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Partial flux ordering and thermal Majorana metals in higher-order spin liquids
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In frustrated quantum magnetism, chiral spin liquids are a particularly intriguing subset of quantum spin
liquids in which the fractionalized parton degrees of freedom form a Chern insulator. Here we study an exactly
solvable spin-3/2 model, which harbors not only chiral spin liquids but also spin liquids with higher-order parton
band topology—a trivial band insulator, a Chern insulator with gapless chiral edge modes, and a second-order
topological insulator with gapless corner modes. With a focus on the thermodynamic precursors and thermal
phase transitions associated with these distinct states, we employ numerically exact quantum Monte Carlo
simulations to reveal a number of unconventional phenomena. This includes heightened thermal stability of
the ground state phases, the emergence of a partial flux ordering of the associated Z2 lattice gauge field, and the
formation of a thermal Majorana metal regime extending over a broad temperature range.
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I. INTRODUCTION

The emergence of topological phases from local con-
straints induced by competing interactions in frustrated
quantum magnets has fascinated researchers for decades [1,2].
In a ground-breaking conceptual work, Kalmeyer and Laugh-
lin [3] in the late 80s put forward the formation of a bosonic
analog of the fractional quantum Hall state in what has since
been termed a chiral spin liquid. First envisioned as res-
onating valence bond (RVB) ground states of geometrically
frustrated Heisenberg antiferromagnets and relevant to high-
temperature superconductivity [4,5], such chiral spin liquids
have remained elusive for many years. In the past decade,
however, tremendous progress has been achieved in firmly
establishing chiral spin liquids as ground states of microscopic
models [6–11] and their eventual experimental observation in
quantized thermal Hall measurements [12,13]. On the the-
oretical side, conceptual insight has been gained from the
unambiguous numerical detection of chiral spin liquids via
the calculation of modular matrices [14,15] from the ground
state entanglement structure [16] of a number of kagome mod-
els [10,11]. Analytically, Kitaev showed that a time-reversal
symmetry breaking magnetic field gives rise to a non-Abelian
chiral spin liquid in his eponymous model [6]. The advent of
Kitaev materials [17] has since produced a direct experimental
observation of this state in measurements of a half-quantized
thermal Hall effect in the spin-orbit entangled Mott insulator
α-RuCl3 [12].

The physical mechanism underlying the formation of a
chiral spin liquid can be elegantly formulated using Wen’s

*eschmann@thp.uni-koeln.de
†Present address: Department of Physics, University of Basel, Klin-

gelbergstrasse 82, CH-4056 Basel, Switzerland.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

parton construction [18]. At low temperatures, the original
spin degrees of freedom fractionalize into a parton cou-
pled to an emergent lattice gauge field [2]. For the Kitaev
model, this parton decomposition is typically done [6] in
terms of Majorana fermions coupled to a Z2 gauge field1—
thereby casting the original interacting spin model to a free
(Majorana) fermion problem with a static Z2 gauge order (at
zero temperature). One can then resort to the tools of topolog-
ical band theory to classify the band structure of the emergent
Majorana fermions, and thereby classify the fundamental
topological properties of the spin liquid state. For the case
of the Kitaev honeycomb model, this perspective results in
an understanding of the field-induced topological spin liquid
as the formation of a Chern insulator (in the Majorana band
structure) with all bands carrying a nontrivial Chern number
|ν| = 1. Such a state—a Chern insulator of the emergent
Majorana fermions—is gapped in the bulk, but exhibits chiral
gapless modes at its boundary that are topologically protected,
as depicted in Fig. 1(b). That such a Majorana Chern insulator
indeed forms in the Kitaev material α-RuCl3 is substantiated
by the observation of a half-quantized thermal Hall conduc-
tance, which is direct evidence for Majorana fermions (and not
conventional electrons) carrying the thermal edge currents.
Subsequent measurements [13] of the anomalous character of
the quantized thermal Hall effect, which arises even without
any perpendicular magnetic field component, have brought
verification that the observed state is indeed arising from the
formation of topological Chern bands (and not the formation
of Landau levels).

In parallel, the field of topological band theory has been
developed [21]. There one distinguishes strong topological

1An alternative parton decomposition employs complex fermions
coupled to a U(1) gauge field [19], which then leads to a description
of the Kitaev spin liquid as a nodal superconductor. This picture has
been particularly insightful in explaining the in-field behavior of the
antiferromagnetic Kitaev honeycomb model, which exhibits a Higgs
transition to an intermediate gapless U(1) spin liquid [20].
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FIG. 1. Variable-order spin liquids can be conceptualized via the formation of (topological) band structures of emergent partons. Shown
here is the reflection of these band structures in the ground-state parton wave function |ψi j |2 for different settings with (a) trivial topology,
(b) conventional (first-order) topology with gapless (chiral) edge modes, and (c) second-order topology with localized corner modes. The
actual calculations have been performed in the Majorana representation of model (1) on a 16 × 16 lattice.

insulators (TIs), whose topological features are protected by
time reversal and/or charge conjugation symmetries, from
crystalline TIs whose topology is endowed by certain lattice
symmetries. A particular example of such crystalline TIs are
second-order topological insulators, an instance of higher-
order topology [22]. An nth-order TI in d spatial dimensions
exhibits (d − n)-dimensional topologically protected gapless
modes that are localized at the intersection of n boundary
planes, while the boundaries of codimension less than n
remain fully gapped. A second-order TI in two spatial di-
mensions thus exhibits topologically protected corner modes,
i.e., zero-dimensional gapless modes at the intersection of two
boundaries giving rise to a corner. Such higher-order topology
can also play out in the context of a quantum spin liquid—
with the itinerant fractionalized parton degrees of freedom
forming a nontrivial topological band structure. The example
of a second-order spin liquid with topologically protected
Majorana corner modes has been discussed in the context
of an exactly solvable spin-3/2 generalization of the Kitaev
model [23]. Within this same framework, the chiral spin liquid
can be thought of as a first-order spin liquid, since a Chern
insulator can be considered an example of a first-order topo-
logical insulator.2

In this manuscript, we study the thermodynamic precursors
and symmetry-breaking thermal phase transitions leading to
the formation of a family of spin liquid ground states which
exhibit the full range of parton band topology, second-order,
conventional (first-order), and trivial topology, in a general-
ized Kitaev model. We employ sign-problem free quantum
Monte Carlo simulations in the parton basis [24]. These
numerically exact calculations allow us to track the fractional-
ization of the original spin degrees of freedom, the formation
of gauge order, and the spontaneous breaking of time-reversal
symmetry upon entering the different flavors of spin liquid
ground states. Our main results include (i) the observation
that the thermal stability of the chiral spin liquid in our model
is enhanced by almost an order of magnitude in comparison
with other chiral spin liquid models, with the highest transi-
tion temperatures reaching about 1/10 of the bare coupling
strength; (ii) the emergence of partial flux order in an inter-
mediate temperature range, accompanied by a characteristic
three-peak signature in the specific heat; and (iii) the for-

2Note that, though all of the spin liquid ground states spontaneously
break time-reversal symmetry, we reserve the term “chiral spin liq-
uid” for those that exhibit chiral edge states (or, more technically,
those that possess a nonzero chiral central charge).

mation of a gapless phase at finite temperatures that is best
described as a thermal Majorana metal.

Our discussion of these results in the remainder of the
manuscript is structured as follows. In Sec. II, we briefly
introduce a generalized spin-3/2 Kitaev model, its �-matrix
representation, and the underlying five-coordinated Shastry-
Sutherland lattice. In discussing its analytical solution at zero
temperature, we also introduce the parton basis relevant to our
sign-free QMC simulations to explore the thermodynamics at
finite temperatures. The formation of a conventional (first-
order) chiral spin liquid is discussed in Sec. III. Our main
results on thermal stability, partial flux ordering, and thermal
metal formation are all discussed in detail here. In Sec. IV,
we then turn to the formation of a second-order spin liquid,
whose zero-temperature properties we previously discussed in
Ref. [23]. Our focus here is on its thermodynamic properties.
We conclude with an outlook in Sec. V.

II. THE SHASTRY-SUTHERLAND KITAEV MODEL

We start our discussion with a brief review of the general-
ization of the Kitaev model to the Shastry-Sutherland lattice
[23,25], its fundamental (lattice) symmetries, the formation of
spin liquid ground states of various levels of topology, and its
numerical representation in sign-free quantum Monte Carlo
simulations.

A. The model: spin-3/2 and Gamma matrices

The Kitaev honeycomb model is the paradigmatic exam-
ple of an exactly solvable quantum spin liquid model. The
model consists of spin-1/2 degrees of freedom on the sites
of a honeycomb lattice interacting via bond-dependent Ising
interactions. By representing the spin operators in terms of
Majorana fermions, the model can be reduced to a nearest-
neighbor hopping model of noninteracting fermions coupled
to a static Z2 gauge field. The Kitaev model and its exact
solution can be straightforwardly generalized to other lattices
with an odd coordination number, z = 2n − 1, wherein the
local “spins” are decomposed into 2n Majorana fermions.

Here, we study such a generalization of Kitaev’s hon-
eycomb model to the pentacoordinated Shastry-Sutherland
lattice, previously introduced in Refs. [23,25] (see Fig. 2). The
lattice is most well-known for the orthogonal dimer model,
which was solved by Shastry and Sutherland [26] and serves
as an effective low-temperature model for the transition metal
oxide SrCu2(BO3)2 [27]. The generalized Kitaev model is
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FIG. 2. Shastry-Sutherland lattice. On this five-coordinated lat-
tice, a generalized version of the Kitaev model can be defined, where
anticommuting 4 × 4 �-matrices on the lattice sites represent spin-
3/2 degrees of freedom. The horizontal and vertical (blue) bonds
carry a coupling J (which we set to unity), and the diagonal (red)
bonds a coupling Jd. For a suitable choice of these parameters,
the resulting higher-order spin liquid system is shown to possess a
topologically nontrivial ground state.

described by the Hamiltonian

H = −
∑
〈 j,k〉γ

Jγ �
γ

j �
γ

k , (1)

where γ = 1, . . . , 5 labels the bond direction and we have a
set of five 4 × 4 anticommuting matrices �

γ

j for each site.
Physically, the �-matrices can be interpreted as acting on
either j = 3/2 spins or two coupled spin-1/2 degrees of free-
dom, such as spin and orbital degrees of freedom, on each
lattice site [23].

To solve this model exactly, we represent the � matrices on
each site in terms of six Majorana operators c j and {bγ

j } by set-
ting3 �

γ
j = ibγ

j c j . The “bond Majoranas” bγ
j are recombined

into bond operators û jk = ibγ
j bγ

k . Since all û jk commute with
the Hamiltonian, they can be replaced by their eigenvalues
u jk = ±1. We are thus left with a hopping model of Majorana
fermions {ci} coupled to a static Z2-gauge field u jk , described
by the Hamiltonian

H = i

2

∑
j,k

Jγ uγ

jkc jck . (2)

The spectrum of H must be invariant under Z2 gauge trans-
formations, and can thus depend only on the Z2 fluxes Wp

3Note that this representation doubles the dimension of the local
Hilbert space. To remedy this situation, i.e., to project down to the
physical subspace of this extended Hilbert space, one defines � j =
ic jb1

jb
2
j . . . b5

j and demands that the physical states satisfy � j |ψ〉 =
− |ψ〉 ∀ j.

associated with plaquettes p, defined as

Wp =
∏

〈 j,k〉∈p

(−iu jk ), (3)

where, as a convention, the product here is taken with a
clockwise orientation. The Shastry-Sutherland lattice has two
types of elementary plaquettes, viz, square plaquettes with flux
W� = ±1, and triangular plaquettes with flux W� = ±i.

B. Sign-problem free sampling of flux configurations

To determine the ground state, one primary task is to
find the flux configuration that minimizes the total energy.
This is generally a nontrivial matter and one that can almost
never be resolved in an analytically exact fashion—with the
honeycomb Kitaev model being the most notable exception,
for which a theorem by Lieb [28] can be invoked. For the
general case one can, however, rely on a numerically exact
treatment by performing quantum Monte Carlo (QMC) sam-
pling of the gauge field (while keeping track of all Majorana
physics) [23,24]. Such a QMC approach is possible without
encountering a sign problem [29] in the spin decomposi-
tion introduced above, which allows to treat the gauge field
as a classical degree of freedom and incorporating the free
Majorana fermions via an exact diagonalization to compute
the associated statistical weights. This sign-free QMC ap-
proach should be contrasted with recent implementations of
sign-free fermion models that are based on an antiunitary
symmetry [30,31] such as particle-hole symmetry (intrinsic in
Majorana fermion systems), time-reversal symmetry and vari-
ations thereof [32–36].

In more technical terms, in such a sign-problem-free QMC
approach the Z2 gauge degrees of freedom u jk are sam-
pled as classical Ising variables, with the Majorana quantum
physics entering in the weights of the Markov chain sampling.
For a fixed gauge configuration, the noninteracting Majo-
rana Hamiltonian [Eq. (2)] can be numerically diagonalized,
a computation which scales as N3, where N is the num-
ber of lattice sites [24,37]. All thermodynamic observables
can then be obtained without needing to introduce an addi-
tional imaginary-time dimension or other nontrivial mapping
schemes for the quantum problem. A comprehensive discus-
sion of the technicalities associated with this QMC approach
to the Shastry-Sutherland Kitaev model was given in Ref. [23]
and is summarized in Appendix A.

Performing such a quantum Monte Carlo (QMC) simu-
lation readily demonstrates that the ground state flux order
corresponds to W� = −1 for all square plaquettes. However,
though W� = W 2

�, the value of W� itself is not fixed. The two
possibilities W� = ±i are related by time-reversal symmetry
(TRS) and degenerate in energy. At zero temperature, the
ground state must thus spontaneously break TRS by selecting
either W� = i or W� = −i for all triangular plaquettes. This
spontaneous breaking of time-reversal symmetry is generally
true for any Kitaev-type model on a lattice containing plaque-
ttes with an odd number of bonds, as first noted by Kitaev
[6], and later elucidated within a concrete spin-1/2 model by
Yao and Kivelson [7]. This is precisely what is seen in our
thermodynamic QMC data for finite temperatures, as we will
discuss in detail below.
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FIG. 3. Schematic phase diagram of the Shastry-Sutherland Ki-
taev model. In this model, all possible states of symmetry class
D—a chiral spin liquid, a trivial insulator, and a thermal metal—are
realized. For Jd < 1, we find that the ordering of triangle and square
plaquettes is decoupled, resulting in the occurrence of a partial flux
order regime. The intermediate temperature regime is separated into
the gapless thermal metal and a gapped phase. In the Majorana band
structure, this distinction survives up to infinite temperature (dotted
line in the paramagnetic regime).

C. Symmetries and the ground-state phase diagram

On a conceptual level, the possible ground-state phases
of the (Majorana) Hamiltonian can be inferred from the
tenfold classification of topological insulators and super-
conductors [38,39]. The Majorana Hamiltonian, by design,
obeys a particle-hole symmetry (PHS) which squares to +1,
while time-reversal symmetry is broken spontaneously, as
discussed earlier. Thus this Majorana Hamiltonian belongs to
symmetry class D. In two spatial dimensions, this symme-
try class D allows for a Z invariant, viz., a Chern number,
signaling the possibility of the formation of topological or-
der. Such a topological state is precisely the chiral spin
liquid (with a gapless chiral edge mode) discussed in the
introduction.

If we further restrict to the case where all the “square lat-
tice” bonds are of equal strength (which we set to J = 1), the
only remaining parameter is Jd, the strength of the diagonal
“dimer” bonds of the lattice. As a function of varying Jd

the Majorana band structure exhibits two gapped phases: a
topological phase with Chern number C = ±1 for Jd < 2

√
2

and a trivial one for Jd > 2
√

2. The two gapped phases are
separated by a gap closing at (π, π ), as illustrated in the lower
panel of the schematic phase diagram in Fig. 3. The C = ±1
phase is a chiral spin liquid with a chiral Majorana edge mode
and bulk Ising anyon topological order. On the other hand,
the C = 0 phase, while still spontaneously breaking TRS,
is fully gapped and possesses the same Abelian topological
order as the toric code. We refer to this phase as a “trivial” spin
liquid.

Shastry−Sutherland

Kitaev Honeycomb

FIG. 4. Double-peak signature in the specific heat Cv (T ) of the
Shastry-Sutherland Kitaev model. The higher temperature peak at
T ′ ∼ 2 is the signature of a thermal crossover indicating spin frac-
tionalization, while the low-temperature peak (here at Tc ∼ 0.1) is
the signature of a thermal phase transition, associated with spon-
taneous breaking of time-reversal symmetry. This phase transition
happens at a higher temperature scale than the thermal crossover of
the Kitaev honeycomb model, which is seen from a comparison of
the two specific heat curves. In the Kitaev honeycomb model, the
ground state does not show any spontaneous symmetry breaking.
Data shown is for the coupling parameter Jd = 1.2 and linear system
size L = 10 for the Shastry-Sutherland Kitaev model and isotropic
coupling Jx = Jy = Jz = 1 and L = 16 for the Kitaev honeycomb
model.

III. TRIVIAL AND CHIRAL SPIN LIQUIDS

Coming to the actual results of our finite-temperature
analysis of the Shastry-Sutherland Kitaev model, we first
concentrate on the thermodynamic behavior above the phase
transition from the topological (first-order) spin liquid (with
Chern number ν = ±1) to the trivial spin liquid (with Chern
number ν = 0).

A. Thermodynamics

A central quantity distinguishing the various finite-
temperature phases of our model is the specific heat Cv (T )
and its characteristic multipeak structure, as illustrated in
Fig. 4. For the closely related Kitaev spin liquids, it is well
established [24] that one finds two well-separated peaks in the
specific heat—a smooth high-temperature peak, indicating a
thermal crossover, corresponding to the (local) fractionaliza-
tion of spins and a second low-temperature peak associated
with the freezing of the Z2 gauge field. We observe a similar
two-peak structure of the specific heat in our model for a
broad range of parameters Jd � 1 as well. Plotted in Fig. 4
is a characteristic Cv (T ) trace in comparison with data for
the Kitaev honeycomb model for similar system sizes. Both
systems show a shallow high-temperature crossover around
the value of the elementary coupling strength, in our case
T ∼ 2, whose shape and height are essentially independent
of the system size—indicating a purely local crossover. In
fact, this is where the spin fractionalization happens and the
system releases precisely half of its entropy [23,24]. A more
pointed distinction is found in the low-temperature peak—this
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is a sharp peak for the model at hand (that sharpens with
increasing system size), while it is a more shallow feature in
the Kitaev honeycomb model. This is an immediate reflection
of the fact that in the model at hand there is a true phase tran-
sition occurring at this lower temperature—the spontaneous
breaking of time-reversal symmetry upon entering the chiral
spin liquid regime, while in contrast the Kitaev honeycomb
model exhibits a finite-temperature crossover at this lower
temperature scale at which, for a given system size, the Z2

gauge field freezes into its ground-state configuration. While
the latter is a true phase transition in three spatial dimensions
[40], it remains a thermodynamic crossover in two spatial
dimensions [41,42].

The key distinction between these model systems is that
the Shastry-Sutherland lattice is nonbipartite and exhibits ele-
mentary (triangular) plaquettes with an odd number of bonds.
For the emergent Majorana fermions, this results in an am-
biguous situation in which they can pick up a phase e±iπ/2

upon hopping around such a triangular plaquette, endowing
the latter with a flux W� = ±i as discussed in the previous
section. By spontaneously breaking time-reversal symmetry,
one of the two possible signs is chosen, with the system si-
multaneously undergoing an Ising-type phase transition. Such
a time-reversal symmetry breaking thermal phase transition
was first observed in the Yao-Kivelson model (on a decorated
honeycomb lattice) [43] at a temperature scale Tc ∼ 10−2J .
This is also the typical temperature scale for thermal phase
transition in 3d Kitaev models. In comparison, the critical
temperature scale of the model at hand is elevated, see Fig. 4,
with its maximum close to one-tenth of the Kitaev coupling
(at Jd ∼ 1.2). One might speculate that this enhanced tran-
sition temperature is a reflection of the higher coordination
number of the Shastry-Sutherland lattice (z = 5) in compar-
ison to conventional Kitaev models on tricoordinated lattice
geometries. This idea, however, does not hold up when fur-
ther generalizing our model to a seven-coordinated lattice (by
placing additional diagonal bonds on the lattice), which has a
transition temperature of the same order of magnitude as the
Shastry-Sutherland case.

B. Partial flux ordering

Upon closer inspection, the formation of flux order at low
temperatures turns out to be slightly more intricate. As noted
above, the spontaneous breaking of time-reversal symmetry is
intimately connected with the flux ordering of the triangular
plaquettes. With two such triangular plaquettes constituting
a single square plaquette, this also implies ordering for the
latter. The corresponding flux satisfies W� = W�1 · W�2 =
+1, independent of the actual assignment of the triangular
plaquettes.4 Thus an ordering of the 3-plaquettes implies
ordering of at least half the 4-plaquettes. The converse is,
however, not true; we can have ordering of the 4-plaquettes
while the 3-plaquettes remain disordered, resulting in a partial

4Such a π -flux ground state for square plaquettes is also generally
in line with the expectation from Lieb’s theorem on ground-state flux
assignments in bipartite lattices with certain mirror symmetries [28],
tough it does not strictly apply to the lattice geometry at hand.

FIG. 5. Thermal phase diagram and flux ordering as a function
of Jd. The color coding represents the average 3-plaquette flux |W �|
(a) and the average 4-plaquette flux W � (b). The (white) data points
denote the transition/crossover temperatures determined from the
multi-peak structure of the specific heat, with the filled (open) circles
indicating the thermal phase transition for the chiral (trivial) spin liq-
uid phase. For Jd � 1, we encounter an additional “partial flux order”
phase, where the square plaquettes are already ordered, while the
triangle plaquettes remain disordered. A thermal crossover separates
this phase from the regime with full flux disorder (disordered Z2 spin
liquid).

flux ordering. This is exactly what we observe for a limited pa-
rameter range 0 < Jd � 1, where the 4-plaquette fluxes order
at a higher temperature T ′′ than the critical temperature Tc for
the 3-plaquettes fluxes. This is illustrated in Fig. 5 where we
plot the phase diagram of our model by color coding the flux
of the 3-plaquettes (top panel) and 4-plaquettes (bottom panel)
as function of Jd. A schematic rendering of the indermediate
partial flux ordering is provided in Fig. 6.

The evolution of this partial flux ordering with varying
coupling strengths can be seen in the sequence of data sets
for vertical cuts through the phase diagram provided in Fig. 7.
The top row shows the gauge contribution to the specific
heat (i.e., omitting the Majorana contribution resulting in
the higher temperature crossover). In the partial flux order-
ing regime 0 < Jd � 1, one finds that the low-temperature
specific heat peak actually splits into two parts—with the
lower temperature peak indicating the true thermal phase tran-
sition associated with time-reversal symmetry breaking and
3-plaquette flux ordering, see also the medium row of pan-
els. While this transition quickly moves to zero temperature
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FIG. 6. Partial flux ordering. At Tc ∼ 0.1Jd, all triangle plaque-
ttes order into one of the two homogeneous flux configurations
(a). For Jd � 1, the square plaquettes assume an ordered π -flux
configuration at T ′′ (b). In this regime, the triangle plaquettes re-
main disordered, assuming pairwise fluxes W� = ±i (darker/lighter
yellow).

as Jd → 0, there remains a signature in the specific heat
around O(1/10), which upon closer inspection is the thermal
crossover associated with the ordering of the remaining half
of the 4-plaquettes, see the lower row of panels.

Taking a step back, we conclude that the emergence of a
partial flux ordering is, for a limited range of parameters, a
precursor phenomenon to the formation of a low-temperature
topological chiral spin liquid.

FIG. 7. Thermodynamics. For different cuts through the phase diagram of Fig. 5, we show (a) the specific heat Cv,GF(T ) (Z2 gauge
field contribution), (b) the average 3-plaquette flux |W �|, and (c) and the average 4-plaquette flux W� for various values of Jd. The low-
temperature peak in Cv,GF(T ) indicates a thermal phase transition (dashed lines), which is associated with the ordering of the fluxes W� = ±i
on the triangular plaquettes of the Shastry-Sutherland lattice. The difference between the transition temperature for the 3-plaquettes and the
4-plaquettes in the left column indicates an intermediate partial flux order.

C. Thermal Majorana metal

The thermodynamic signatures discussed so far—the
finite-temperature, time-reversal symmetry breaking phase
transition as well as the emergence of a partial flux ordering
and its associated thermal crossover—are both closely con-
nected to the underlying lattice gauge theory. From a more
conceptual perspective, these aspects are an interesting vari-
ation to the gauge physics that has been intensely studied
in the context of two- and three-dimensional Kitaev models
[24,40]. We now turn to additional thermodynamic aspects of
our model at hand, which are genuinely rooted in the physics
of the emergent Majorana fermions. The most notable feature
here is the formation of a thermal metal regime above the
transition to the topological chiral spin liquid as illustrated
in the schematic phase diagram of Fig. 3, and as evidenced
in the numerical observations of Fig. 8. This thermal metal
regime, principally located in the intermediate temperature
regime Tc � T � T ′ (i.e., between spin fractionalization and
the time-reversal symmetry breaking transition), does not ex-
tend over the entire parameter space of our model, but marks
a relatively sharp transition for a critical value of Jd that is
considerably shifted in comparison with the zero-temperature
transition between the chiral and trivial spin liquids. We
rationalize these numerical observations using analytical ar-
guments based on the analytical (self-consistent) Born and
T-matrix approximations along with a numerical computa-
tion using transfer matrices. We thus explain how the entire
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FIG. 8. Thermal metal. Color-coded is the average Chern
number |ν| for the Majorana band structure overlaid on the
finite-temperature phase diagrams. The average Chern number dis-
tinguishes the chiral spin liquid ground state (|ν| = 1, orange) from
the trivial phase (|ν| = 0, blue) below the thermal phase transition.
In the intermediate temperature regime, the Chern number is only
well-defined in the gapped regimes for Jd � 1.9 (where it assumes a
zero value, indicated in blue).

gapless thermal metal phase emanates from the quantum crit-
ical point between the chiral and trivial spin liquid at zero
temperature.

1. Numerical observations

In our numerics, the existence of two distinct regimes
above the low-temperature chiral spin liquid phases is most
evident in calculations of the average Chern number |ν| of the
Majorana band structures encountered when sampling (and
averaging over) the different gauge configurations for a given
temperature. The behavior of this average Chern number as a
function of Jd is plotted in Fig. 8(a), which immediately re-
veals three distinct regimes. For a horizontal cut in the lowest
temperature regime, the average Chern number jumps from
〈|ν|〉 = 0 in the trivial phase to 〈|ν|〉 = 1 in the topological
phase, as expected. Unanticipated is probably the behavior
for a horizontal cut in the intermediate-temperature regime,
where our simulations also reveal a relatively sharp (vertical)
boundary at Jd ≈ 1.9, at which the average Chern number
mimics the low-temperature behavior, jumping from 〈|ν|〉 = 0
for large couplings Jd � 1.9, to 〈|ν|〉 ≈ 0.6 for Jd � 1.9 (see
also the scans of 〈|ν|〉 shown in Figs. 19 and 20 of the
Appendix). This clearly separates two different thermody-
namic regimes, which seemingly persist not only up to
the fractionalization crossover scale but beyond into the
paramagnetic regime extending all the way up to infinite
temperatures.

One important aspect in interpreting this numerical result,
in particular the nonquantization of the average Chern number
for Jd � 1.9, is to ask whether the Majorna band structure
actually remains gapped—a prerequisite for the proper calcu-
lation of a Chern number—also at finite temperatures. In fact,
this is precisely what distinguishes the two regimes: while
the system remains gapped for Jd � 1.9, it becomes gapless
for smaller couplings. That the phase for Jd � 1.9 is in fact

(
)

T = 1.0
T = 0.5
T = 0.4
T = 0.3
T = 0.2
T = 0.1
T = 0.08
T = 0.06
T = 0.05
T = 0.04

FIG. 9. The effective density of states at zero energy for finite
temperatures, N0(T ) as defined in Eq. (4), as a function of Jd. The
nearly vanishing number of states for Jd � 1.9 indicates a gapped
states (at all temperatures), while the finite number of states for Jd �
1.9 and elevated temperatures signals a gapless state. Note the special
double-peak structure in the parameter regime of T = 0.04–0.06,
which is related to the partial flux ordered phase and indicates a finite
band gap also for this phase.

gapless can be shown in a straightforward manner by com-
puting the gap in the Majorana spectrum averaged over flux
configurations sampled with a uniform distribution, or equiv-
alently, at infinite temperature. As shown in the top panel of
the schematic phase diagram of Fig. 3, the gap in the Majorana
spectrum indeed vanishes for small Jd and slowly opens only
for Jd � 1.9, as compared to the scenario of a gap closing and
reopening for Jd = 2

√
2 ≈ 2.8 in the zero-temperature case.

The Chern number results are thus only well-defined in the
gapped regimes of the phase diagram, Jd � 1.9 and T < Tc.
For detailed scans of the average Chern number we refer to
Appendix B.

Having established the principal gapless character of the
finite-temperature spectrum for Jd � 1.9, a more meaningful
quantity to calculate is the effective number of states accessible
to the system at a given temperature

N0(T ) = −
∫ ∞

0
dEρ(E ) ∂E nF (E , T ), (4)

where ρ(E ) is the Majorana density of states and nF (E , T )
is the Fermi function, whose derivative has a peak at E = 0
of width ∼T . Plotting N0(T ) as a function of Jd for various
temperatures in Fig. 9, we indeed see that the number of
available state becomes finite for small Jd, indicating a gapless
state, and vanishes only near the transition point Jd ≈ 1.9,
indicating a truly gapped state for larger Jd.

We note in passing that the partial flux ordered phase also
appears to be gapped, as N0(T ) → 0 in the corresponding
parameter regime, i.e., for Jd � 0.3 and T � 0.04. This gap
opens at the crossover to the thermal metal phase, as indicated
by the increase in N0(T ). This is also indicated in the Chern
number plot of Fig. 8(a), where a narrow blue stripe above the
partially flux-ordered phase indicates the thermal crossover
points associated with the ordering of square plaquettes. Thus,
for Jd < 1, the Kitaev Shastry-Sutherland system starts in the
gapped chiral spin liquid ground state at T = 0, undergoes
a thermal phase transition into a gapped partial flux-ordered
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phase, and the gap finally collapses at the crossover to the
intermediate temperature phase.

2. Symmetry-class considerations

To interpret these numerical observations, it is useful to
remind oneself of the symmetry class classification of free
fermion systems [44,45] and its application to topological
states of matter [38,39]. When considering the Majorana
fermion representation of our model, the system naturally
exhibits particle-hole symmetry (due to the self-conjugation
of Majorana fermions) and broken time-reversal symmetry,
which is implied by the nonbipartite geometry of the lattice as
discussed earlier. This puts our model into symmetry class D.
In the tenfold way classification of topological states of matter
[38,39], this symmetry class allows, in two spatial dimensions,
for the formation of both a trivial and a topological insulator
(with vanishing and integer Chern number, respectively). In
addition, it is well established that in the presence of disorder
this symmetry class allows for the formation of a gapless
“thermal metal” phase [46–51].

In the Kitaev Shastry-Sutherland model, all three of these
phases are found to be realized. In the low-temperature
regime, where time-reversal symmetry is spontaneously bro-
ken and the gauge field is ordered, we realize the two “clean”
phases of symmetry class D—the trivial insulator (with Chern
number ν = 0) for Jd > 2

√
2 and the topological insulator

(with Chern number ν = ±1) for Jd < 2
√

2. Going to the
intermediate-temperature regime, i.e., above the ordering tran-
sition at Tc, a more subtle situation arises: Here the Z2 gauge
field does not exhibit any order, effectively providing a static
disorder potential for the Majorana system. And while time-
reversal symmetry (TRS) is not broken on a global level,
which strictly speaking does not put the system into symmetry
class D anymore, TRS is broken for any given static disorder
configuration: Each particular flux configuration must have
a fixed value of flux (±i) across the 3-plaquettes, and hence
breaks time-reversal symmetry. The ensemble of Majorana
Hamiltonians thus always corresponds to the symmetry class
D at any temperature, even if the true state of the Kitaev model
is itself time-reversal invariant. This allows the system to
principally form the thermal metal phase of symmetry class D.

This thermal metal phase is indeed realized in the interme-
diate temperature regime for Jd � 1.9, i.e., in the parameter
regime that our numerical experiments indicated as gapless.
The very nature of the thermal metal phase can be probed
explicitly via a calculation of the low-energy density of states
ρ(E ) of the Majorana fermions, which is supposed to show a
characteristic “ringing” [46]. For E → 0, the latter takes the
universal form

ρ(E ) = α + sin(2παEL2)

2πEL2
(5)

with a single fitting parameter α. This is indeed what we
find upon numerical inspection, as shown in Fig. 10 for a
parameter set deep in the thermal metal regime (Jd = 1.5
and T = 1.86). Similar behavior has first been reported for
the honeycomb Kitaev model in a magnetic field in a broad
temperature regime above the thermal crossover into its chiral
spin liquid ground state [52].

(
)

Jd =2.2

Jd =1.5

FIG. 10. Characteristic oscillations in the low-energy density of
states ρ(E ) for the thermal metal regime (computed for flux configu-
rations sampled at T = 1.86 and coupling Jd = 1.5). The ringing of
ρ(E ) follow the sinusoidal function of Eq. (5), predicted by random
matrix theory for the metallic state in symmetry class D [44–46].
This unambiguously shows that the gapless disordered Z2 spin liquid
phase, observed above the thermal phase transition, can be effectively
described as a thermal metal, although time-reversal symmetry is
only broken below the phase transition. (Inset) ρ(E ) for the gapped
intermediate-temperature regime (computed for flux configurations
sampled at T = 1.86 and coupling Jd = 2.2).

3. Analytical perspective

The essential physics of the formation of the thermal metal
phase can be understood analytically by analyzing our Ma-
jorana hopping model with uncorrelated Z2 flux disorder.5

Explicitly, this implies that arbitrary disorder configurations
can be obtained by starting from the ground state flux con-
figuration and flipping each plaquette flux with a probability
p, independent of all other fluxes. This disorder density p
then roughly corresponds to the temperature in the full Kitaev
model. In particular, p = 0 is the ground state (T = 0), while
p = 1/2 is the state with completely random fluxes (T = ∞).

We analytically study the effect of this flux disorder by
computing the self-energy as a power series in the disorder
density—which corresponds to a series in the number of scat-
tering events—using the self-consistent Born approximation
(SCBA) as well as the self-consistent T-matrix approximation
(SCTA). We find that the net effect of the disorder is a renor-
malization of the bare coupling strength J (which we have set
to 1 so far), so that the new phase boundary occurs at

Jd = 2
√

2Jeff(p) ≈ 2
√

2
(
1 − �p(0, k0)

)
, (6)

where k0 = (π, π ) is the gap closing point at Jd = 2
√

2 in
the clean limit (see Appendix C for a detailed derivation). In
Fig. 11, we plot this phase boundary as a function of the dis-
order density. We find that for p � 0.25, the disorder-induced
renormalization of J leads to a continuous shift of the phase

5For the full Kitaev model at finite temperature, the disorder is
far from uncorrelated, since the probability of a disorder realization
is the Boltzmann weight corresponding to all the vison excitations
required to arrive at it from the ground state flux configuration.
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FIG. 11. The thermal metal phase as an extension of the T = 0
quantum critical point. Shown is the effective number of gapless
channels for the Majorana hopping model on a cylinder, over-
laid with the phase boundaries obtained from self-consistent Born
(SCBA) and T-matrix (SCTA) approximations. The y-axis denotes
the fraction of plaquettes with zero flux, so that p = 0 and p = 0.5
corresponds to zero and infinite temperatures, respectively. Due to
the Ising transition, this entire range is compressed in the phase
diagram w.r.t, temperature (Fig. 8), where we see the phase boundary
jump abruptly from Jd ≈ 2.8 to Jd ≈ 1.9.

boundary between the trivial and topological gapped phases
towards smaller Jd, i.e., to a net suppression of the chiral
spin-liquid phase.6

The most intriguing result of this computation is that the
entire thermal metal phase can be thought of as emerging
from the renormalization of the quantum critical point at
Jd = 2

√
2. This can be understood by a simple scaling argu-

ment: The leading term in the perturbation series for �p(0, k0)
corresponding to scattering events from n impurities scales
as (4pJ2)n. Thus, for small p, we neglect the n > 1 terms to
write Jeff as a linear function of p. Within this “noncrossing”
approximation, Eq. (6) has a single solution for a given p,
leading to a single gapless point for each disorder density
which we can approximate using the self-consistent Born
(SCBA) and T-matrix approximations (SCTA). On the other
hand, for p � 1/4, we can no longer ignore the higher-order
diagrams, so that Eq. (6) has, in fact, an infinite number of
solutions, accounting for an entire gapless region in the phase
space, which is precisely the thermal metal phase.

Since the perturbative approach is no longer useful in the
high disorder density regime, we complement it with a numer-
ical computation of the transmission coefficient. In particular,
we compute the disorder-averaged generalized transfer matrix
[53] for the Majorana model on a cylinder geometry with
Lx  Ly. The eigenvalues of this transfer matrix are related to
the inverse localization lengths ξi, which can be used to com-

6We contrast this to a similar effect in topological insulators with
Anderson disorder, where disorder leads to an enhancement of the
topological phase. This difference is due to the purely imaginary
disorder matrix in the present case, in contrast to a purely real one
for topological insulators.

pute the transmission coefficient as g = ∑2Ly

i=1 sech2(Lx/ξi ).
This can be thought of as the effective number of gapless
channels, and is proportional to conductance for complex
fermions [54].

This approach effectively captures the contributions from
all n-impurity scattering events, and thus yields a reliable es-
timate of the phase boundary also for large disorder densities.
In Fig. 11, we plot g as a function of Jd and p, overlaid with
the phase boundaries obtained from SCBA/SCTA. We see a
qualitative agreement between the numerical and analytical
computations in the low density regime p � 1/4, verifying
the effective renormalization of J . For p � 1/4, we clearly
see the spreading of the phase boundary into a gapless region
extending up to Jd ≈ 1.8, which is also in good agreement
with the results obtained using QMC for the full Kitaev model
(Fig. 8).

4. Physical interpretation

In closing our discussion of the thermal metal, we need to
address the question whether this thermal metal is a legitimate
physical phase of our spin model or a mere artefact of our cal-
culations relying on a Majorana decomposition. The relevance
of this question acutely presents itself in the observation that
the putative thermal metal regime seems to possibly extend
beyond the intermediate-temperature range all the way up to
infinite temperatures, as possibly suggested by the calculation
of the average Chern number plotted in Fig. 8.

The answer to this question is twofold. It sensitively de-
pends on whether the Majorana fermions correspond to actual
physical degrees of freedom of the system (after spin fraction-
alization) or whether they remain mere mathematical objects
that can always be invoked in a spin decomposition. This
fine distinction is well known from the solution of the honey-
comb Kitaev model [6], whose intricacy lies precisely in the
fact that the spin decomposition “becomes real” in the low-
temperature phase and describes the emergent fractionalized
degrees of freedom. It is also exactly this distinction which
distinguishes the intermediate-temperature regime from the
high-temperature paramagnet in our model. The intermediate-
temperature regime is defined as the temperature regime
sandwiched between the fractionalization crossover at T ′ and
the low-temperature gauge ordering transition at Tc, in which
the emergent fractionalized degrees of freedom of itinerant
Majorana fermions moving in the background of a static, but
still disordered Z2 gauge field, form. In this regime, our line of
arguments outlined above fully applies and we conclude that
in this temperature regime the thermal metal is a true physical
phase.

The high-temperature paramagnet, on the other hand,
is different. Here the Majorana decomposition of the spin
operators is a mathematical possibility, but there is no deeper
physical meaning associated with it (or any other spin
decomposition using, e.g., complex fermions or other parton
degrees of freedom). As such our numerical observation of a
finite average Chern number and other class D physics in the
Majorana representation is a direct reflection of the choice of
decomposition, but not physically relevant.

We return to the question of how the thermal metal regime
in the intermediate-temperature regime can be probed in the
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FIG. 12. Kitaev Shastry-Sutherland mode with staggered pla-
quette couplings. The dashed/solid lines correspond to staggered
couplings J ± δJ , respectively, which generates a hierarchy among
the square plaquettes: A quarter of the squares possess either only
weak (green) or strong (blue) couplings on the edge bonds, while
the remaining half of plaquettes has two weak and two strong bonds
(cyan). The dotted gray lines denote the two mirror axes.

original spin system in our discussion section at the end of the
manuscript.

IV. SECOND-ORDER SPIN LIQUID

The physics of the Kitaev Shastry-Sutherland model be-
comes even richer when considering a staggering of the
plaquette couplings, which has been shown [23] to induce an-
other variant of spin liquid ground state. This “second-order”
spin liquid (SOSL) exhibits a Majorana band structure in the
ground state that, akin to a second-order topological insulator
[22], is gapped in the bulk but exhibits gapless corner modes
(i.e., d − 2 dimensional zero modes, as opposed to the usual
d − 1 dimensional zero energy modes). These corner modes
are a manifestation of the formation of a symmetry-enriched
topological order that is protected by two mirror symmetries
of the lattice (indicated in Fig. 12).

In the following, we will turn to the thermodynamics ac-
companying the formation of such a second-order spin liquid.
In doing so, we will concentrate on a representative choice of
coupling parameters deep in the SOSL regime. Specifically,
we introduce the plaquette staggering δJ = 0.7 (resulting
in weakly and strongly coupled plaquettes with coupling
strength J − δJ and J + δJ , respectively) and vary the relative
coupling of the diagonal versus plaquette bonds Jd/J . At zero
temperature, the phase diagram again consists of two phases
[23]: a chiral spin liquid for Jd/J > 2

√
2 and a second-order

spin liquid phase for Jd/J < 2
√

2.

A. Thermodynamics

The principle thermodynamic signatures above the for-
mation of this SOSL are similar to what we have seen for

FIG. 13. Signatures of a three-step thermodynamic transition.
Partial flux ordering in the SOSL phase (here, J = 0.9 and δJ = 0.4).
The specific heat Cv shows a three-peak structure (a). While the
high-temperature crossover is associated with spin fractionalization
and the low-T phase transition with spontaneous breaking of time-
reversal symmetry, the intermediate crossover indicates a partial
flux-ordering of square plaquettes (b), which is a consequence of
staggered bond couplings J ± δJ . This choice of coupling generates
a hierarchy between the square plaquettes of the lattice, which results
in different ordering temperature scales.

the more conventional spin liquids discussed in the previ-
ous section: The specific heat Cv (T ) exhibits a characteristic
multi-peak structure, with a high-temperature local crossover
at T ′ ∼ 2Jd in this case, and a sharp low-temperature peak,
at Tc, marking a true thermal phase transition associated with
spontaneous breaking of time-reversal symmetry. For Jd/J �
6.7 the lower peak splits into two peaks, the lower of which
marks the symmetry-breaking transition and the upper one, at
T ′′, marking a crossover into another partial flux ordered state.
This is summarized in the finite-temperature cuts of Fig. 13,
which clearly indicate the multipeak structure of the specific
heat, and the thermal phase diagrams of Fig. 14, which shows
the extent and boundaries of the different regimes.

The position of the low-T transition in temperature space
monotonously decreases if Jd/J is decreased. In the chiral spin
liquid phase, it shows the particularly high value Tc ∼ 0.1Jd

for large Jd/J , a phenomenon which is discussed above. For
Jd/J → Jc = 2

√
2, the transition temperature reaches the or-

der of magnitude Tc ∼ 10−2Jd, and, in the SOSL phase, it is
further lowered to Tc → 10−3Jd. We note that for Jd/J < 1.8,
the transition temperature Tc moves below the temperature
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FIG. 14. Thermal phase diagram and flux ordering for fixed
staggering parameter δJ = 0.7 and Jd/J ∈ [1.53, 10]. The transition
temperatures of the system are given as a function of the coupling
ratio Jd/J (white data points). The density plots show the 3-plaquette
flux |W�| (a), and the 4-plaquette flux W� (b). Filled (open) circles in-
dicate phase transition temperatures Tc in the topological spin liquid
(SOSL) regime. Open squares indicate thermal crossovers associated
with partial flux ordering (T ′′) and spin fractionalization (T ′).

range of our QMC simulations. In this limit, where the cou-
pling J − δJ on half of the lattice bonds approaches 0, it is
expected that the transition temperature rapidly decreases to
lower temperature scales [23].

B. Partial flux ordering

The emergence of a partial flux ordering in an intermedi-
ate temperature range is again a precursor phenomenon for
the formation of spin liquid ground states that, in the pres-
ence of staggered plaquette couplings, comes in even more
variations – see Fig. 15. This is readily illustrated by mea-
surements of the three- and four-plaquette fluxes, overlaid
as color coding in the thermal phase diagrams of Fig. 14,
which reveal a partially flux ordered regime in the parame-
ter range Jd/J � 6.7 and above the thermal phase transition
T ′′ > T > Tc. However, in this case, the pattern of partial
ordering is very different to the one previously discussed in
Sec. III for the original model. While there, we observed a
region in which the square plaquettes were fully ordered, and
the triangular plaquettes remained disordered, here the partial
flux order is characterized by partial order of the square
plaquettes, with the triangular plaquettes again remaining dis-
ordered. This can be clearly seen in the thermal phase diagram

FIG. 15. Staggered partial flux ordering. Here, the partial flux
ordering is determined by the staggering of bond couplings
(dashed/solid lines). At T < Tc (a), all square plaquettes have a π

flux (green). At Tc, the plaquettes with only weak edge couplings
J − δJ are the first to become disordered, with π and 0 fluxes
(green/red). Within this partially flux-ordered phase at Tc < T < T ′′

(b), also the squares with two weak and two strong bond couplings
become disordered. Finally, at T ′′, also the square plaquettes with
strong couplings disorder (c).

with Fig. 14(a) showing the three-plaquette flux |W�| = 0 and
Fig. 14(b) showing the square-plaquette flux −0.75 � W� �
−0.25 within the partial flux ordered regime.

What is the reason for this new behavior? When looking
at the model with staggered couplings, J ± δJ , we see that
the lattice is now composed of three different kinds of square
plaquettes: (i) one quarter are “strong plaquettes,” which con-
tain a diagonal Jd bond and four “strong” bonds with coupling
J + δJ , (ii) one quarter are “weak” plaquettes, which contain
a diagonal Jd bond and four “weak” bonds with coupling
J − δJ , (iii) while the remaining half are “mixed” plaquettes,
which do not contain any diagonal bond and are made up of
two “strong” bonds and “two” weak bonds. This hierarchy of
couplings, and thus vison gaps, for the three different kinds of
square plaquettes is precisely what underlies the emergence of
the partial flux ordering.

If we consider a lattice of Np total square plaquettes, the
behavior seen within the partially flux-ordered regime can be
explained as follows. Starting from the lowest temperatures,
for 0 < T < Tc, all square plaquettes are in an ordered π -
flux phase, with W� = −1 for all Np square plaquettes. At
Tc the triangular plaquettes become disordered, triggering the
recovery of time-reversal symmetry, and, also at Tc, the Np/4
“weak” square plaquettes similarly become disordered. This
loss of Np/4 plaquettes explains the drop of W� from −1
to −3/4 at Tc, shown in the lower panel of Fig. 13. Further
increasing the temperature within the regime Tc < T < T ′′,
the Np/2 “mixed” plaquettes gradually disorder for higher
temperatures, resulting in a smooth change of W� from −3/4
just above Tc to −1/4 just below T ′′, see again the lower
panel of Fig. 13. Finally, at T ′′, the remaining Np/4 “strong”
plaquettes disorder, resulting in a fully disordered flux state
with W� = 0 for all plaquettes for T > T ′′.

C. Thermal Majorana metal

Turning to signatures of Majorana physics in the thermo-
dynamic behavior, we find evidence for the formation of a
thermal metal regime also for the staggered model, similar to
what we discussed extensively for the original Kitaev Shastry-
Sutherland model in Sec. III C above. The numerical evidence
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FIG. 16. Thermal metal. The color coding shows the average
Chern number |ν| across the thermal phase diagram of the staggered
Kitaev Shastry-Sutherland model. For the low-temperature ground-
state phases, the Chern number is |ν| = 1, in the topological spin
liquid phase and, as expected, |ν| = 0 in the second-order spin liquid
(SOSL). In the intermediate temperature regime, we find that the
average Chern number vanishes in the partially flux-ordered phase
in the temperature range Tc < T < T ′′ for the respective range of
couplings. Above T ′′ (and Tc for large Jd, respectively) the average
Chern number is finite, but not quantized around |ν| ≈ 0.8. The
black data points in indicate the respective transition temperatures
of the system as a function of the coupling ratio Jd/J , extracted from
specific heat traces akin to the ones shown in Fig. 13.

for the emergence of such a phase again is the observation
of the vanishing of the Majorana gap, which is reflected in
the finite (but not quantized) average Chern number illustrated
in Fig. 16. The broad temperature regime where this average
Chern number does not vanish (beyond the topological ground
state phases) sharply sets in above the (partially) flux ordered
phases, i.e., in the regime where the Z2 fluxes are effectively
disordered and thereby create a disorder potential for the Ma-
jorana fermions (which form a nearly gapless band structure).
Like in the original model, the average Chern number remains
finite also in the high-temperature paramagnet and we refer to
our previous discussion on the physical interpretation of this
observation at the end of Sec. III C.

V. SUMMARY

One of the most intriguing phenomena associated with the
formation of quantum spin liquids is the emergence of novel,
fractionalized quantum mechanical degrees of freedom—a
quasiparticle, generally referred to as a parton, coupled to
the gauge field of a deconfined lattice gauge theory. For
the spin-3/2 Kitaev Shastry-Sutherland model studied in this
manuscript, these emergent degrees of freedom are itinerant
Majorana fermions and a Z2 lattice gauge field, with all spin
liquids coming in the form of varying levels of topology—
trivial, first-, and second-order, akin to the classification of
higher-order topological insulators.

With a focus on the thermodynamic signatures of this
fractionalization, we have observed in our numerically exact
(sign-free) quantum Monte Carlo simulations characteristic
fingerprints of both the underlying gauge physics and the

emergent Majoranas. Below the thermodynamic crossover
where these fractionalized degrees of freedom (locally) come
to live, the gauge physics manifests itself through a sequence
of (partial) flux ordering transitions, with the transition into
the ground-state manifold being accompanied by (global)
time-reversal symmetry breaking. The latter is also mandated
(already on a local level) by the Majorana physics for nonbi-
partite lattice geometries.

Another striking manifestation of the interplay of Majorana
physics and the Z2 gauge structure is the formation of a
thermal metal regime in an intermediate temperature range
where the gauge field is intrinsically disordered. Notably, this
gapless phase emerges only for a limited parameter regime
of the Kitaev Shastry-Sutherland model, with a sharp tran-
sition to a gapped regime. This principle distinction might
also make the thermal metal phase observable in experimental
studies, e.g., in heat transport measurements which have been
demonstrated, both theoretically [55–57] and experimentally
[12,13,58,59], to be sensitive probes of the Majorana physics.
The gapless versus gapped character of the intermediate-
temperature phases should also reflect itself in four-spin
correlation functions that probe the algebraic versus exponen-
tial decay of the bond-energy bond-energy correlations.
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APPENDIX A: QUANTUM MONTE CARLO SIMULATION

The quantum Monte Carlo (QMC) simulation method for
Kitaev models was introduced in Ref. [24], with an extensive
review provided in a recent PhD thesis [60]. While originally
implemented for spin-1/2 Kitaev models, the approach can
readily be generalized to the higher-order spin model consid-
ered here, as first discussed in Ref. [23]. The principal idea of
the Monte Carlo scheme is to sample the (classical) Z2 gauge
field configurations {ujk = ±1}, while obtaining the statistical
weight of each configuration via an exact diagonalization of
the Majorana Hamiltonian (2). The latter is performed accord-
ing to the canonical transformations introduced on Kitaev’s
original honeycomb model [6].

Explicitly, the Majorana representation of the higher-order
spin model allows to write the partition function of the system
as a double trace

Z = tr{u jk}tr{ci}e
−βH = tr{u jk}e

−βF ({u jk}) , (A1)

where the free energy F ({u jk}) in a fixed Z2 gauge field
configuration can be calculated from the eigenspectrum {ελ}
of the Majorana Hamiltonian,

F ({u jk}) = −T
∑

λ

ln
(

2 cosh
(βελ

2

))
. (A2)

The latter step requires the explicit summation over all
fermionic Fock states. Here, the distinction between physical
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FIG. 17. Chern number histograms for two different temperatures at the parameter point Jd = 1.5 (in phase diagram 8). In the intermediate-
temperature regime, the occurrence of integer Chern number results is an artifact, since here, the system is in a gapless phase.

and unphysical Fock states can be neglected in the thermo-
dynamic limit N → ∞ (N being the number of spins), since
these states only differ in terms of their fermionic parity [61].
Thus, with the argument first presented in Ref. [62], unphysi-
cal states only contribute deviations of the order 1/N .

APPENDIX B: AVERAGE CHERN NUMBER

To characterize the Majorana band structures in the inter-
mediate temperature regime, we have numerically calculated
an average Chern number 〈|ν|〉 in our Monte Carlo simula-
tions. A single measurement contributing to this average is
done for a given Z2 gauge field configuration (which effec-
tively acts as a disorder potential for the Majorana fermions
in this intermediate temperature regime). The calculation is
performed according to the method for non-Abelian Berry
connections, which was introduced in Ref. [63]. Here, the
real-space Z2 gauge field configuration {ui j} of the size L =
10 (N = 400 sites) is used for the construction of a supercell
in momentum space, described by the Hamiltonian Hk({ui j}).
The Brillouin zone of the system is discretized with a mesh
of 102 k points. For each pair of nearest neighbor k points
(kl , kl + qi ), the U(N ) gauge variable

Uqi = det(ψ†(kl )ψ (kl + qi ))

| det(ψ†(kl )ψ (kl + qi ))| , (B1)

is calculated, where ψ is the N/2 × N/2 matrix that is com-
posed of the multiplet (|u1(k)〉 . . . |uN/2(k)〉) of eigenstates,
belonging to the lower half of eigenvalues ε1, . . . , εN/2 of
Hk. Here, the relaxed gap opening condition εnk �= εmk for
n � N/2 and m > N/2 has to be fulfilled. From the U(N )

gauge variables Uqi , we calculate a (gauge-invariant) plaquette
field strength

F12(kl ) = log

(
Uq1 (kl )Uq2 (kl + q1)

Uq1 (kl + q2)Uq2 (kl )

)
, (B2)

which is defined on the square plaquettes of the discretized
Brillouin zone, and for which

−π <
1

i
F12(kl ) � π. (B3)

The (numerical) Chern number of the band structure can now
be expressed by the sum over all plaquette field strengths
F12(kl ) of the lattice,

ν̃ = 1

2π i

∑
l

F12(kl ), (B4)

such that ν̃ ∈ Z and ν̃ → ν for a sufficiently fine discretiza-
tion of the Brillouin zone. Note that the condition ν̃ ∈ Z
follows from the way the plaquette field strength (B2) is
constructed, but the integer value only has a physical meaning
if the band structure is gapped. While this is the case for the
ground state phases of the Shastry-Sutherland Kitaev system
and the high-temperature phase at Jd > 2 (Fig. 8), the differ-
ent integer results for the gapless high-temperature phase at
Jd < 2 are nonphysical, and a mere “breakdown” indicator
for the gapless phase—see the Chern number histograms in
Fig. 17 and the band structures in Fig. 18. The same is true for
the high-temperature results shown in Fig. 16.

Detailed scans of the average Chern number calculations
are shown in Figs. 19 and 20.

FIG. 18. Band structures near E = 0 for different parameters values Jd at T = ∞ (in phase diagram 8), showing the transition from the
gapless to the gapped high-temperature phase.
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FIG. 19. Average chern number 〈|ν|〉 for different horizontal (constant temperature) cuts in phase diagram 8.

APPENDIX C: DISORDER-INDUCED RENORMALIZATION

The Shastry-Sutherland lattice is described by a four-site unit cell, periodic with translation vectors a1 = x̂ and a2 = ŷ.
Thus the Shastry-Sutherland-Kitaev model, after a Majorana decomposition, can be written in the momentum space as H =∑

k HB(k)c(k)c(−k), with

HB(k) = i

⎛
⎜⎜⎝

0 J ′
x − Jxe−ikx −Jze−i(kx−ky ) J ′

y − Jyeiky

−J ′
x + Jxeikx 0 J ′

y − Jyeiky −Jz

Jzei(kx−ky ) −J ′
y + Jye−iky 0 J ′

x − Jxeikx

−J ′
y + Jye−iky Jz −J ′

x + Jxe−ikx 0

⎞
⎟⎟⎠, (C1)

where we set Jx = Jy = J + δJ , J ′
x = J ′

y = J − δJ and Jz = Jd. In the following, we restrict to the case of δJ = 0.

1. Vison excitations as additive disorder

The Bloch Hamiltonian of Eq. (C1) corresponds to the
ground state flux sector with π -flux through each 4-plaquette.
Flux-disordered configurations, corresponding to the model at
finite temperatures, can be obtained starting from this Hamil-
tonian and flipping the gauge field on a set of bonds, i.e.,
flipping the sign of one of the J bonds. This leads to the
creation of two 4-vison excitations on the two plaquettes
of which the bond is a part. Note that this can be done in
four different ways, owing to the four inequivalent J bonds,
which can be taken as the four intracell hoppings. We think
of these vison excitations as an additive disorder and write it
schematically as H = H0 + ∑

i,α U (α)(ri ), where U (α)(ri ) is
an impurity potential matrix at position ri and α indicates the
matrix structure corresponding to one of the four inequivalent
vison excitations. For instance, such a matrix for flipping the
1–2 bond can be written as

X 12 = 2iJ

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (C2)

and X 23, X 34, and X 41 take a similar form, which can be
compactly written as [X ab]i j = 2iJ (δ jaδib − δiaδ jb). A typical
disorder configuration is obtained by flipping each J bond
with probability p. For small p, the disorder corresponds to

a set of localized scatterers, which can be analyzed via pertur-
bation theory.

The average effect of disorder is encoded by the self-
energy matrix �p(iω, k), that appears in the definition of the
disorder-averaged Green’s function:

G(iω, k) ≡ 〈[iω − H(k)]−1〉dis

= [iω − H0(k) − �p(iω, k)]−1, (C3)

where 〈 . 〉dis represents averaging over the position and bond
direction of the disorder. In the following, we are only inter-
ested in the self-energy at ω = 0. Owing to the particle-hole
symmetry, the entries in the self-energy—as in the real-space
Hamiltonian—must be purely imaginary. We can further iden-
tify its matrix structure by noting that the perturbation series
above consists of terms of the form X abH−1

0 (k)X ab, where X ab

is one of the disorder matrices defined above. Given the form
of H, such a product has only two nonzero components at the
same position as X ab, viz, at indices ab and ba. Since each type
of disorder is equally likely, the disorder-averaged self-energy
takes the form

�p(0, k) = i�p(0, k)

⎛
⎜⎝

0 −1 0 −1
1 0 −1 0
0 1 0 −1
1 0 1 0

⎞
⎟⎠, (C4)

FIG. 20. Average chern number 〈|ν|〉 for different vertical (constant Jd) cuts in phase diagram 8.
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where �p(0, k) ∈ R. Since the coefficient (matrix) of J in the
Bloch Hamiltonian takes precisely this form for any kx = ky,
the effect of disorder is essentially a renormalization of J .
In particular, at the quantum critical point Jd = 2

√
2J0, the

spectrum consists of a single Dirac point at k0 = (π, π ),

so that we write J → Jeff = J − �p(0, k0). This can also be
interpreted as renormalizing the mass of this Dirac fermion,
and the phase boundary corresponds to the new Jd for which
this mass vanishes.

To compute the disorder averaged self-energy, we expand
it in powers of p as

(C5)

where T (n) has the same matrix structure as �p (Eq. (C4)) with
coefficient iT (n). Physically, this corresponds to an expansion
in the number of scattering events [64]. Note that we only have
terms with an even number of scattering events, since those
with an odd number cancel after disorder averaging. The self
consistent version of Eq. (C5) is obtained by simply replacing
the bare Green’s functions with the full disorder-averaged
Green’s functions [64].

2. The Born and T-matrix approximations

At low disorder densities, we can truncate the perturbation
series of Eq. (C5) using the T-matrix approximation to com-
pute the disorder-averaged self-energy at linear order in p, i.e.,
only including terms corresponding to a single impurity scat-
tering, so that �p(0, k) ≈ pT (1). This can be further simplified
by taking the Born approximation to the full T-matrix T (1) ≈
T (1)

Born, wherein we retain only the first Feynman diagram of
Eq. (C5). The self-consistent versions of these approximations
can be calculated by replacing the bare Green’s function in
Eq. (C5) with their disorder-averaged counterparts (which
contains �p(iω, k)). Setting J = 1 throughout this subsection,
the renormalization of the coupling constant J for all these
approximations take the form

Jeff(p) = 1 − pT (1), T (1) > 0. (C6)

The system is now gapless when Jd = 2
√

2Jeff(p), which
yields the phase boundary on the Jd–p plane. The net effect of
the disorder is a shift of the phase boundary towards smaller
Jd.

The validity of the approximations discussed above is, at
first sight, unclear. This is because our system is gapped and
so the usual small parameter for a Fermi sea, 1/(kF �)—with
� being the mean free path—is not well defined. Nonetheless,
the results for the phase boundary obtained using these ap-
proximations agree qualitatively with the numerical results
obtained from a transfer matrix calculation, as shown in
Fig. 11. Furthermore, they also suffice to explain the origin
of a “thermal metal” phase (Fig. 8) and predict its location in
the phase diagram.

The basic mechanism for the appearance of the thermal
metal is the breakdown of the T-matrix approximation as p
is increased and the interference effects from by multiple-
impurity scattering become relevant. More precisely, since

the disorder strength (i.e., the prefactor in X ab) is 2 and each
impurity must have an even number of scattering events, the
leading order term for an n-impurity scattering scales as (4p)n.
These terms can be neglected only when 4p � 1. However, as
the disorder density increases to p ∼ 1/4, the diagrams at all
orders in Eq. (C5) become relevant, so that the coefficients
of pn in �p(0, k0) must be taken into accout for all n. This
means that for each value of Jd, the equation Jd = 2

√
2Jeff(p)

can have an infinite number of solutions for p. Thus, once
this density is reached, it is possible for the phase boundary
to become a region on the Jd–p of the disorder phase diagram
and a disorder induced metal can be formed.

Using the various approximations to the T-matrix, we can
estimate the coupling constant for which the thermal metal
appears by computing the value of Jeff(p) for which the phase
boundary hits the line p = 1/4, i.e., as Jd = 2

√
2(1 − T (1)/4).

It turns out that T (1)
Born can be computed analytically for Jd =

2, since the corresponding integral can be evaluated using
methods for rational trigonometric functions. In fact, for this
special value of the coupling constant, we find that

T (1)
Born = 8

∫
d2k

(2π )2
G0(0, k) = 4 − 2

√
2, (C7)

which exactly satisfies the condition for the phase boundary
obtained above. From the Born approximation, we therefore
obtain an entirely analytic estimate of the critical value of
Jd where the thermal metal emerges, which is already fairly
close to the numerically observed value (see Fig. 11). Better
approximations can be obtained by including more diagrams
in the perturbative expansion of Eq. (C5) and/or by using
the self-consistent version of this expansion. For example, the
self-consistent T-matrix estimates the position of the transi-
tion as Jd ≈ 1.8, which is comparable to that found by the
transfer matrix technique (Fig. 11) and quantum Monte Carlo
(Fig. 8).

APPENDIX D: VISON GAPS

To complement the discussion of the phase diagram in
Fig. 3 of the main text we here report on the relation between
the transition temperatures and the vison gaps of the system
(summarized in Fig. 21). Corresponding to the two sets of
elementary plaquettes in the Shastry-Sutherland lattice, we
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FIG. 21. Transition temperatures of the triangle/square plaquettes as a function of the vison gap �t/�s. Both curves suggest correlations
between the quantities, which supports results from 3D Kitaev systems. The arrows indicate increasing values of Jd/J .

can distinguish two kinds of vison excitations. A pair of visons
on the triangle plaquettes is created by flipping a diagonal Jd

bond, whereas flipping a horizontal or vertical bond generates
a pair of visons on the square plaquettes. Figure 21(a) shows
the values of the critical temperature Tc as a function of the
triangle-plaquette vison gap �t . Figure 21(b) shows the values
of the square-ordering transition temperature, which is T ′′
for Jd/J � 0.9 and Tc for Jd/J � 0.9, as a function of the
square-plaquette vison gap �s.

We can determine a pronounced linear correlation between
Tc and �s for a wide range of values �s � 0.5, which cor-
responds to coupling parameter values Jd/J > 1.5 (orange
and blue data points). For the partial-flux order limit Jd/J <

1, there is apparently also a linear correlation between the
square-ordering temperature T ′′ and �s with a different (neg-
ative) slope (red data points). This implies that a larger vison
gap corresponds to a lower transition temperature T ′′ in this
limit. For 1 � Jd/J � 1.5, where �s is the largest, the data
points are too close to each other to determine a functional

relation. It is here that the T -�s curve “U turns” after the gap
�s reaches its largest value.

For the 3-plaquettes, we see a linear correlation between Tc

and �t for the trivial phase Jd/J > 2.8 and parts of the chiral
phase Jd/J � 2.3, where �t has its maximum value. The pro-
nounced “U turn” of the Tc-�t curve thereafter corresponds
to moving Jd to lower values. For Jd/J � 1, there is again a
linear correlation between both quantities.

We can state that the sections with a linear correlation
between the transition temperature and the vison gap are con-
sistent with results from 3D Kitaev systems [40]. However, the
“U turn” behavior, which is witnessed for both the T -�s and
the Tc-�t curves, suggests that the relation between transition
temperature and gap is not a simple, global linear function
T (�) = m�. Instead, the slope m is changed in different pa-
rameter regions, whereas in the region of extremal � values,
there is no linear correlation at all. Nonetheless, it can be
stated that a general correlation between both quantities is
verified by these results.
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