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Two- and three-dimensional Kitaev magnets are prototypical frustrated quantum spin systems, in which the
original spin degrees of freedom fractionalize into Majorana fermions and a Z2 gauge field—a purely local
phenomenon that reveals itself as a thermodynamic crossover at a temperature scale set by the strength of the
bond-directional interactions. For conventional Kitaev magnets, the low-temperature thermodynamics reveals
a second transition at which the Z2 gauge field orders and the system enters a spin-liquid ground state. Here,
we discuss an explicit example that goes beyond this paradigmatic scenario—the Z2 gauge field is found to be
subject to geometric frustration, the thermal ordering transition is suppressed, and an extensive residual entropy
arises. Deep in the quantum regime, at temperatures of the order of one per mil of the interaction strength, the
degeneracy in the gauge sector is lifted by a subtle interplay between the gauge field and the Majorana fermions,
resulting in the formation of a Majorana metal. We discuss the thermodynamic signatures of this physics obtained
from large-scale, sign-free quantum Monte Carlo simulations.
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Introduction. In frustrated magnetism, lattice gauge theo-
ries are a ubiquitous tool to capture the physics of quantum
spin liquids [1]. The fundamental distinction in these theories
between confined and deconfined regimes corresponds to
the formation of trivial, magnetically ordered states versus
macroscopically entangled spin liquids. The principal nature
of the underlying gauge theory can further be used to cat-
egorize different types of quantum spin liquids such as Z2

spin liquids [2,3], U (1) spin liquids [4], or chiral spin liquids
[5]—for which the corresponding gauge theory exhibits either
a discrete Z2 or continuous U (1) symmetry or an underlying
Chern-Simons action [6]. This classification allows one to
draw conclusions about the stability of the corresponding
spin liquids, in particular, to thermal fluctuations. While the
(spontaneous) breaking of time-reversal symmetry in chiral
spin liquids mandates their thermal stability and the pres-
ence of a finite-temperature phase transition, a more complex
picture emerges for Z2 and U (1) spin liquids. Here, spatial
dimensionality needs to be taken into account. For the Z2

spin liquid the elementary vison excitations of the underlying
gauge structure are pointlike objects in two spatial dimen-
sions, allowing them to proliferate at finite temperatures and
destroy the entangled spin-liquid state. In contrast, in three
dimensions the Z2 spin liquid is stable to thermal fluctuations,
as now the visons form (small) looplike objects that cannot
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destroy the spin liquid and break open into extended linelike
objects only at a finite-temperature transition. For U (1) spin
liquids the elementary instanton excitations of the bare U (1)
gauge theory are pointlike objects in both two and three spatial
dimensions, implying that these spin liquids are generically
not stable at finite temperatures [7].

In this Rapid Communication, we consider the explicit
example of a three-dimensional Z2 spin liquid, realized in a
numerically tractable Kitaev model, that proves to be an ex-
ception from these paradigms. At sufficiently low temperature
the gauge field is found to be subject to geometric frustration,
arising from local constraints that impose a divergence-free
condition and result in an extensive residual entropy. The
net result is a suppression of the expected thermal ordering
transition of the Z2 gauge field and the emergence of a spin-
liquid state that is “doubly frustrated,” as it arises from the in-
terplay of exchange frustration on the spin level and geometric
frustration on the level of the emerging fractional degrees of
freedom. Extensive quantum Monte Carlo simulations reveal
that at ultralow temperatures of the order of one per mil of
the interaction strength, i.e., deep in the quantum regime, the
degeneracy in the gauge sector is lifted by a subtle interplay
with the Majorana fermions, which emerge in parallel with
the gauge field upon spin fractionalization. The formation of
a collective ground state of these fermions, a Majorana metal
with a distinct nodal-line structure, feeds back into the gauge
sector and leads to the formation of columnar ordering of
the gauge field. Our model system thereby proves to be a
principal example of a spin liquid, for which not only the
phenomenon of fractionalization, but also of the subsequent
nontrivial interplay of the emergent fractional degrees of free-
dom and the underlying lattice gauge theory can be captured
by numerically exact simulations.
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FIG. 1. The (8, 3)c lattice illustrated in (a) is a three-dimensional
tricoordinated lattice, built around hexagonal sites (gray) interleaved
with six zigzag chains. Its Schläfli symbol (8, 3)c indicates that all
elementary plaquettes are of length 8. Around each hexagonal site
three such plaquettes meet as illustrated in (b).

Gauge frustration. The Kitaev model with its characteristic
bond-directional spin exchanges of the form

HKitaev =
∑

〈 j,k〉,γ
Jγ σ

γ

j σ
γ

k (1)

(with the Pauli matrices σγ and γ = x, y, z) is well known to
be analytically tractable for a class of two-dimensional (2D)
[8,9] and three-dimensional (3D) [10] lattices. The analytical
treatment [8] relies on a parton construction that decomposes
the spins into itinerant Majorana fermions and a static Z2

gauge field. The fact that the gauge field remains static and
assumes, at sufficiently low temperatures, an ordered ground
state is key for the exact solvability of the model, since it
allows one to reduce the problem to one of free Majorana
fermions hopping in a fixed background. In fact, a theorem
by Lieb [11] describes the ground state of the gauge sector
in terms of Z2 fluxes Wp through the elementary plaquettes—
plaquettes of length 6, 10, . . . are flux-free (Wp = +1), while
plaquettes of length 4, 8, . . . carry a π flux (Wp = −1). Recent
classification work of 3D Kitaev models [10] has shown that
Lieb’s theorem generically predicts the correct ground-state
flux assignment, even for lattices that do not fulfill all its
mathematical requirements. This is also true for the (8, 3)c
lattice.

The key ingredient for the study at hand is a “frustrated”
3D lattice geometry whose central motif are hexagonal sites
at which three plaquettes of length 8 meet (see the illustration
in Fig. 1). Following the above intuition based on Lieb’s
theorem each of these plaquettes is destined to carry a π

flux, which conflicts with the fact that for any closed volume,
such as the one spanned by the three plaquettes, the fluxes
must obey a divergence-free condition—if a flux enters the
volume through one of the plaquettes, it must leave through
another one. The product of the three values of Wp is thus
fixed to +1 [10]. This condition allows only two of the three
plaquettes to carry a π flux and leaves one of the plaquettes in
a flux-free state. For isotropic coupling strength Jx = Jy = Jz

this produces three possible flux arrangements per hexagonal
site and an extensive residual entropy for the system. It is this
formation of an extensive manifold of (almost) degenerate
states in the gauge sector that designates the term “gauge-
frustrated” for the Kitaev model at hand [12].

One way to relieve the frustration is to vary the relative
coupling strengths. To see this, consider that every length-8
plaquette consists of an uneven number of bond-directional

FIG. 2. Gauge frustration and pseudospins. (a)–(c) The 3-flux
states that constitute the ground-state manifold of the Z2 gauge field.
The plaquettes are colored cyan (yellow) to indicate a π (0) flux. For
each configuration the corresponding pseudospin vector is specified.
(d) Pseudospin correlations as a function of temperature for different
coupling strengths. Data shown are for system size 4 × 4 × 6. The
shaded area indicates the temperature region in which we have
employed histogram reweighting techniques [13,14] to extrapolate
the data.

coupling types, e.g., 2 × Jz for the bottom plaquette illustrated
in Figs. 2(a)–2(c), while the two upper plaquettes have 3 × Jz

couplings. For Jz > Jx = Jy, one finds that the local threefold
degeneracy is lifted and only one local gauge configuration,
illustrated in Fig. 2(a), is favored. For Jz < Jx = Jy the two
flux configurations of Figs. 2(b) and 2(c) remain degenerate,
thus only partially lifting the degeneracy.

To check that this phenomenon of gauge frustration indeed
plays out in the model at hand, we have performed large-scale
sign-free Monte Carlo simulations. To capture the local gauge
physics, we define for any given hexagonal site a pseudospin
vector

W =
⎛
⎝

Wx

Wy

Wz

⎞
⎠ (a)=

⎛
⎝

−1
−1

1

⎞
⎠ (b)=

⎛
⎝

1
−1
−1

⎞
⎠ (c)=

⎛
⎝

−1
1

−1

⎞
⎠, (2)

where the individual components Wx,y,z indicate the
absence/presence of a π flux in the three adjacent plaquettes.
For the three states that fulfill the local divergence-free
condition, their π flux assignments are given on the
right-hand side of the above equation in correspondence
with Figs. 2(a)–2(c). For these pseudospin vectors we define
a correlation function

P = 4

3N

∑
j

〈W0 · W j〉, (3)

where 0 and j denote two hexagonal sites. P readily reveals
the nature of the ground-state manifold and can be directly
probed in our Monte Carlo simulations. Its expectation value
is P = 1 for the case of a single ground state of the gauge
field (Jz > Jx, Jy), and P < 1 for the extensively degenerate
cases, specifically P = 1/3 for the local twofold degeneracy
(Jz < Jx, Jy) and P = 1/9 for the local threefold degeneracy

032011-2



THERMODYNAMICS OF A GAUGE-FRUSTRATED KITAEV … PHYSICAL REVIEW RESEARCH 1, 032011(R) (2019)

expected for isotropic coupling strengths (Jz = Jx = Jy) (see
the Supplemental Material [15]). Numerical results from
Monte Carlo runs are shown in Fig. 2(d) for different strengths
of Jz [with Jx = Jy = (1 − Jz )/2]. The data clearly show that
down to temperatures of the order of 10−2J the pseudospin
correlator goes to zero, indicating a completely disordered
state of the gauge fields. At lower temperatures, the pseu-
dospin correlator rises and eventually saturates. These sim-
ulations unambiguously confirm that the system indeed enters
a regime of gauge frustration at low temperatures, with an
extensive degeneracy building up in the gauge sector.

Lifting of gauge degeneracy. The formation of an “acciden-
tal” degeneracy, i.e., one that is not protected by any inherent
symmetries of the system, is often accompanied by some
residual effect that splits this degeneracy, at sufficiently small
temperature scales, in favor of a unique (or less degenerate)
ground state—an effect that typically goes hand in hand with
a macroscopic phase transition. Such residual effects can
include the energetic or entropic selection of ground states,
driven either by otherwise negligible interactions (such as,
e.g., longer-range interactions) or thermal fluctuations in an
order-by-disorder scheme [16].

For the Kitaev system at hand, we find the particularly
intriguing scenario that it is an (energetic) interplay between
the emergent fractional degrees of freedom that ultimately lifts
the gauge frustration discussed above. From the perspective
of the itinerant Majorana fermions, the residual degeneracy
in the gauge sector is equivalent to a complex scattering
potential, as every individual gauge configuration corresponds
to a distinct sign structure of the Majorana hopping am-
plitudes. In the gauge-frustrated regime, the collective state
of the Majorana fermions is therefore best described as a
thermal metal [17,18], as the degeneracy in the gauge sector
has a similar effect as (thermal) disorder. This observation
points to a scenario where the formation of a collective
Majorana state—a more conventional, disorder-free metallic
state—might become favorable at the expense of inducing an
ordering in the gauge sector. This is precisely what happens
at ultralow temperatures, of the order of 10−3 of the mag-
netic coupling strength, in the system at hand—the itinerant
Majorana degrees of freedom form a nodal-line semimetal,
while simultaneously enforcing a columnar ordering in the
gauge sector that lifts the gauge frustration. Schematically, the
key signatures of these states are illustrated in Fig. 3, which
shows the gapless nodal line in the Majorana band structure
for different values of the exchange Jz, and the corresponding
columnar ordering patterns of the gauge field.

Thermodynamics. To quantitatively probe this physics we
have measured a variety of thermodynamic observables in
quantum Monte Carlo (QMC) simulations covering four or-
ders of magnitude in temperature. These QMC simulations are
performed in the sign-free parton basis [19], i.e., we sample
configurations of the gauge field, {ujk = ±1} for every bond
〈 j, k〉 of the lattice, with the change of the Majorana free
energy being calculated explicitly in every update step (either
by exact diagonalization or a Green’s function based kernel
polynomial method [20,21]). This procedure also allows us
to separately distill the entropic contributions to the specific
heat of the Majorana fermions [22], as detailed in the Sup-
plemental Material [15]. Results are given in Fig. 4(a) for the

FIG. 3. Majorana semimetals and columnar gauge ordering.
Evolution of the nodal line in the Majorana band structure for varying
coupling Jz (top row) calculated for the columnar-ordered gauge field
configurations illustrated in the bottom row.

isotropic coupling point (Jx = Jy = Jz). Some features of the
multipeak structure of the specific heat are well known from
conventional Kitaev models, such as the crossover feature
at temperatures of order 1, where the system releases about
half of its entropy [see Fig. 4(b)] upon the fractionalization
of the local spin degrees of freedom [19,23], primarily by
the Majorana fermions (whose energy scale is set by the
magnetic coupling strength). Below this crossover there are
two additional features At a temperature of about 10−2 a

FIG. 4. Thermodynamic signatures for the isotropic system.
(a) Specific heat, separated into contributions of Z2 gauge field (GF)
and itinerant Majorana fermions (MF). (b) Entropy per spin. (c) Flux
per plaquette. (d) Fluctuation of the flux per plaquette. (e) Pseudospin
correlator (3). The dashed line indicates the temperature scale at
which the system enters the constrained manifold, corresponding
to the maximum in the flux fluctuations and a residual entropy of
(1/4) ln 3. Error bars are smaller than the symbol sizes.
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broad shoulder forms, which does not show any scaling with
system size pointing to a local crossover phenomenon. It is
at this temperature scale that the system enters the manifold
of “gauge-frustrated” states, which is evident from (i) the
average plaquette flux dropping to a value of 〈Wp〉 = −1/3 =
(−2 + 1)/3 (expected for local configurations where two out
of three plaquettes have a π flux, i.e., Wp = −1, and one
plaquette remains flux-free, Wp = +1), (ii) the fluctuations of
the plaquette flux exhibiting a maximum upon entering this
constrained ground-state manifold, and (iii) the pseudospin
correlator (3) raising and saturating at the expected value of
P = 1/9, as documented in Figs. 4(c)–4(e). Below this second
crossover peak, at a temperature of the order of 2 × 10−3,
one finds a sharp peak in the specific heat that sharpens with
increasing system size—this is a true thermal phase transition,
where the system releases entropy by forming a columnar
ordering of the gauge field. In this ordered state every column
of hexagonal sites exhibits a staggered pattern of the flux-free
plaquettes as indicated by the yellow plaquettes in Fig. 3(b).
However, since the columns order individually and there are
two possible staggered states for each column, the resulting
overall order not only still allows for a residual entropy,
but also breaks the lattice rotational symmetry. This is a
remarkable symmetry-breaking effect as it plays out solely in
the gauge sector.

Phase diagram. Expanding this analysis of key thermo-
dynamic observables to a range of Jz parameters, we have
compiled the composite phase diagram of Fig. 5. Plotted
here are different indicators for the crossover scale to the
constrained gauge manifold. As proxies for this crossover, we
have marked (i) the location of the peak in the variance of
the fluxes, akin to Fig. 4(d), by the solid green circles and
(ii) the line of temperature points at which the pseudospin
correlator (3) crosses P = 1/9 by the solid white circles.
The low-temperature phase transition, at which the concurrent
formation of a nodal-line Majorana semimetal and columnar
order of the gauge field occurs, is indicated by the white
squares. Depending on the strength of Jz, we distinguish
two principal scenarios. First, there is a line of transitions
(indicated by the solid white squares) where it is the formation
of the Majorana metal that lifts the degeneracy in the gauge
sector and enforces the columnar gauge order. This is the
case for Jz � 1/3. For Jz � 0.40, it is the energetics within
the gauge sector that readily selects a single configuration
of the constrained gauge field for each hexagonal site [see
Fig. 2(a)], which results in the columnar ordering depicted in
Fig. 3(f). For 1/3 < Jz � 0.40, a more subtle mechanism is at
play where the energetics of the gauge field favors the same
type of columnar order as for Jz � 0.40, but the minimization
of the Majorana energy enforces yet another type of columnar
order, depicted in Fig. 3(d), which, in a certain sense, is
an intermediate type of order with a staggered flux pattern
involving flux-free states on some of the bottom Wz plaquettes.
The phase diagram thus reveals multiple distinct regimes,
in which a subtle interplay between the emergent parton
degrees of freedom leads to the formation of different types of
collective ground states—including gapless spin liquids with
a Majorana nodal line and columnar-ordered Z2 gauge fields.

Conclusions. The main results of the Rapid Communica-
tion at hand are two advances in the conceptual understanding

FIG. 5. Finite-temperature phase diagram. The background con-
tour plot indicates the pseudospin correlations (3) as a function of
temperature T and coupling strength Jz. The crossover scale at which
the system enters the flux constrained manifold is indicated by (i)
solid green circles indicating the peak in the variance of the fluxes
and (ii) solid white circles indicating temperature points for which
the pseudospin correlator P = 1/9. The onset of flux ordering is
signaled in the high-temperature regime where we mark the line
along which the flux becomes 〈Wp〉 = −1/6 (green squares). The
low-temperature columnar ordering transition of the gauge field is
marked by the white squares. Solid squares indicate transitions where
the degenerate manifold of constrained gauge configurations is lifted
by the formation of a Majorana metal, while open squares indicate
transitions driven by an energetic selection within the gauge sector.
Data shown are for system size 4 × 4 × 6. The lower panel shows the
ground-state energy of the Majorana metals for the three competing
types of gauge ordering, using the color code of Fig. 3.

of quantum spin liquids. First, we have introduced the concept
of “gauge frustration,” which we showcased in a 3D Kitaev
model where the emergent Z2 gauge degrees of freedom are
subject to local constraints resulting in an extensive residual
entropy. Second, we showed by large-scale numerical simula-
tions that this residual entropy can be lifted by an interplay
of the Z2 lattice gauge theory and the itinerant Majorana
fermions, which concurrently emerge with the gauge field
upon fractionalization of the original local spin degrees of
freedom. As such, the model at hand realizes a scenario in-
termediate between more conventional Kitaev models where
the parton degrees of freedom fully decouple (allowing for
an analytical solution where one first identifies the ground
state of the gauge field and subsequently solves the Majorana
problem), and the scenario of strongly interacting partons as it
is the case for, e.g., a U (1) spin liquid, in which the gauge field
remains heavily fluctuating to the lowest temperatures and
thereby strongly feeds back into the formation of a collective
parton state.
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