.161301
https://doi.org/10.1103/PhysRevB.99.045142
https://doi.org/10.1103/PhysRevB.99.045142
https://arxiv.org/abs/2207.09476


8

SUPPLEMENTAL MATERIAL

CONTENTS

References 5

I. Qubit based analytics 8
A. Circuit building blocks and Kraus operator 8
B. Parity measurements 8
C. Correlation between quantum and classical flux 9
D. Crossover threshold scaling 10

II. Fermion based statistical mechanics 10
A. Gaussian fermion evolution 10
B. Lyapunov exponent and the trajectory entropy 11
C. Edwards Anderson correlations 11
D. Fermionic entanglement negativity 11
E. Two step nested Monte Carlo sampling 12

III. Supplemental numerical data 12
A. Entanglement negativity of Kitaev Hamiltonian at

finite temperature 12
B. Random disorder compared with Born disorder 12

I. QUBIT BASED ANALYTICS

A. Circuit building blocks and Kraus operator

Let us start with an in-depth description of how the two-
qubit XX , Y Y , or ZZ parity checks can be implemented
using an auxiliary qubit and single-qubit measurements. This
is summarized in Fig. 4.

In mathematical terms, the weak measurement of interest in
the manuscript at hand can be expressed by a Kraus operator
induced by measuring out the ancilla qubit after coupling it
to the two adjacent site qubit, followed by a conditional Pauli
operator (realized in Fig. 4)

Ms =(iσµ
B)

1−s
2 ⟨sx ≡ s∣ e−is

z⊗(tσµ
A
+π

4 σµ
B
)∣+⟩

=cos t√
2
{1 − tan tσ

µ
Aσ

µ
B , s = +1

1 + tan tσµ
Aσ

µ
B , s = −1

= 1√
2 cosh τ

e−
1
2 τsσ

µ
A
σµ
B ,

(7)

where tan t = tanh τ
2

parametrizes the measurement strength,
with the strong, Clifford limit corresponding to t = π/4.

B. Parity measurements

To see the impact of tunable, weak measurement, we start
by computing the root mean square of the two-qubit parity
operator that is being measured: [⟨σµ

i σ
µ
j ⟩

2]1/2, as shown in
Fig. 5(a). Since we restrict ourselves to r + 1 rounds of mea-
surements and r mod 3 = 0, the R bonds are measured at

XX

YY

ZZ H0 2t
H

Z
π
2

RZZ

H0 H
XH H

H H2tπ
2

H0 H
YH H

H H

S

S

S†

S† 2tπ
2

FIG. 4. Building blocks of weak parity measurement, for mea-
surement of ZZ (in red), Y Y (in green), XX (in blue), respectively.
The two-body entangling gates are RZZ(α) = e−i

α
2
ZZ , sandwiched

by one-body Hadamard gate H or phase gate S =
√
Z that rotates

the Pauli basis. t = π/4 realizes the Hastings-Haah honeycomb Flo-
quet code, which belongs to the Clifford circuit. Deviation from π/4
injects coherent error to the circuit. The last single-Pauli operation
in each block is conditioned upon negative measurement outcome,
which can be pulled through the entire circuit till the final step and
be post-processed on software level, similar with the treatment in
measurement-based quantum computation.

latest, which becomes strongest and → 1 when t → π/4. In
contrast, the G,B bonds anticommute with R bonds and are
thus be overwritten and suppressed, becoming exactly zero
in the Clifford limit t → π/4. We can derive that the corre-
lation between the quantum expectation ⟨ZiZj⟩s and that of
the last measurement outcome sij,r follows an analytic ex-
pression: [⟨ZiZj⟩s ⋅ s] = sin(2t). Due to Cauchy-Schwarz
inequality, it lower-bounds the Edwards-Anderson (EA) cor-
relation [⟨ZiZj⟩s ⋅ s] ≤ [⟨ZiZj⟩2]1/2, which is saturated only
at the Clifford limit where the measurement outcome is equal
weight distributed. In Fig. 5(b) we compare the numerical re-
sults to the analytic expectation which is essentially repeated
measurements for a single effective qubit.

Here we derive an approximate description of the bond
measurement ensembles at weak monitored regime t ≪ 1,
for repeated weak measurements for a single qubit. Con-
sider a single Pauli string operator O that satisfies O2 = 1,
then we have a 0+1-dimensional measurement outcome tra-
jectory s ∶= {sn = ±1}, n = 1,⋯, r. Initializing from a max-
imally mixed state, after r times of measurement, the post-
measurement state is

ρs ∝ eτstotO, (8)

with normalized probability

ps =
cosh(τstot)
(2 cosh τ)r

, (9)

where stot ≡ ∑r
n=1 sn is the sum of the r rounds of measure-

ment outcomes. The autocorrelation of the classical readout,
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(a) (b)

− − 2t r/3

Ψ
r

0
12
3

ρ

45
6

FIG. 5. Local two-qubit parity expectation for the final state for
the corresponding R, G, B bonds, respectively. (a)The inset shows
the schematic 2 + 1D spacetime evolution bulk composed of non-
commuting tri-coloured layers, where the final state is a slab of the
temporal boundary, that preserves 3-fold dimer rotation symmetry at
t≪ 1 but explicitly breaks it at t → π/4. The Clifford point t = π/4
can be analytically solved: G = B = 0,R = 1. The measurement
average is performed over the squared of the expectation to get rid of
the random sign. Since R bonds are the ones being finally measured,
they have strongest expectation ZZ → ±1 when it approaches the
Clifford limit t → π/4, while G and B bonds have been suppressed
by the latest anti-commuting measurements. The black solid line is
the quantum-classical cross-correlation for the latest measurement
[⟨σµ

i σ
µ
j ⟩ ⋅ sij] = sin(2t) that lower-bounds the square root of EA

dimer correlation. The deviation reflects the trajectory dependence
of the R bonds, which have been measured more than one times. (b)
A zoom in view of the weakly monitored regime t ≪ 1 where the
observables converge well to the analytic expression 2t

√
r/3 (gray

dashed lines). Note that R(r) ∼ 2t
√
r/3 + 1 because it lies at the

temporal boundary. Thus R being measured in the previous period
agrees with the G and B in the current round, because they are all in
the bulk away from the temporal surface.

between any two times, is

[smsn] = 1 − (cosh τ)−2, (10)

which means (i) they are long-range correlated in time axis;
(ii) their correlation increases monotonically with increasing
measurement strength and saturates at strong measurement
limit. (Bear in mind that tanh τ

2
= tan t.) The correlation

between the observable and the latest measurement outcome
is always

[⟨O⟩sr] = tanh τ, (11)

which is related to the measurement strength but not the time
because the histories are washed out. And the second moment
correlation expresses the trajectory rigidity and depends on
the depth

[⟨O⟩2] = ∑
stot

tanh(τstot)2P (stot) . (12)

When the time dimension is traced out, the distribution of stot
is bimodal that originates from a superposition of the tails of
two separated Gaussian distributions peaked at ±rτ with vari-

FIG. 6. Crossover threshold tc scaling with circuit depth r, associ-
ated with Majorana purification (blue) and flux purification (orange),
respectively. The blue circle is extracted from the peak locations of
Majorana fluctuation Cv; the orange data is extracted from the ana-
lytic ansatz for exponential purification.

ance r

P (stot) =
1

(2 cosh τ)r
cosh(τstot)(

r
r+stot

2

)

≈ 1

(cosh τ)r
√
2πr

cosh(τstot)e−
1
2r s

2
tot

∝ (e−
1
2r (stot+rτ)2 + e−

1
2r (stot−rτ)2) ,

(13)

subjected to the constraint −r ≤ stot ≤ +r. For weak mon-
itored regime t ≪ 1, one can deduce that [⟨O⟩2] ≈ τ2 ⋅
var(stot). P (stot) forms an approximate Gaussian distribu-
tion with variance r. Consequently, [⟨σµσµ⟩2] ≈ 2t

√
r/3 for

t≪ 1, that agrees with the numerical calculation in Fig. 5b.

C. Correlation between quantum and classical flux

Consider a single plaquette surrounded by two rounds of
measurement, one can trace out the Majorana fermions c (or
equivalently all open Pauli strings) leaving a reduced density
matrix for the flux (closed loop configurations)

Trcρs ∝ 1 + (tanh τ)6ŴWs . (14)

Consequently,

[⟨Ŵ ⟩Ws] = (tanh τ)6 (15)

and [⟨Ŵ ⟩] = [Ws] = 0. Eq. (15) applies to more general
case, as long as Ws is the latest measurement readout, which
basically expresses the instantaneous correlation between the
measured quantum observable and the classical readout. We
use this exact result as a sanity check for the Monte Carlo sam-
ples. For L = 12 and t > 0.2π, the Monte Carlo samples using
simple update up to 2000 sweeps deviate from this analytic
expression and are thus discarded.
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D. Crossover threshold scaling

A visualization of the scaling of the crossover tc is shown in
Fig. 6. Even though the flux purifies exponentially fast (with
exponential decaying entropy with circuit depth), the absolute
value of tc appears to decay slow when increasing depth.

II. FERMION BASED STATISTICAL MECHANICS

A. Gaussian fermion evolution

Under a fixed gauge trajectory su, the quantum circuit re-
duces to a Gaussian fermion circuit. As shown in Fig. 7, each
gate reduces to a scattering node with four legs represent-
ing the incoming and outgoing free fermion modes, as in a
Chalker-Coddington network model. Each node is described
by a transfer matrix:

eτsuσ
y

= eln(2 cosh(τ)) 1 + su tanh(τ)σ
y

2
(16)

that linearly maps [12] the Majorana fermion operator under
time evolution. Note that the measurement-induced binary
disorder enters as a sign factor into the node, similar to the
network model for 2D random bond Ising model [50]. Col-
lecting all the nodes in one circuit layer, we get an N -by-N -
dimensional transfer matrix for the entire system, where each
node contributes a 2-by-2 block. We denote the transfer ma-
trix of layer n by eAn ≡ eÃn+ln(2 cosh(τ)), where the rescaled
exponent Ãn has its spectrum upper-bounded by 0. Collect-
ing all the layers for the entire circuit, the Gaussian fermion
operator for the complete trajectory

ρsu ∝ (
r

∏
n=0

e
1
4cAnc) × h.c. = e−

β
4 cHsuc (17)

r
XX

ZZ

YY

(a) (b)

FIG. 7. The 3D free-fermion network model. The effective
Chalker-Coddington network model in a given gauge trajectory su.
Each node originates from one two-qubit gate in (a) and is mapped
to one scattering node with 4 legs, corresponding to a transfer matrix
eτsuσ

y

where σy denotes a Pauli matrix that should not be confused
with the physical qubit.

can be computed by using the Baker Hausdorff formula:

Hsu = −
1

β
ln (eAr⋯eA0 × eA0⋯eAr) . (18)

Then the hermitian and antisymmetric Majorana covariant
matrix follows as

iΓsu ≡
i

2psu
Tr (ρsu[c, cT ]) = −i tanh

βHsu

2
. (19)

The internal energy is

Esu =
1

4psu
Tr[ρsu(cHsuc)] =

1

4
tr (HsuΓsu) , (20)

where we use tr(⋯) to denote single-particle trace in N -by-
N -dimensional space. The energy variance in the Majorana
space can be obtained by Wick decomposition. By diagonal-
izing Hsu for its eigenvalues {±ϵ}, we have the quantities ex-
pressed by the single-mode eigen-energies:

Fsu = −
1

2β
∑
ϵ≤0

ln (2(1 + cosh(βϵ))) ,

Esu = −
1

2
∑
ϵ≤0
(ϵ tanh βϵ

2
) ,

⟨(∆H)2⟩su =
1

4
∑
ϵ≤0
(ϵ2 (1 − (tanh βϵ

2
)2)) .

(21)

By linearly averaging them with weight psu, we obtain the
average Majorana free energy F , internal energy E, energy
variation, respectively. The average Majorana entropy can be
calculated by Sc = β(E − F ), which should be distinguished
from the entropy of flux or trajectory.

Numerical computation.– In practice we start from the
middle of the chain in Eq. (18) and iteratively absorb the
rescaled transfer matrix: e−βH̃n = eÃne−βH̃n−1eÃn , by start-
ing with H̃−1 = 0. The final matrix e−βH̃r also has its
spectrum bounded within the unit-circle. Taking the loga-
rithm for the eigenvalues, we can retrieve the exponent Hr =
H̃r − 2 ln(2 cosh(τ)). With the particle-hole symmetry the
spectrum should be symmetric around 0, and thus we only
record the negative branch that dominates the dynamics and
suffers less from the rounding error. An alternative way is to
keep track of the covariant matrix Γn ∶= − tanh(βHn/2) evo-
lution: Γn = ΓAn × Γn−1 × ΓAn , where ΓAn = tanh(An/2) =
tanh(τ/2)suσy is the covariant matrix for each step evolu-
tion, and the composition operation x × y here is not matrix
product but rather x × y ∶= 1 − (1 − y)(1 + xy)−1(1 − x) [31].
Note that such fermion evolution computation suffers from
numerical singularity when t → π/4 and for deeper circuit,
because of diverging βϵ. This can overcome by iteratively
rescaling the accumulated transfer matrix as commonly done
in a localization problem.
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B. Lyapunov exponent and the trajectory entropy

The Lyapunov exponent of the purification dynamics can
be related to the eigen energy of the effective Hamiltonian:

λ0 =∑
su

psu (−min eig(1
4
cHsuc))−

1

β
lnB = −E0−

1

β
lnB ,

(22)
where E0 is the ground state energy: E0 = 1

2 ∑ϵ≤0 ϵn, aver-
aged over su, which converges to the average energy E at
asymptotic long time. The numerical results are shown in
Fig. 8a.

The ensemble of net gauge trajectory consists of N(r+1)/2
bits defined over the Kekulé bonds in the 2+1D spacetime
bulk. Its mean Shannon entropy can be obtained as

Ssu = − ∑
{su}

psu lnpsu = −[lnps] = [βFs] + lnB , (23)

where u is absorbed by s. Thus the average Majorana free
energy has the physical meaning as the Shannon entropy of
the net gauge trajectory, as shown in Fig. 8c.

C. Edwards Anderson correlations

Consider generic observables that can be expressed as
gufsu where fsu can represent the Majorana correlation func-
tions or energies that only depend on the net gauge field, while
gu represents the gauge strings that satisfy guu′ = gugu′ .

[⟨gufsu⟩]∝∑
s

P (s)∑
u

psu
P (s)

gufsu ∝ (∑
u

gu) = 0 . (24)

Consequently, the measurement average of any linear func-
tion of the gauge field gu vanish exactly. The physical reason
is that the probability depends on the net gauge field expe-
rienced by Majorana fermions, and thus the internal gauge
field can always be screened by proper external gauge field
trajectory. Thus upon averaging the external gauge trajectory
first, different internal gauge field configurations always share
equal probability. Specifically, this means any open Wilson
line, or flux becomes strictly zero upon average.

Then let us consider the second moment i.e. Edwards-
Anderson correlation:

[⟨gufsu⟩2] =∑
s

P (s)(∑
u

psu
P (s)

gufsu)(∑
u′

psu′

P (s)
gu′fsu′)

=∑
s

ps∑
u

psu
P (s)

fsgufsu.

(25)

In this way one can first sample the gauge trajectory s ac-
cording to ps, and then sample the internal static gauge field
configuration using Markov chain according to their relative
probability psu/ps. The second moment EA correlation is the
correlation between two trajectories, akin to the correlation
between two replicas in spin glass. The analogue specific heat
for internal gauge field is the variance of the (gauge invari-
ant) energy (defined as minus logarithm of the unnormalized

FIG. 8. Lyapunov exponent and entropy of net gauge trajectory.
(a) The leading Lyapunov exponent per site, equivalent to the ground
state energy density. At t = 0, λ0/N = − ln(2)/2, while at t = π/4 it
is solved to be λ0/N = − ln(2)/(3(1 + 1/L)). (b)The gap between
the leading Lyapunov exponent λ0 and the subleading exponent λ1,
equivalent to the average fermion energy gap. The gap diverges to in-
finite when t→ π/4 because the subleading eigenvalues of Kraus op-
erator all vanish. (c) The blue dots show the gauge trajectory entropy.
At t = π/4 it is analytically solved to be S = 2/(3(1 + 1/L)) ln 2.
Note that each measurement trajectory consists of N(r + 1)/2 bits.
The red lines denote the entropy if the state is further evolved up to
asymptotic long time, which is dominated by the leading Lyapunov
exponent S → −2λ0/N . Note that the blue data and the red lines
agree at the large t regime because of a large diverging Lyapunov
gap when t→ π/4, such that the leading Lyapunov exponent already
dominates the trajectory entropy.

Gaussian density matrix) among the internal gauge space, av-
eraged over the measurement outcomes.

D. Fermionic entanglement negativity

The fermionic entanglement negativity [39–42] is defined
by a partial time reversal transformation over a subsystem, in
analogy to the partial transpose of bosonic density matrix. For
simplicity let us fix a disorder su but abbreviate its notation
in the following. Consider a bipartition over the lattice into
A and its complement Ā, then the Majorana covariant matrix
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can be written into blocks as follows:

Γ = (ΓAA ΓAĀ

ΓĀA ΓĀĀ
) . (26)

The partial time reversal transformed fermion density matrix
(denoted as ρRA ) is still Gaussian (in contrast to the partial
transposed density matrix), whose covariant matrix is [40, 41]:

Γ+ = (
−ΓAA +iΓAĀ

+iΓĀA ΓĀĀ
) . (27)

Since it is not hermitian: Γ+ ≠ Γ†
+ ≡ Γ−, one can define an

unnormalized hermitian Gaussian density matrix

ρ∗ ≡ ρRAρRA† , (28)

whose norm is Tr (ρ∗) =
√

det I+Γ2

2
, and its covariant ma-

trix [31]

Γ∗ = I − (I − Γ−)(1 + Γ+Γ−)−1(I − Γ+) . (29)

Denoting the eigenvalues of eig(Γ∗) = ξn and eig(Γ) = ζn,
the fermionic entanglement negativity follows as [40]

E ≡ lnTr
√
ρRA†ρRA

= ln
Tr
√
ρ∗√

Trρ∗
+ 1

2
lnTr (ρ∗)

=
N/2
∑
n=1

ln
⎛
⎝

√
1 + ξn
2
+
√

1 − ξn
2

⎞
⎠
+ 1

2
ln

1 + ζ2n
2

.

(30)

The negativity scaling for each t is shown in Fig. 9.

t = 0.005 ∼ 0.125π t = 0.125 ∼ 0.245π

FIG. 9. Scaling of fermionic entanglement negativity across the
phase diagram. For the weak monitored regime t ≲ 0.125π the en-
tanglement grows quickly with increasing system sizes and circuit
depth with an L lnL scaling. Note that a volume law scaling is pre-
cluded due to its instability against measurement in a free fermion
system [29]. The seemingly faster growth than L lnL at small t
is attributed to a finite size effect at the early stage of power-law
growth before it saturates [32]. For the strong measurement regime
t ≳ 0.125π, the entanglement comes to saturate to an area law.

E. Two step nested Monte Carlo sampling

The Monte Carlo sampling is schematically shown in
Fig. 10. Horizontal chain is for the dynamical gauge tra-
jectory s in a L × L × (r + 1) dimensional spacetime grid,
while vertical chain is for static gauge field u in a L × L × 3
grid. We sample 2000 sweeps along the horizontal chain for
s, discard the first 500 sweeps for equilibrium ensemble, and
branch out to grow the vertical chain in every 100 sweeps
interval, and sample 1000 sweeps for u, according to rel-
ative probability psu. We take vertical branches separated
by a relatively large distance comparable or greater than the
auto-correlation time. By using binning analysis to integrate
out each vertical chain for an averaged physical observable
⟨⋯⟩ ≡ ∑u

psu

P (s)(⋯), a Markov comb reduces to a Markov
chain. Then we perform binning analysis to integrate out the
reduced Markov chain [⟨⋯⟩] ≡ ∑s ps⟨⋯⟩ for final observ-
ables: [⟨⋯⟩] ≡ ∑s P (s)∑u

psu

P (s)(⋯).

s

s × u

Dynamical gauge field:  bits(r + 1)N/2

Static gauge field:  bits3N/2

FIG. 10. Schematic of the comb-shaped Markov chains with branch-
ings. Each point is a disordered Majorana state coupled to a spa-
tiotemporal gauge configuration su, whose probability is obtained
by tracing out fermion.

III. SUPPLEMENTAL NUMERICAL DATA

A. Entanglement negativity of Kitaev Hamiltonian at finite
temperature

For comparison with the quantum circuit, we compute the
finite temperature fermionic entanglement negativity of the
following Hamiltonian

H = ∑
⟨ij⟩∈R

ZiZj + ∑
⟨ij⟩∈G

YiYj + ∑
⟨ij⟩∈B

XiXj , (31)

which is equivalent to the conventional Kitaev Hamilto-
nian [12, 22] up to a local basis rotation [4, 14], see Fig. 11.

B. Random disorder compared with Born disorder

Here we compare the fermionic negativity of the fermion
state in the typical random disordered su trajectory, compared
with that in the typical Born disordered trajectory (with prob-
ability psu) we discussed in the main text, see Fig. 12.
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FIG. 11. Kitaev model at finite temperature 1/β. (a) Fermionic
entanglement negativity, for half cut two-cylinder bipartition, which
converges to an area law even down to zero temperature. In the left
inset, we plot the scaling at 1/β = 0.01 (blue circles), in compari-
son with the exact ground state 1/β = 0 i.e. fermionic ground state
under zero flux, denoted by orange squares, that obeys the area law
up to large system sizes. In the right inset, we show the negativity
of fermionic ground state under random flux, which also obeys area
law with a different coefficient. (b) Energy variance (specific heat
capacity). (c) Flux. The data of L = 3 is computed by exact summa-
tion of the local fluxes. The fermion is put in anti-periodic boundary
condition that has lowest energy at finite size.

FIG. 12. Random bond disorder in spacetime versus Born proba-
bility disorder, at t = 0.125π. The typical trajectories in both cases
exhibit L lnL scaling entanglement, which goes beyond the area law
in a random flux Hamiltonian ground state in Fig. 11. Note that the
two disorder scenarios diverge when increasing system size and cir-
cuit depth, and the Born trajectory appears less entangled than the
random typical trajectory.
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