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on the three-dimensional hyperoctagon lattice
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Motivated by the recent synthesis of β-Li2IrO3—a spin-orbit entangled j = 1/2 Mott insulator with a three-
dimensional lattice structure of the Ir4+ ions—we consider generalizations of the Kitaev model believed to
capture some of the microscopic interactions between the iridium moments on various trivalent lattice structures
in three spatial dimensions. Of particular interest is the so-called hyperoctagon lattice—the premedial lattice of
the hyperkagome lattice, for which the ground state is a gapless quantum spin liquid where the gapless Majorana
modes form an extended two-dimensional Majorana Fermi surface. We demonstrate that this Majorana Fermi
surface is inherently protected by lattice symmetries and discuss possible instabilities. We thus provide the first
example of an analytically tractable microscopic model of interacting SU(2) spin- 1

2 degrees of freedom in three
spatial dimensions that harbors a spin liquid with a two-dimensional spinon Fermi surface.
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I. INTRODUCTION

Frustrated quantum magnets can exhibit highly unconven-
tional ground states in which local moments are highly corre-
lated but nevertheless evade a conventional ordering transition
and remain strongly fluctuating down to zero temperature.
These unusual states are commonly referred to as quantum spin
liquids [1]—despite their rather diverse physical properties
ranging from gapped states with an emergent topological order
to gapless states with an emergent spinon Fermi surface.
A common motif in the search for quantum spin liquids
has been to look for quantum antiferromagnets on geomet-
rically frustrated lattices, i.e., lattices where the elementary
building blocks prohibit the formation of a conventional
Néel state. Paradigmatic examples of geometric frustration
include lattices formed by corner-sharing tetrahedra such as the
pyrochlore lattice, or by corner-sharing triangles such as the
kagome lattice in two spatial dimensions and the hyperkagome
lattice in three spatial dimensions. An alternative route to
induce frustration in a quantum magnet is to look for systems
in which competing interactions cannot be simultaneously
satisfied. Archetypal examples of such exchange frustration
are given by the quantum compass models [2], in which the
easy axis of an anisotropic spin exchange strongly depends
on the spatial orientation of the exchange path—a scenario
which can prohibit even a ferromagnet on a bipartite lattice
from undergoing a finite-temperature ordering transition. The
best-known example in this class of compass models is the
Kitaev model [3] on the honeycomb lattice, in which the easy
axis of an Ising-like spin exchange points along the x, y, and
z directions for the three different bond types of the hexagonal
lattice, which is captured by the Hamiltonian

HKitaev =
∑

γ links

Jγ σ
γ

i σ
γ

j , (1)

where SU(2) spins σ on sites i and j are connected via a bond in
the γ = x,y,z directions. The Kitaev model is quintessential in
that it harbors three different types of quantum spin liquids—a
gapped, Z2 topological spin liquid if one of the three exchange
couplings is significantly larger than the couplings associated
with the two other bond directions (i.e., Jz > 2Jx, 2Jy), and a

gapless spin liquid in the vicinity of equal-strength exchange
couplings (Jx ≈ Jy ≈ Jz). If an external magnetic field is
applied along the 111 direction, the latter can be gapped
out into a topological spin liquid with non-Abelian vortex
excitations. The Kitaev model not only stands out for the
unusual richness of its ground states, but the fact that it is
one of the very few examples of an interacting spin model that
can be rigorously solved. It should, however, be pointed out
that the Kitaev model has not only attracted the imagination
of phenomenologically inclined theorists, but has also stirred
some excitement in the materials-oriented community after
it was pointed out that the significantly enhanced spin-orbit
coupling in 5d transition-metal oxides and, in particular,
certain iridates can give rise to unconventional Mott insulators
where the local moment is a spin-orbit entangled j = 1

2
moment [4,5]. The orbital contribution to these moments
results in a highly anisotropic, spatially oriented exchange [6],
which can in fact mimic those of the Kitaev model (1). In
terms of actual materials the layered iridates Na2IrO3 and
Li2IrO3 have attracted much recent interest and are intensely
discussed [7–12] as possible candidate materials for realizing
the two-dimensional honeycomb Kitaev model.

In this manuscript, we turn to generalizations of the Kitaev
model on three-dimensional lattices—a move that is prompted
by the recent synthesis of β-Li2IrO3 [13,14], which forms a
truly three-dimensional lattice structure of the Ir4+ ions. This
structure, which has quickly been dubbed a hyperhoneycomb
lattice [13], keeps the trivalent vertex structure of the hexag-
onal lattice and thereby the essential feature allowing for an
analytical solution of the Kitaev model. In fact, the Kitaev
model on the hyperhoneycomb lattice had been identified and
studied before by Mandal and Surendran [15] who reported
the occurrence of a gapless spin liquid with an emergent
spinon Fermi surface on a line in momentum space for
approximately-equal-strength interactions (Jx ≈ Jy ≈ Jz) as
well as the occurrence of a gapped topological spin liquid for
anisotropic exchange strength [16]. More recently, extensions
to a Heisenberg–Kitaev model [7] have established the stability
of this gapless phase in the presence of weak isotropic spin
exchange [17–19].
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FIG. 1. (Color online) Illustration of the hyperoctagon lattice, a
trivalent structure which contains two elementary motifs—a spiraling
octagonal helix and a counter-spiraling square helix.

This motivated us to ponder alternative three-dimensional
lattices that keep the trivalent vertex structure and led us to
consider what we call the hyperoctagon lattice [20] illustrated
in Fig. 1. The hyperoctagon lattice is closely related to the hy-
perkagome lattice—the hyperoctagon lattice is the premedial
lattice of the hyperkagome lattice obtained by shrinking each
triangle of the hyperkagome lattice to a single vertex and the
new bonds indicating the original connectivity of the triangles,
schematically summarized in Fig. 2. The hyperoctagon lattice
is a chiral lattice, which contains two elementary motifs—a
spiraling octagonal helix and a counter-spiraling square helix
as illustrated in Fig. 1. Its space group I4132 (no. 214) indicates
the presence of four-, three-, and twofold (screw) symmetries
(the details of which we will provide below) that will turn
out to play an essential role in stabilizing the gapless modes
of the quantum spin liquid emerging for the Kitaev model
on this lattice. The presence of these symmetries is also
the key distinction with the hyperhoneycomb lattice, another
somewhat-less-symmetric three-dimensional trivalent lattice
structure which has been revealed in the recent synthesis of
β-Li2IrO3.

Our main result is the observation of a gapless quantum
spin liquid with an extended two-dimensional Majorana Fermi
surface around the point of isotropic couplings for the Kitaev
model on the hyperoctagon lattice. This result is rigorously
established by an exact analytical solution of the spin model,

pyrochlore
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FIG. 2. (Color online) Relationship between various three-
dimensional lattices. The hyperoctagon lattice is the premedial
lattice of the hyperkagome lattice, which can be obtained from the
pyrochlore lattice via depletion of 1/4 of the triangles. The premedial
lattice of the pyrochlore is the diamond lattice, which can be depleted
by 1/4 of its bonds to obtain the hyperoctagon lattice.

FIG. 3. (Color online) Illustration of (a) the honeycomb and
(b) the hyperhoneycomb lattice.

which can be cast into a free-fermion system by Majorana
fermionization, thus employing the same powerful techniques
that have already allowed the solution of the Kitaev model on
other trivalent lattices [3,15,21].

Our discussion in the remainder of the paper is structured
as follows: In Sec. II we will discuss trivalent lattice structures
in two and three spatial dimensions and, in particular, provide
a detailed introduction of the hyperoctagon lattice. The Kitaev
model on the hyperoctagon lattice is subsequently introduced
and exactly solved in Sec. III where we also provide a detailed
discussion of its ground-state phase diagram; in particular, the
gapless spin liquid with a Majorana Fermi surface emerging
for a broad range of parameters. Possible instabilities of the
Majorana Fermi surface are discussed in Sec. IV. We conclude
with an outlook in Sec. V.

II. THE HYPEROCTAGON LATTICE

Before we dive into the physics of the Kitaev model we
start our discussion with a short review of the underlying
lattice structure. In its original form the Kitaev model has
been discussed for the honeycomb lattice, a two-dimensional
lattice with a trivalent coordination of all vertices, as depicted
in Fig. 3(a). Keeping this motif of a trivalent lattice structure
the model can readily be associated with a broader class of
lattices—a move that not only allows a 1 : 1 assignment of
the three different exchange types to the bonds around the
vertices, but also is key to keep the analytical tractability of
the model, which we will review in the following section [22].
In two spatial dimensions one such generalization is the
square-octagon lattice of Ref. [23]. In three spatial dimensions
such trivalent lattices are considerably less common. One
example is the so-called hyperhoneycomb lattice, which is
depicted in Fig. 3(b). The elementary building blocks of
the hyperhoneycomb lattice are zigzag chains running along
the crystallographic b and c axes, respectively, as depicted
in Fig. 3(b). These zigzag chains are coupled by bonds
along the a axis, readily implying that there is no general
symmetry possibly interchanging the three crystallographic
axes. Another example of a trivalent lattice in three dimensions
is the so-called hyperoctagon lattice, which we describe in
detail in the following.

A. Lattice symmetries

The hyperoctagon lattice is a body-centered cubic lat-
tice without inversion symmetry. Its symmetries correspond
to space group I4132 (no. 214). In cartesian coordinates,
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FIG. 4. (Color online) Visualization of the (screw-) rotation sym-
metries of the hyperoctagon lattice, which belongs to the cubic space
group I4132 (no. 214). (a) View along (0,1,0) as an example of a
90 degree screw-rotation symmetry. (b) View along (1,1,−1) as an
example of a 120 degree rotation symmetry. (c) View along (0,1,1)
as an example of a 180 degree rotation symmetry.

the atomic positions can be constructed starting from the
point 1

8 (1,1,1) in the unit cell and applying all symmetry
transformations of the space group on it. In particular, the
symmetries of space group I4132 include the following:
(i) a fourfold symmetry which is obtained by 90 degree screw
rotations around the (1,0,0), (0,1,0), or (0,0,1) directions,
(ii) a threefold symmetry which leaves the lattice invariant
under 120 degree rotations around the (1,1,1), (−1,1,1),
(1,−1,1), or (1,1,−1) directions, and (iii) a twofold symmetry
corresponding to 180 degree rotations around the directions
(±1,1,0), (±1,0,1), and (0, ± 1,1). As a guide to the eye, Fig. 4
shows the projection of the lattice onto the planes normal to the
rotation axis for three examples of the above (screw) rotations.
Note that the (projected) square-octagon structure in Fig. 4(a)
is not planar, which is why the additional translation is needed.

B. Possible materials

While the hyperoctagon lattice arises quite naturally as
the premedial lattice of the hyperkagome lattice, which is
realized, for instance, in the spin-liquid material Na4Ir3O8 [24],
there are so far no known realizations of the hyperoctagon
lattice in the diverse family of recently synthesized iridates.
To provide some abstract guidance as to which chemical
compositions might possibly realize magnetic hyperoctagon
systems, we have made an attempt at designing possible
materials candidates.

With the iridium atoms assumed to occupy the sites
of the hyperoctagon lattice, our further thinking is guided
by the microscopic prerequisites that allow a dominant
anisotropic Kitaev-like interaction to emerge—the occurrence
of double Ir-O-Ir exchange paths that suppress the isotropic
spin exchange [6,7]. The latter can be achieved by placing
the iridium atoms in bond-sharing IrO6 cages. In fact, the
symmetries of the hyperoctagon lattice allow us to embed each
iridium atom into a perfectly undistorted IrO6 octahedron,
when placing the oxygen atoms at position 1

8 (1,−1,1) in
the unit cell. The resulting IrO3 structure is illustrated in
Fig. 5. Such a sparse octahedron structure has indeed been
observed for the subhalides, e.g., La3Br3Si [25], where the
silicon atoms form the hyperoctagon lattice and the lanthanum
atoms form octahedra around them. Other materials that realize
a spatially slightly deformed hyperoctagon lattice are the
pyrogermanates [26].

FIG. 5. (Color online) Structure of the edge-sharing O6 octahe-
dra around the central Ir atoms. (a) View along the (1,0,0) direction.
(b) View along the (1,1,1) direction.

Finally, one might want to attempt to fill the remaining
interstitial sites of the octahedron structure. Taking into
account the space group symmetries there are several distinct
ways of doing so, as described in some detail in Appendix A.
In particular, one might start to add atoms to a single interstitial
site (and its space-group-related siblings) as illustrated in
Fig. 18(a) of the Appendix. This would result in the chemical
composition of the alkaline-earth-metal iridates AIrO3 where
A is one of the alkaline-earth-metal elements Ca, Sr, or Ba.
The alkaline-earth-metal iridates are known to exhibit quite
distinct electronic properties for the different A-site materi-
als, including an S = 1/2 antiferromagnetic Mott insulator
for CaIrO3 [27], a weak ferromagnetic semiconductor for
BaIrO3 [28], and a non-Fermi-liquid metal in SrIrO3 [29].
While various crystal structures have been reported for the
different AIrO3 compounds, no crystals in space group I4132
have so far been synthesized for any of the alkaline-earth-
metal iridates. An alternative possibility to fill the interstitial
sites is to add two additional atoms resulting in a chemical
composition of the form A2IrO3 with A being one of the alkali
metals Na or Li. The resulting crystal structure is illustrated in
Fig. 18(b) of the Appendix. This is a particularly interesting
idea to entertain because it would point to the possible
existence of a third crystallization pattern for A2IrO3 beyond
the already known examples of quasi-two-dimensional hon-
eycomb layers and the recently synthesized three-dimensional
hyperhoneycomb structure.

III. KITAEV MODEL

Not only motivated by a possible relevance to future
materials, but also driven by a curiosity to explore unusual
spin-liquid states, we now turn to a three-dimensional variant
of the Kitaev model on the hyperoctagon lattice. We proceed
with an introduction and precise definition of the model and
discuss some of its general properties before presenting an
analytical solution of the model in terms of an exact Majorana
fermionization of the spin degrees of freedom. Finally, we
present our main result of identifying a gapless spin-liquid
ground state with a Majorana Fermi surface.

A. The model

Kitaev originally introduced his elementary spin model as a
system of SU(2) spin- 1

2 degrees of freedom interacting on the
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FIG. 6. (Color online) Illustration of the different couplings of
the Kitaev model on the hyperoctagon lattice. Green bonds corre-
spond to xx couplings, red bonds to yy couplings, and blue bonds to
zz couplings.

two-dimensional honeycomb lattice. Its fundamental beauty
not only arises from its exact analytical solution, but the fact
that the spin model harbors a number of paradigmatic ground
states—besides an Abelian topological phase, it exhibits an
extended gapless spin-liquid ground state, which can be
gapped out into a non-Abelian topological phase by an
external magnetic field. This variety of different ground states
arises from highly frustrated spin interactions which favor the
alignment (or anti-alignment) of different spin components
along the three principle directions of the honeycomb lattice.

Here we generalize this idea to the three-dimensional
hyperoctagon lattice, which because of its trivalent vertices
allows the definition of an analogous spin model. To this end,
we cover the lattice with bonds that favor spin alignments
along the x, y, and z directions and which we call xx, yy, and
zz bonds, respectively. While there are many different ways
to realize such coverings on a given lattice, there is only a
single covering that is compatible with all the lattice translation
symmetries of the hyperoctagon lattice. This unique covering
is illustrated in Fig. 6 and will serve as our primary definition
of the Kitaev model on this lattice. We will briefly discuss
alternative models based on other coverings in Sec. IV.

In order to provide a self-contained description of the
model, we start by introducing the four-site unit cell compat-
ible with the unique covering of exchange bonds such that all
lattice translation symmetries are kept. The atomic positions
in this unit cell are given by

r1 = R + 1
8 (−3,−1,1),

r2 = R + 1
8 (−1,−1,−1),

(2)
r3 = R + 1

8 (1,1,−1),

r4 = R + 1
8 (3,1,1),

where R = ( 1
2 , 1

4 ,0) + ∑3
j=1 nj aj is the unit cell position. The

offset in R is chosen to be consistent with the conventions
in Sec. II A and can be mostly ignored in the following dis-
cussion. The corresponding lattice translation vectors are then

given as

a1 = (1,0,0),

a2 = 1
2 (1,1,−1),

(3)
a3 = 1

2 (1,1,1),

which are also illustrated in Fig. 6.
With these definitions in place we can now define the Kitaev

Hamiltonian on the hyperoctagon lattice as

H = −
∑

R

Jx

[
σx

1 (R)σx
3 (R − a2) + σx

2 (R)σx
4 (R − a3)

]
+ Jy

[
σ

y

1 (R)σy

2 (R) + σ
y

3 (R)σy

4 (R)
]

+ Jz

[
σ z

2 (R)σ z
3 (R) + σ z

1 (R)σ z
4 (R − a1)

]
. (4)

For the following discussion, it is beneficial to introduce a
“bond operator” Ki,j for a bond 〈i,j 〉:

Ki,j =
⎧⎨
⎩

σx
i σ x

j if 〈i,j 〉 is of xx type
σ

y

i σ
y

j if 〈i,j 〉 is of yy type
σ z

i σ z
j if 〈i,j 〉 is of zz type.

(5)

In terms of these bond operators, the Hamiltonian then reduces
to the compact form introduced earlier:

H =
∑

γ links

Jγ Ki,j . (6)

B. Loops and conserved quantities

Our first step in analyzing Hamiltonian (4) is to identify
conserved quantities, which we will find to be intimately
connected to closed paths (or loops) on the lattice. The
elementary loops of the hyperoctagon lattice have length ten.
For each unit cell there are six distinct such loops, which
are visualized in Fig. 7. All other elementary loops can
be obtained by lattice translations. For each loop l we can
define a corresponding loop operator Wl , which measures the
“magnetic flux” through the plaquette that is enclosed by l. We

FIG. 7. (Color online) The six distinct loops of the hyperoctagon
lattice. Each loop contains ten bonds with two coupling types
contributing four bonds and one coupling type contributing only
two bonds. Note that the six loops realize all possible combinations
reflecting the symmetries of the hyperoctagon lattice.
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can define the loop operator by the product of bond operators
of all the bonds contained in the loop

Wl =
∏
〈i,j〉

Ki,j . (7)

Because of the even length of the loops, these loop operators
square to the identity, thus they have eigenvalues ±1. It can
further be verified that the loop operators commute with
Hamiltonian (4) as well as with each other. Each loop operator
thus defines an “integral of motion” and a corresponding
conserved quantity—the extensive number of which greatly
simplifies the problem. For one, we can divide the Hilbert space
into distinct sectors that are each labeled by the eigenvalues
of all the loop operators Wl and restrict the Hamiltonian to a
particular sector.

Before proceeding we note that an alternative definition of
the loop operators can be formulated as a product over all sites
contained in the loop:

W̃l =
∏
i∈l

σ
γi

i , (8)

where γi corresponds to the spin component at each vertex,
which is not included along the loop. For instance, the loop
operator of the loop in Fig. 8(a) is given by

W̃la = σx
1 σx

2 σx
3 σ z

4 σ z
5 σx

6 σx
7 σx

8 σ
y

9 σ
y

10. (9)

In both the honeycomb and hyperhoneycomb model, the two
definitions of the loop operator, Wl in Eq. (7) and W̃l in
Eq. (8), are identical. However, in our particular case there is
a relative minus sign between the two, i.e., Wl = −W̃l , which
leaves some freedom in how to define the magnetic flux. In
the following, we define magnetic flux by the eigenvalue of
Eq. (7): if Wl has eigenvalue −1 we say that there is a magnetic
flux (vortex) penetrating the plaquette enclosed by l, while an
eigenvalue +1 corresponds to no flux [30].

1. Minimal volumes and flux sectors

A further important difference to the two-dimensional case
is that the loop operators are not all linearly independent. As
an example, we consider the two loops depicted in Fig. 8. The
loop operator for the loop in Fig. 8(a) is given in Eq. (9), while
the one for the loop in Fig. 8(b) is given by

Wlb = −σ z
1 σx

2 σx
3 σ z

4 σ z
5 σ z

6 σ
y

11σ
y

12σ
z
13σ

z
14. (10)

FIG. 8. (Color online) Two examples of elementary loops. The
sites are numbered to facilitate the discussion in the main text.

FIG. 9. (Color online) The minimal closed surface of the hype-
roctagon lattice is spanned by three neighboring loops (with the
encompassed volume vanishing).

Note that we can define a third loop of length ten by combining
the bonds that are contained in Wla or Wlb , but not in both of
them [see the loop illustrated in Fig. 7(e)]:

Wlc = −σ
y

6 σx
7 σx

8 σ
y

9 σ
y

10σ
y

1 σ z
14σ

z
13σ

y

12σ
y

11. (11)

The product of the three loops is the identity operator:

WlaWlbWlc = (−1)3σx
6 σ z

6 σ
y

6 σx
1 σ z

1 σ
y

1 = 1, (12)

which implies that the eigenvalue of Wlc is uniquely deter-
mined by the ones of Wla and Wlb . A direct consequence
of this linear dependence of three loops is that there is no
full-flux sector in this model for which all loop operators have
eigenvalue −1. Note that if we would have chosen the alter-
native definition of the loop operator in Eq. (8) then we would
have concluded that there is no zero-flux sector in this model.
This constraint can also be understood graphically. Each loop
defines an enclosed surface as illustrated in Fig. 9. In general,
a product of loop operators is constrained if their respective
surfaces form a closed “volume”. For the hyperoctagon lattice,
note that the three surfaces corresponding to the respective
loops indeed form a closed object although the encompassed
volume actually vanishes. This situation should be contrasted
to the three-dimensional hyperhoneycomb lattice, which for
a complete and self-consistent presentation we discuss in
Appendix B. In the hyperhoneycomb lattice, four loops of
length ten encompass a closed volume as depicted in Fig. 22 in
the Appendix and are thus linearly dependent. However, with
an even number of linear dependent loops, the corresponding
spin model allows for both a zero-flux and a full-flux sector,
while in our case only one of the two sectors can exist.

In order to gain a better insight into the physics under-
lying the different magnetic-flux sectors, let us note that
the elementary loops of length ten can be uniquely labeled
by their midpoint Rl . These midpoints form a (deformed)
hyperkagome lattice. The constraint on the loop-operator
eigenvalues is then enforced on each of the triangles of
the hyperkagome lattice: there are either zero or two loops
per triangle that carry flux. We can thus count the number
of independent configurations by noting that there are six
midpoints (=loops) and four triangles (=constraints) per unit
cell. Thus, there are only 6 − 4 = 2 loop eigenvalues per unit
cell that can be chosen freely. As a result there are in total 22N

distinct flux sectors, where N is the number of unit cells. In
order to determine in which magnetic-flux sector the ground
state resides, we cannot follow the same route as taken in two
spatial dimensions and resort to Lieb’s theorem stating that
the ground state always resides in the flux-free sector [31], but
instead have to carefully consider the energetics of the different
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flux sectors. For the great majority of points in parameter
space, we numerically observe that creating or enlarging loops
costs energy and as such the ground state lies in the flux-free
sector also in three spatial dimensions. We therefore restrict
our following discussion to the zero-flux sector.

Let us briefly consider the effective theory for the magnetic-
flux excitations arising from flipping a loop operator eigen-
value from +1 to −1. We note that the midpoints of loops
with loop operator eigenvalue −1 form themselves closed loop
configurations, which live again on the links of a hyperoctagon
lattice—albeit with opposite chirality to the original one. Due
to the constraint, only closed-loop configurations are allowed,
i.e., there are no magnetic monopoles in this Z2 theory.

C. Majorana representation

We now proceed to discuss the exact analytic solution of
Hamiltonian (4). In analogy to the two-dimensional Kitaev
model, such an analytical solution is possible by recasting
the original spin degrees of freedom in terms of Majorana
fermions—a step that effectively reduces the interacting spin
system to a free-fermion problem, which is given by Majorana
fermions hopping in a static gauge field [32]. The fermion
system can thus be diagonalized in a straightforward way,
thereby also revealing the physics of the interacting-spin
model.

As first step, we rewrite the original spin degrees of freedom
by introducing four Majorana fermion degrees of freedom
αx,αy,αz, and c per spin σ , such that

σα = iaαc, (13)

where α = x,y,z denotes the spin component, see Fig. 10. The
four-dimensional Hilbert space of the four Majorana fermions
can be projected back to the two-dimensional physical Hilbert
space of the original spin degrees of freedom by requiring

D|ξ 〉 = |ξ 〉 with D = axayazc. (14)

As we need to introduce four Majorana fermions per site,
we have to introduce additional labels to indicate the unit
cell index j as well as the unit cell position R, i.e., aα

j (R).
The Majorana fermions obey the usual anticommutation

C

αx

αy

αz

FIG. 10. (Color online) Illustration of the Majorana fermion rep-
resentation of the spin degrees of freedom.

relations {
aα

j (R),aβ

k (R′)
} = 2δj,kδα,βδR,R′ ,

{cj (R),ck(R′)} = 2δj,kδR,R′ , (15){
cj (R),aα

j (R′)
} = 0,

of a Clifford algebra.
In terms of the Majorana fermions, the Hamiltonian

becomes

H = i
∑

R

Jx [û13c1(R)c3(R − a2) + û24c2(R)c4(R − a3)]

+ Jy [û12c1(R)c2(R) + û34c3(R)c4(R)]

+ Jz [û23c2(R)c3(R) + û14c1(R)c4(R − a1)] , (16)

where we introduced the link operators ûij = ia
γ

i a
γ

j with γ

being the label of the bond 〈i,j 〉. The link operators commute
among themselves as well as with the Hamiltonian, which im-
plies that we can fix the eigenvalues of all the link operators—
i.e., choose a specific “reference configuration”—and compute
the spectrum of the resulting quadratic Hamiltonian for any
given {uij } sector. When doing this, one needs to define a
direction on the bonds, because ûij = −ûj i . We choose the
convention that the xx bonds are directed along the ŷ direction,
the yy bonds along the ẑ direction, and the zz bonds along
the x̂ direction. This convention ensures that the following
discussion remains symmetric in permutations of Jx , Jy ,
and Jz.

One may think of the link degrees of freedom as a static
Z2 gauge field. The gauge transformations are generated by
the D operators and Eq. (14) is equivalent to demanding
the physical states to be gauge invariant. In fact, the gauge
invariant objects are precisely the loop operators (7) introduced
earlier. Choosing a reference configuration is equivalent to
choosing a specific gauge. The physical properties, such as the
Majorana excitation spectrum, are independent of the specific
gauge choice, as was already pointed out in Kitaev’s original
solution [3] of the honeycomb model.

Because we restrict our discussion to the flux-free sector,
we may choose all link operators to have eigenvalues +1.
Using the Fourier transformation

cj (R) = 1√
N

∑
k

eikRcj (k), (17)

with N being the number of unit cells, we can compute the
Majorana Hamiltonian in momentum space:

H = i
∑

k

Jx[−e−2πik2c1(−k)c3(k) − e−2πik3c2(−k)c4(k)]

+ Jy [−c1(−k)c2(k) + c3(−k)c4(k)]

+ Jz[c2(−k)c3(k) − e−2πik1c1(−k)c4(k)], (18)

where kj is defined as the coefficient of the reciprocal lattice
vectors k = ∑3

j=1 kj qj with

q1 = 2π (1,−1,0),

q2 = 2π (0,1,−1), (19)

q3 = 2π (0,1,1).
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Arriving at Hamiltonian (18) has thus reduced the original
problem to a four-band Hamiltonian that can be easily
diagonalized [3].

D. Phase diagram

From the diagonal form of the Hamiltonian (18) we can
readily read off the elementary structure of the phase diagram
in (Jx,Jy,Jz)-parameter space by carefully analyzing the
excitation spectrum of the Majorana sector. In particular, we
observe that the Hamiltonian allows for zero-energy solutions
indicative of a gapless phase in a range of parameters, while
both the excitations of the Majorana sector and the magnetic-
flux sector remain gapped in other parts of the phase diagram.

The occurrence of zero-energy solutions is equivalent to
requiring that det H (k) = 0, which becomes

det[H (k)] = 1
16

[
J 4

x + J 4
y + J 4

z + 2J 2
y J 2

z cos(kx)

+ 2J 2
x J 2

z cos(ky) + 2J 2
x J 2

y cos(kz)
] ≡ 0 (20)

in cartesian coordinates. In order to determine whether or not
the above equation has solutions, let us analyze the limiting
behavior of the determinant. Expression (20) is bounded from
above by

det[H (k)] � 1
16

(
J 2

x + J 2
y + J 2

z

)2
, (21)

when setting cos(kx) = cos(ky) = cos(kz) = 1 and bounded
from below by

det[H (k)] � − 1
16 (Jx + Jy − Jz)(Jx + Jz − Jy)

× (Jy + Jz − Jx)(Jx + Jy + Jz), (22)

when setting cos(kx) = cos(ky) = cos(kz) = −1. As the upper
bound is always strictly positive, there is a zero-energy solution
if and only if the lower bound is negative (or zero). The latter
is equivalent to requiring the triangular inequality

|Jx | + |Jy | � |Jz|,
|Jx | + |Jz| � |Jy |, (23)

|Jy | + |Jz| � |Jx |.
This is straightforward to derive from Eq. (22) in case all
coupling constants are positive. For the case that at least one
of the coupling constants is negative, we note that Eq. (20)
depends only on the squares of the coupling constants. As a
consequence, the upper and lower bounds are independent of
the signs of the coupling constants.

The triangular inequality (23) defines the general shape
of the phase diagram as depicted in Fig. 11. In the region
around the isotropic point Jx = Jy = Jz, there are gapless
modes in the Majorana sector and the ground state is a
gapless spin liquid. If one of the three couplings dominates,
the Majorana spectrum remains gapped and the ground state
is a gapped spin liquid. The gapped and gapless phases are
connected via lines of phase transitions which are parametrized
by the equalities in the triangular inequality (23).

It should be noted that the fundamental shape of this phase
diagram is precisely the same one as the ones found for the two-
dimensional honeycomb lattice [3] and the three-dimensional
hyperhoneycomb lattice [15]. What sets the phase diagrams
apart is the actual nature of the two principle gapped and

Jz

Jx

Jy

gapped spin liquid

gapless spin liquid
with Majorana Fermi surface

J + J + J = const.

FIG. 11. (Color online) Phase diagram of the Kitaev model on the
hyperoctagon lattice. The gapless spin-liquid phase with a Majorana
Fermi surface extends in the triangle around the point of isotropic
coupling Jx = Jy = Jz (indicated by a point). Around the three
corners of the phase diagram where one of the couplings dominates
extends a gapped spin-liquid phase, which is separated from the
gapless phase via a line of (continuous) phase transitions indicated
by the yellow line.

gapless phases for the respective lattices, as we will discuss in
the following section.

E. Gapless spin liquid and Majorana Fermi surfaces

The fundamental distinction in the phase diagram of the
hyperoctagon model is the nature of the gapless phase in the
vicinity of the isotropic coupling point (Jx = Jy = Jz). Its
main feature is an extended two-dimensional Majorana Fermi
surface of gapless modes. To see the emergence of such a
Fermi surface in the Majorana spectrum around the isotropic
coupling point one needs to invert Eq. (20), which gives

cos kz =
[
J 4

x +J 4
y + J 4

z + 2J 2
y J 2

z cos(kx) + 2J 2
x J 2

z cos(ky)

2J 2
x J 2

y

]
.

(24)

In combination with the requirement that the lower bound in
Eq. (22) becomes negative or zero this parametrizes an entire
manifold of k points, or more precisely two distinct, nonin-
tersecting continuous surfaces in momentum space centered
around the corners of the Brillouin zone at Q1/2 = π (1,1,±1),
respectively, as illustrated in Fig. 12.

It is important to note that while the two surfaces are
symmetry related they cannot be mapped onto each other by a
reciprocal lattice vector. As a direct consequence momentum
conservation ensures that the zero-energy modes cannot gap
out in a pairwise fashion and the surfaces have to remain
stable throughout the gapless region. Indeed, varying the
coupling constants away from the point of isotropic coupling
only deforms the surfaces, but does not destroy them. This
is illustrated in the sequence of panels of Fig. 12 where we
plot the evolution of the surfaces along a line in parameter
space defined by Jx and Jy = Jz = (1 − Jx)/2. Starting from

235102-7



M. HERMANNS AND S. TREBST PHYSICAL REVIEW B 89, 235102 (2014)

FIG. 12. (Color online) Evolution of the Majorana Fermi surface with varying coupling parameters Jx and Jy = Jz = (1 − Jx)/2. As the
phase transition to the gapped spin liquid is approached with increasing Jz (upper row) the Majorana Fermi surface shrinks to a single point at
momenta Q1 = (π,π,π ) and Q2 = (π,π,−π ). Approaching the decoupling point for Jx → 0 (lower row) the Majorana Fermi surface flattens
to two planes.

the isotropic point and increasing Jx elongates the surface
along the x̂ direction and contracts it in the orthogonal ŷ and
ẑ directions, as illustrated in the upper panel of Fig. 12. Upon
further increasing Jx the surface contracts towards the corner
of the Brillouin zone. As one approaches the phase transition to
the gapped spin liquid at Jx = 1/2, the surfaces have reduced
to the points Q1/2 at the corners of the Brillouin zone. On the
other hand, decreasing Jx from the isotropic point flattens the
surface in the x̂ direction, as illustrated in the lower panel of
Fig. 12. As Jx goes to zero the two opposite sides of the surface
approach each other and touch precisely at the decoupling
point Jx = 0 (and at which the notion of a two-dimensional
surface ultimately breaks down as well).

To reveal the nature of the zero-energy gapless modes we
plot the dispersion of the four principal bands of Hamilto-
nian (18) along certain high-symmetry lines in Fig. 13. For
the entire gapless phase the dispersion of the bands crossing
zero energy is always linear along the direction normal to
the surface—reminiscent of the energy spectrum of a Fermi

liquid in the vicinity of the Fermi energy. One should, however,
keep in mind that the four bands in our Hamiltonian are not
spanned by conventional fermionic degrees of freedom, but by
Majorana fermions. As such the zero-energy surfaces revealing
themselves in the energy spectrum should in fact be thought
of as Majorana Fermi surfaces.

As the phase transition to the gapped phase at Jx = 1/2 is
approached, the relevant Majorana band moves up in energy
and at Jx = 1/2 no longer crosses the zero-energy level but
merely touches E = 0 in a single point with a quadratic
dispersion. This scenario is in complete analogy to the phase
transitions from the gapless to gapped Majorana phases in both
the honeycomb and hyperhoneycomb models.

IV. INSTABILITIES OF MAJORANA FERMI SURFACE

For conventional Fermi liquids it is well appreciated that
the Fermi surface is susceptible to a variety of instabilities, the
most notable of which is the formation of superconductivity.

H
Γ
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FIG. 13. (Color online) Band structure of the four principal bands of the Kitaev model along a path connecting the high-symmetry points
	 = (0,0,0), P = (π,π,π ), N = (π,π,0), and H = (0,2π,0) of the Brillouin zone depicted on the left. The dispersion of the elementary
excitations at the Fermi energy is linear for all couplings 0 < Jx < 1/2 and corresponding couplings Jy = Jz = (1 − Jx)/2. At the transition
to the gapped spin liquid, Jx = 1/2, the dispersion becomes quadratic. At the point Jx = 0 the Hamiltonian reduces to decoupled Jy-Jz spirals,
resulting in a flat spectrum between the high-symmetry points P and N .
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As such two questions immediately arise with regard to the
Majorana Fermi surface in our hyperoctagon model—why is
the Majorana Fermi surface stable in the first place and what
are its possible instabilities?

We will address the first question—the stability of the
Majorana Fermi surface—in the following by showing that
it can be tracked to the underlying lattice symmetries. We will
then devote the remainder of this section to a discussion of
possible instabilities of the Majorana Fermi surface focusing
on instabilities arising from a reduction in lattice symmetries.

A. Stability of gapless modes

To discuss the stability of the Majorana Fermi surface let
us first recall some basic facts about Majorana fermions. An
immediate consequence of the Majorana condition c

†
j (R) =

cj (R) in real space is that the “creation operator” c
†
j (k) in

momentum space is defined by c
†
j (k) = cj (−k). The latter

implies that for every energy state E(k) there is a “particle-
hole-conjugate” partner at −k for which

E(−k) = −E(k).

For clarity, we will suppress the unit cell index in this section
to make the expressions more accessible. However, one should
note that the energy relations generically relate different bands
to each other.

Quite generally, additional energy relations might exist,
which depend on the underlying lattice geometry; see Fig. 14
for a summary. Of particular importance in our case is the
bipartite nature of the lattice. For a Majorana Hamiltonian
on a bipartite lattice with vanishing intrasublattice hopping
amplitudes, one can verify that

E(k) = E(−k − k0),

where k0 is the reciprocal lattice vector that is related to the
lattice translations within a given sublattice. Note that, for the
honeycomb and hyperhoneycomb lattice, the sublattices by
themselves have the same translation vectors as the original
lattice, which allows k0 = 0 and, combining the two energy
relations found above, E(k) = −E(k). This implies that zero-
energy modes always occur in pairs at a given momentum. On
the other hand, it is important to note that, for the hyperoctagon
lattice, k0 generically does not vanish because its elementary
four-site unit cell is not consistent with a bipartite coloring of

time-reversal

particle-hole

sublattice

inversion

hyperoctagon honeycomb hyperhoneycombsymmetry
lattice

E(k) = −E(−k) E(k) = −E(−k) E(k) = −E(−k)

E(k) = −E(−k) E(k) = −E(−k)

E(k) = −E(k) E(k) = −E(k)

E(k) = E(−k)

E(k) = −E(k − k0)

E(k) = E(−k − k0) E(k) = E(−k)

FIG. 14. Table of the energy relationships that are imposed by
various symmetries for the hyperoctagon lattice (left column), the
honeycomb lattice (middle column), and the hyperhoneycomb lattice
(right column).

the lattice; see also Fig. 6. For the specific example discussed
in the previous section, k0 = (q3 − q2)/2 = (0,0,2π ). As a
consequence, the zero-modes are in general all separated
in momentum space. In order to see what effect this has
on the stability of the gapless modes, we start by revising
the situation for the honeycomb model following Kitaev’s
original arguments and afterwards extend this discussion to
the three-dimensional generalizations.

1. Stability of gapless modes in honeycomb model

In the honeycomb model, the Majorana Hamiltonian in
momentum space is a 2 × 2 matrix of the form

H =
(

0 if (k)
−if 
(k) 0

)
, (25)

where f (k) is a complex-valued function. The vanishing
diagonal elements are in fact protected by time-reversal
symmetry [3]. The eigenvalues of the Hamiltonian are given
by E(k) = ±|f (k)| and zero-energy modes occur when
f (k) = 0.

Let us start by noting that the conditions Re[f (k)] = 0
and Im[f (k)] = 0 define (several) closed lines in momentum
space, denoted in the following by 	R and 	I . The zeros
of f (k) are then, in general, given by the intersections of
these lines. As a consequence, each pair of zero modes at
momentum k comes with a partner, which in fact is located
at −k. Changing parameters deforms the lines 	R and 	I ,
which in turn moves the zeros. The only way to gap out the
system is by moving the lines 	R and 	I sufficiently, such
that they do not intersect any longer. The phase transition
corresponds to a situation where 	R and 	I merely touch. This
structure of the eigenenergies readily confirms that separated
pairs of zero modes are stable in a finite parameter regime.
On the other hand, a similar line of reasoning shows that
lines of zero modes are not stable and can generically be
gapped out completely by even an infinitesimal change in
parameters. There is, however, a generic way to stabilize lines
of gapless modes in two-dimensional generalizations of the
Kitaev model, which we will comment on below.

2. Stability of gapless modes in hyperhoneycomb model

We now extend the above discussion to the three-
dimensional models, first considering the hyperhoneycomb
model. In fact, the arguments of this section are valid
for any three-dimensional Kitaev-type model on a bipartite
lattice, which is time-reversal invariant and where the unit
cell is compatible with a bipartite coloring of the lattice.
These assumptions are sufficient to determine the Majorana
Hamiltonian to be a block matrix, where only the off-diagonal
matrices are nonvanishing,

H =
(

0 A
A† 0

)
, (26)

where A is a complex matrix. The eigenvalues of the
Hamiltonian are given by E(k) = ±|λj (k)|, where λj (k) are
the eigenvalues of A. Analogously to the two-dimensional
case, there are zero-energy solutions for λj (k) = 0. How-
ever, because the model is three dimensional the conditions
Re[λj (k)] = 0 and Imλj (k) = 0 now define (several) surfaces
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in momentum space, denoted again by 	R and 	I . Zero-energy
modes occur at the intersection of 	R with 	I and thus in
general form closed lines in momentum space. Changing
parameters in the model deforms the surfaces 	R and 	I

and, thus, the corresponding line of gapless modes, but cannot
induce a gap in the system. The latter can only be done by
changing parameters sufficiently, such that the surfaces 	R

with 	I do not intersect any longer, during which the line
shrinks to a single point and vanishes. This shows that extended
lines of gapless modes are topologically stable in these types of
models. A similar line of reasoning substantiates that this does
not apply to separated points as well as surfaces of gapless
modes—both of which are not stable objects for these kinds
of models and can only be accidental.

3. Stability of gapless modes in hyperoctagon model

The important distinction of the hyperoctagon model with
those discussed above, is that the unit cell is not compatible
with a bipartite coloring of the lattice. Time-reversal invariance
thus only requires the diagonal elements to vanish. The
Hamiltonian can then be written as

H =

⎛
⎜⎝

0 A
. . .

A† 0

⎞
⎟⎠ , (27)

which is a band Hamiltonian with the additional property
E(k) = −E(−k) due to the Majorana condition [33]. Zero-
energy modes occur when bands cross the E = 0 line,
which results in surfaces of gapless modes. In general, the
incompatibility of the unit cell and the bipartite coloring of
the lattice implies that E(k) 
= −E(k). As a result, there is
generically only a single Majorana zero mode at a given
momentum. The surfaces are thus trivially stable—changing
parameters deforms the energy bands and thus the surfaces, but
gapping a surface can only be done by either shrinking it to
a point or by superimposing two such surfaces, in which case
there are two gapless Majorana modes at the same momentum.
The latter is not stable and can always be gapped out by an
infinitesimal change in parameters. Likewise, one can verify
that lines or separated points of gapless modes are not stable
objects for these types of Majorana Hamiltonians.

This line of reasoning also sheds light on how to obtain two-
dimensional models with a stable Fermi surface. In analogy to
the case above, one needs to consider two-dimensional lattices,
where the unit cell is not compatible with the bipartite coloring
of the lattice. An example would be the square-octagon lattice
studied in Ref. [23]. Considering various flux sectors, which
do not enlarge the unit cell, indeed demonstrates that separated
points of gapless modes are not stable, while closed lines are
stable.

B. Fermi surface instabilities due to unit cell doubling

Following the line of reasoning in the previous section
points to a natural way to destabilize the Fermi surface by
enlarging the unit cell such that the two Majorana Fermi
surfaces are mapped onto each other. This requirement is
identical to identifying an enlarged unit cell that allows for
a bipartite coloring of the lattice within that unit cell (and thus

FIG. 15. (Color online) Illustration of the different couplings in
the Kitaev model, when enlarging the unit cell along the (a) a3 and
(b) a1 direction. The arrow marks the broken translation vector. The
unit cell of the model in (a) is compatible with a bipartite coloring of
the lattice while the one in (b) is not.

q vanishes) and the disappearance of a lattice symmetry that
prohibits the zero-energy modes from gapping out pairwise.
Below we will see that the Majorana Fermi surface is indeed
no longer stable when enlarging the unit cell. However, the
surface does not gap out completely, but instead reduces to a
line of gapless modes—similar to the situation of the Kitaev
model on the hyperhoneycomb lattice. A closed line of gapless
modes is, on the other hand, a topologically stable object
for three-dimensional Hamiltonians such as (26). Changing
parameters can only deform the line, but not gap it out.

In order to elucidate this, let us consider an alternative
covering of the hyperoctagon lattice with xx, yy, and zz bonds,
which is no longer invariant under a3 = 1

2 (1,1,1) translations.
The enlarged unit cell thus allows for a bipartite coloring of
the lattice. A specific realization of this is shown in Fig. 15(a).
Compared to the original model discussed in Sec. III A, the xx

and yy bonds are switched in every second unit cell along
the a3 direction. This enlarges the unit cell with the new
translation vectors becoming a1 = (1,0,0), a2 = (0,1,0) and
a3 = (0,0,1). Note that these are the simple cubic translations,
i.e., we have moved from a body-centered cubic structure to
a simple cubic one by doubling the unit cell along the a3

direction.
The model still fulfills that no vertex is connected to the

same bond type twice and is, therefore, still exactly solvable
with the methods used above. In contrast to the original
Hamiltonian (4), the new Hamiltonian is no longer isotropic
in the coupling constants, as can already be deduced from
Fig. 15(a)—the resulting Kitaev model is only symmetric in
Jx ↔ Jy , while the zz-type bond stands out. Thus, we expect
qualitatively different behavior when Jx = Jy compared to
Jx 
= Jy .

Let us first comment on the flux sectors on the model. It
can be shown that the constraints on the loop operators are
independent of the choice of the covering of the hyperoctagon
lattice in xx, yy, and zz bonds, even though the loop operators
themselves change. In analogy to our original discussion in
Sec. III A we restrict ourselves to the vortex-free sector in
the following and focus on the changes in the Majorana
sector induced by the alternation of the Kitaev interactions.
In particular, we are interested in the gapless modes in the
Majorana sector.

The parameter region, in which gapless modes exist,
is identical to the original model, i.e., determined by the
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FIG. 16. (Color online) Visualization of the surface vs lines of
gapless modes. On the line Jx = Jy , the model exhibits a Majorana
Fermi surface—centered around (π,π,π ) as shown in panel (a). Away
from Jx = Jy , the surface reduces to a line, which lies in the kz =
±π plane. Panels (b) and (c) show the behavior of the gapless line,
when (b) increasing Jx and (c) decreasing Jx , and setting Jy = Jz =
(1 − Jx)/2.

triangular inequality (23). The transition lines to the gapped
phases are parametrized by the equalities of Eq. (23). In
addition, the behavior of the model along the Jx = Jy line
in parameter space is identical to the original model. The
latter can be understood by noting that the modified Majorana
Hamiltonian at this line “looks” like the original one, albeit
with an enlarged unit cell. In particular, on the line Jx = Jy we
still find a surface of gapless Majorana modes when Jx = Jy .
However, the surface is not stable against departure from that
parametrization condition. Even an infinitesimal discrepancy
in the coupling constants Jx 
= Jy immediately opens up a
gap on most of the surface and the two-dimensional Majorana
Fermi surface collapses onto a line of gapless excitations, with
linear dispersion in the normal directions (see Fig. 16). This
line of gapless modes then remains stable throughout the rest
of the gapless phase and contracts to a point on the transition
lines to the gapped phases. The phase diagram for this model
is visualized in Fig. 17.

This behavior should be contrasted to what happens when
increasing the unit cell in the a1 direction, such that the

Jz

Jx

Jy

gapped spin liquid

gapless spin liquid
with Majorana Fermi surface

J + J + J = const.

gapless spin liquid
with closed line of Dirac cones

FIG. 17. (Color online) Sketch of the phase diagram of the model
defined in Fig. 15(a). Along the line Jx = Jy , there is a Majorana
Fermi surface, which is identical to the original model defined in
Sec. III A. Away from this line, the Majorana surface is partly gapped
out and reduced to a closed line of Dirac cones.

enlarged unit cell is still incompatible with a bipartite coloring
of the lattice. One possible way to achieve this is to switch
the xx and yy bonds in every second unit cell along the a1

direction, shown in Fig. 15(b). Note that this again breaks
the isotropy of the original model in the coupling constants.
Similarly to the two previously discussed models, the region of
parameter space with gapless excitations is again defined by the
triangular inequality (23). For the same reasons as stated above,
the model with the enlarged unit cell has the same properties
as the original one along the Jx = Jy line in parameter space.
In contrast to the model with enlarged unit cell along the a3

direction, discussed above, the surface remains stable, even
when departing from this parametric condition. The behavior
of the surface is similar to the original model. In particular, the
dispersion around the gapless surface is linear in the normal
direction, except at the phase transition to the gapped phases,
where the surface shrinks to a single point with quadratic
dispersion. The reason for the stability of the surfaces can
again be tracked to their relative displacement in momentum
space—a direct consequence that the unit cell is not compatible
with the bipartite coloring of the lattice.

V. DISCUSSION AND OUTLOOK

To a certain extent one can take the perspective that our
results for the Kitaev model on the hyperoctagon lattice
complete a family of analytically tractable spin liquids of
growing complexity—starting from a two-dimensional Dirac
spin liquid on the honeycomb lattice over the intermediate
step of a three-dimensional spin liquid with a line of gapless
modes on the hyperhoneycomb lattice to finally a spin liquid
with a full, two-dimensional surface of gapless modes for the
hyperoctagon lattice. Despite this ascent in complexity, we
want to point out that all three instances share certain features
such as rapidly decaying dynamical spin-spin correlation
functions while differing in other aspects such as the nature
of the phases induced by time-reversal-symmetry–breaking
perturbations such as a magnetic field.

Starting with the similarities, it is interesting to observe
that, independent of the nature of the manifold of their
gapless modes, all three spin liquids exhibit dynamical two-
spin correlation functions that are identically zero beyond
nearest-neighbor separation. This extremely rapid decrease
was first observed in the context of the honeycomb model [34],
but the very same arguments employed there also hold
for the hyperhoneycomb and hyperoctagon lattices. In con-
trast, the bond-energy correlator GB(r) = 〈Bγ (0)Bγ (r)〉 −
〈Bγ (0)〉〈Bγ (r)〉 with Bγ = σ

γ

i σ
γ

j is expected to exhibit a
power-law decay in real space with real-space oscillations that
form singular surfaces in momentum space [35].

Another parallel arises when distorting the couplings in
the Kitaev model such that one of the coupling constants
becomes dominant (i.e., such that the triangular inequality
does not hold any longer) and the Majorana sector is gapped
out; see the phase diagram in Fig. 11 for comparison. In
these gapped phases the low-lying excitations are instead
given by configurations, where some of the loop operators (7)
have negative eigenvalue. While for the two-dimensional
honeycomb lattices two types of excitations can be discerned
and identified with the point-like (electric and magnetic)
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excitations of a Z2 gauge theory, the effective low-energy
theory for the three-dimensional lattice is somewhat more
elaborate. Mandal and Surendran argued [16] that there is
only a single loop-like excitation in the gapped phases of
the hyperhoneycomb model that exhibits nontrivial (semionic)
braiding properties. Likely, a variant of their argument with
similar conclusions can be applied to the hyperoctagon model
as well.

A clear distinction between the three spin-liquid phases
arises when considering the effect of time-reversal-symmetry–
breaking perturbations such as a magnetic field. For the
honeycomb model such a perturbation is of utmost interest
as the gapless Majorana modes are protected by time reversal
and even an infinitesimal magnetic field (applied along
the 111 direction) gaps out the spin liquid into a gapped
topological phase with non-Abelian vortex excitations. On a
more technical level the reason for this drastic change induced
by the magnetic field can be seen in terms of the symmetry
class classification [36,37] of the underlying free (Majorana)
fermion problem [38,39]. In the absence of time-reversal-
symmetry breaking the model is in symmetry class BDI, while
in the presence of a magnetic field the symmetry class changes
to class D. The latter allows for aZ classification of topological
phases in two spatial dimensions. Indeed, the two bands split
by the magnetic field are characterized by Chern numbers ±1
indicating the non-Abelian nature of the gapped phase.

When considering a similar line of arguments for the
three-dimensional models a different picture emerges. As
noted earlier, the zero-energy modes of the hyperhoneycomb
model are protected by time-reversal symmetry, while the
ones of the hyperoctagon lattice are not. So while we expect
the gapless phase of the hyperhoneycomb model to gap out
immediately in the presence of a magnetic field, this is far
from obvious for the zero-energy modes of the hyperoctagon
model because the spectrum is robust against any two-fermion
term that does not break translation symmetry. Independent
of whether a gap opens in the spectrum, it still holds that
the symmetry class of the underlying free (Majorana) fermion
model changes from class BDI to class D in the presence of a
time-reversal–symmetry–breaking term. However, in contrast
to its two-dimensional counterpart, symmetry class D does
not harbor any topological phases in three dimensions [36,37].
As a consequence, the three-dimensional systems cannot be
driven into a (non-Abelian) topological phase by applying a
magnetic field (or any other time-reversal-symmetry–breaking
perturbation). However, one might still be able to employ ideas
similar to those used by Ryu in Ref. [40] to stabilize a nontrivial
topological phase by introducing additional (orbital) degrees
of freedom such that the augmented model can be reformulated
as a free-fermion model in symmetry class DIII. The latter does
have a Z classification in three dimensions and, thus, allows
for three-dimensional analogs of the topological phase in the
honeycomb model.

1. Thermodynamic signatures of spin liquid

Finally, an interesting perspective emerges when recasting
our results in the terminology conventionally used to char-
acterize various spin-liquid states [1]. In this language, we
have discovered a spin liquid with a spinon Fermi surface that

covers an extensive two-dimensional manifold in momentum
space. The quest to identify magnetic systems harboring
such spinon Fermi surfaces has typically inspired theorists
to consider a slave-fermion approach where the fermion
interacts with a fluctuating U(1) gauge field—a situation that
is notoriously hard to track analytically and any progress
coming at the expense of compromises on the level of various
decoupling or mean-field approaches. This situation should be
contrasted to the current situation where we have stumbled
upon a system with a spinon Fermi surface with a much
simpler and analytically exact description in terms of Majorana
fermions interacting with a staticZ2 gauge field. However, it is
important to note that this difference is not a mere conceptual
one, but one that has direct implications for thermodynamic
observables such as the specific-heat coefficient C/T . For a
U(1) spin liquid the specific heat diverges as

C(T ) ∝ T ln(1/T ),

i.e., the specific-heat coefficient γ = C/T diverges logarith-
mically at low temperatures [41]. For our case of a spinon
Fermi surface emerging from Majorana fermions interacting
with a Z2 gauge field, we find

C(T ) ∝ T ,

i.e., the specific-heat coefficient γ goes to a constant at low
temperatures. Finally, this situation should be contrasted to
the spin liquid with a Fermi line, as it was found for the
hyperhoneycomb lattice, where the specific heat grows as [17]

C(T ) ∝ T 2,

i.e., the specific-heat coefficient γ vanishes in the limit
of T → 0. Remarkably enough, this implies that a simple
thermodynamic experiment could immediately distinguish
these three seemingly equally exotic spin liquids.

Returning to the perspective of the free (Majorana) fermion
system underlying our gapless spin liquid, there is one obvious
bouquet of questions that we have not addressed in the
manuscript at hand—namely, the various pairing instabilities
that the Fermi surface of our system might exhibit. One
might be particularly interested in asking what instabilities can
be induced by additional interactions such as a Heisenberg
exchange argued to accompany the Kitaev interactions in
any microscopic description of iridate compounds [6,7]. The
effective description of the hyperoctagon model in terms
of spinless fermions suggests p-wave pairing as the natural
candidate for opening a gap. Interaction terms of this type
can indeed arise in a perturbative analysis of the Heisenberg
exchange. The question of whether or not these terms lead to
a collapse of the Majorana Fermi surface or even gap out all
Majorana modes in the system is left for future work.
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APPENDIX A: POSSIBLE MAGNETIC MATERIALS
IN SPACE GROUP I4132

In this Appendix, we want to expand our discussion of
possible magnetic materials candidates in space group I4132
(no. 214). The guiding idea in our analysis is to put the
space group symmetries of I4132 to work and look for various
possible ways to fill the interstitial sites between the network
of edge-sharing IrO6 cages as illustrated in Fig. 5 of the
main text. In addition, we have to take into account that the
fundamental building blocks of IrO3 have valency −2 and as
such are looking for interstitial fillings that allow to chemically
compensate this valence.

1. Space group symmetries

Let us first consider the effect of the space group symme-
tries. There are in total 48 symmetry operations in the space
group I4132. A generic point in the cubic cell is, thus, mapped
to in total 48 distinct points; the set of these points will, in
the following, often be labeled by a single representative.
However, there are several high-symmetry points, respectively
lines in the cubic cell, which are mapped to far fewer points. In
total, we can distinguish five types of lattice points, according
to the number of distinct lattice points that can be reached by
the symmetry operations:

(i) The lattice point is mapped to eight distinct lattice points
in the unit cell. This is possible in two inequivalent ways. The
resulting points form the two chiralities of the hyperoctagon
lattice. The representatives of the two possibilities are 1

8 (1,1,1)
and − 1

8 (1,1,1). In the main text, we chose the hyperoctagon
lattice generated by 1

8 (1,1,1); thus, in the following we place
the iridium atoms on this set of sites.

(ii) The lattice point is mapped to 12 distinct lattice points
in the unit cell. This is again possible in two inequivalent ways.
The representatives are given by (0, 1

4 , 1
8 ) and (0, 1

4 , 5
8 ). These

sites form effective lattices, which are deformations of the
two chiral versions of the hyperkagome. In fact, they can be
identified as the medial lattices of the two chiral hyperoctagon
lattices in (i).

(iii) The lattice point is mapped to 16 distinct lattice points
in the unit cell. There are infinitely many such possibilities, as
long as the representative is chosen on the line (x,x,x) [except
the high-symmetry points already listed in (i)].

(iv) The lattice point is mapped to 24 distinct lattice points
in the unit cell. There are many high-symmetry lines in the
cubic unit cell which lead to this behavior. The oxygen sites
are an example for this type of lattice point—represented by
1
8 (1, − 1,1).

(v) The lattice point is mapped to 48 distinct lattice points
in the unit cell, which applies to all lattice points that do not
lie on one of the above mentioned high-symmetry lines.

2. Possible chemical compositions

This structure, imposed by the symmetry group, severely
restricts the composition of possible compounds. Assuming
the presence of edge-sharing IrO6 cages, we note that the
above analysis implies that there are eight IrO3 in a cubic
unit cell. Thus, the remaining atoms must compensate a total
valency of −16. The latter can, for instance, be achieved by

FIG. 18. (Color online) Two possibilities of placing atoms on the
interstitial sites in the IrO3 structures, indicated by the gray octahedra.
Panel (a) shows the crystal structure by placing atoms of valency +2
on the sites of type (i) (see text). In panel (b), atoms with valency
+1 are placed on sites of type (iii), which are generated by the
representative (0,0,0).

placing eight atoms with valency +2 on the remaining set of
sites of type (i). The resulting compound is of the form AIrO3,
where A is one of the alkaline-earth-metal elements Ca, Sr,
or Ba. Another possibility is to place 16 atoms of valency +1
on the sites of type (iii). This results in a material of the type
A2IrO3, where A is one of the alkali-metal atoms Na or Li. The
resulting crystal structures for both possibilities are visualized
in Fig. 18.

APPENDIX B: KITAEV MODEL ON HYPERHONEYCOMB
LATTICE

To complement our discussion of the Kitaev model on
the hyperoctagon lattice, we present a brief, self-contained
summary of the Kitaev model on the hyperhoneycomb lattice,
an alternative trivalent three-dimensional (3D) lattice, in
this Appendix. For clarity, we use similar notations and
conventions as in the main text, but emphasize that in doing
so we also closely follow the original solution of the Kitaev
model on the hyperhoneycomb lattice as discussed in some
detail in Ref. [15].

1. Hyperhoneycomb lattice

The hyperhoneycomb lattice is an alternative 3D lattice
with a trivalent lattice structure which is illustrated in Fig. 19.
Its elementary building blocks are zigzag chains running along
the crystallographic b and c axes, which are coupled along the
a axis. Its crystal structure can be classified as a face-centered
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FIG. 19. (Color online) The hyperhoneycomb lattice. The four-
site unit cell and translation vectors are indicated. Green bonds
correspond to xx couplings, red bonds to yy coupling, and blue
bonds to zz coupling.

orthorhombic lattice of space group number 70. Of particular
importance for our discussion is the fact that it is not spatially
isotropic as is the hyperoctagon lattice, but has one “preferred”
direction—the a direction in Fig. 19.

Following our discussion in the main text relating the
hyperoctagon and hyperkagome lattices as (pre)medial lattices
of each other, one can establish a similar set of relations for
the hyperhoneycomb lattice as well. The medial lattice of
the hyperhoneycomb is the lattice of corner-sharing triangles
illustrated in Fig. 20, which can be considered another
generalization of the kagome lattice to three spatial dimension,
albeit one distinct from the hyperkagome and one which we
dub orthorhombic-kagome lattice. Its main motif are sheets
of two parallel triangle lines, which are staggered in a rotated
way as illustrated in Fig. 20. The set of relations between the
hyperhoneycomb and orthorhombic-kagome lattices as well
as their relation to the pyrochlore and diamond lattices are
summarized in Fig. 21.

FIG. 20. (Color online) The medial lattice of the hyperhoney-
comb lattice, which we dub orthorhombic kagome lattice. The lines of
dark-shaded triangles run along the (1,1,0) direction, the light-shaded
ones along the (0,1,−1) direction. The lattice has been slightly
deformed for better illustration.

pyrochlore

orthorhombic-kagome

diamond

hyperhoneycomb

medial lattice
of tetraedra

medial lattice
of triangles

1/4 triangle
depletion

1/4 bond
depletion

Fddd   (no. 70) Fddd   (no. 70)

Fd3m   (no. 227) Fd3m   (no. 227)

FIG. 21. (Color online) Another set of relationships between
various three-dimensional lattices—see also Fig. 2 in comparison.
The hyperhoneycomb lattice is the medial lattice of the so-called
orthorhombic-kagome lattice depicted in Fig. 20. Like the hyper-
kagome lattice the orthorhombic-kagome lattice can be obtained from
the pyrochlore lattice via depletion of 1/4 of the triangles; see the
inset on left. The premedial lattice of the pyrochlore is the diamond
lattice, which can be depleted by 1/4 of its bonds to obtain the
hyperhoneycomb lattice.

2. Kitaev model

Similar to the hyperoctagon lattice we can define a covering
of xx, yy, and zz couplings on the hyperhoneycomb lattice
which is commensurate with a four-site unit cell. This unit cell
and related translation vectors are as indicated in Fig. 19. The
Kitaev Hamiltonian then takes the form

H = −
∑

R

Jxσ
x
1 (R)σx

4 (R − a3) + Jyσ
y

1 (R)σy

4 (R − a3 + a1)

+ Jzσ
z
1 (R)σ z

2 (R) + Jxσ
x
2 (R)σx

3 (R)

+ Jyσ
y

3 (R)σy

2 (R + a2) + Jzσ
z
3 (R)σ z

4 (R), (B1)

where R denotes the unit cell position.
Similar to our analysis of the Kitaev model on the hype-

roctagon lattice we can identify conservative quantities for
this model by considering the structure of closed loops, which
again have length ten for this model. For each elementary
loop one can again identify a conserved quantity via the loop
operators Wl (7), which again have eigenvalues ±1. In contrast
to the hyperoctagon lattice, the smallest volume enclosed
by these elementary loops is now formed by four loops as
illustrated in Fig. 22. Graphically speaking this constrains each
“tetraeder” to have an even number of loops with eigenvalue
−1. A counting argument similar to the one presented in

FIG. 22. (Color online) The minimal closed surface is spanned
by four loops in the hyperhoneycomb lattice.
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our main analysis in Sec. III B 1 shows that there are 22N

different flux sectors, where N is the number of unit cells.
Numerical simulations [15,18] indicate that the ground state
indeed resides in the zero-flux sector, which is why we restrict
the following discussion to this sector.

3. Majorana spectrum and Fermi surface

In order to solve the Hamiltonian, we proceed as in the
main text and introduce four types of Majorana fermions
per site to write σ

γ

j (R) = ia
γ

j (R)cj (R). Introducing bond
operators ûij = ia

γ

i a
γ

j and choosing the zero-flux sector as a
reference sector, we again obtain a free-fermion Hamiltonian
of Majorana fermions hopping in a static Z2 gauge field:

H = i
∑

R

Jxc1(R)c4(R − a3) + Jyc1(R)c4(R − a3 + a1)

+ Jzc1(R)c2(R) + Jxc2(R)c3(R)

+ Jyc3(R)c2(R + a2) + Jzc3(R)c4(R). (B2)

FIG. 23. (Color online) Gapless lines in the Kitaev model on the
hyperhoneycomb lattice. Panel (a) shows the position of the gapless
line in the Brillouin zone at the isotropic point Jx = Jy = Jz. The
gapless line is located in the plane kx + ky = 0, which is indicated
in gray. The other panels show the behavior of the gapless line when
(a) increasing Jx and (b) decreasing Jx , while setting Jy = Jz =
(1 − Jx)/2. The extent of the Brillouin zone in the plane kx + ky = 0
is indicated by the hexagon.

After a Fourier transformation (17), the Hamiltonian is
straightforward to diagonalize. The principle energy bands
in the Majorana spectrum are thereby found to be

E(k) = ± 1

2
√

2

√
�k ±

√
�2

k − 4
[(

J 2
z − |δ1||δ2|

)2 + 2Jz(1 − cos φk)|δ1||δ2|
]
, (B3)

where

�k = (|δ1|2 + |δ2|2 + 2J 2
z

)
,

δ1 = Jx + e2πik1Jy,
(B4)

δ2 = Jx + e2πik2Jy,

eiφk = e−2πik3
δ1δ2

|δ1||δ2| .
The momenta k1, . . . ,k3 are defined as the coefficients of the
reciprocal lattice vectors, i.e., k = ∑

j kj qj with qi · aj =
2πδi,j .

Zero-energy solutions are obtained by setting the second
term in the root (B3) to zero, which implies

J 2
z = |δ1||δ2|,

(B5)
eiφk = 1.

The first line of Eq. (B5) can be inverted to yield

cos 2πk2 = J 4
z − (

J 2
x + J 2

y

)(
J 2

x + J 2
y + 2JxJy cos 2πk1

)
2JxJy

(
J 2

x + J 2
y + 2JxJy cos 2πk1

) ,

(B6)

the second line determines the (unique) value of k3 given
k1 and k2. The gapless Majorana modes thus form a line
in momentum space with linear dispersion along the normal
directions. The line of gapless modes and its dependence on
the coupling constant Jz—setting Jx = Jy = (1 − Jz)/2—is
shown in Fig. 23. For this choice of parameters the gapless
line always lies in the kx + ky = 0 plane, although this is no
longer true when Jx 
= Jy . We note that, when approaching
the gapped phase at Jz = 1/2, Jx = Jy = 1/4, the gapless
line shrinks to a point at (0,0,0).
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