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We study the stability of nucleated topological phases that can emerge when interacting non-Abelian anyons
form a regular array. The studies are carried out in the context of Kitaev’s honeycomb model, where we consider
three distinct types of perturbations in the presence of a lattice of Majorana mode binding vortices—spatial
anisotropy of the vortices, dimerization of the vortex lattice, and local random disorder. While all the nucleated
phases are stable with respect to weak perturbations of each kind, strong perturbations are found to result in
very different behavior. Anisotropy of the vortices stabilizes the strong-pairing-like phases, while dimerization
can recover the underlying non-Abelian phase. Local random disorder, on the other hand, can drive all the
nucleated phases into a gapless thermal metal state. We show that all these distinct behaviors can be captured
by an effective staggered tight-binding model for the Majorana modes. By studying the pairwise interactions
between the vortices, i.e., the amplitudes for the Majorana modes to tunnel between vortex cores, the locations
of phase transitions and the nature of the resulting states can be predicted. We also find that, due to oscillations
in the Majorana tunneling amplitude, lattices of Majorana modes may exhibit a Peierls-like instability, where a
dimerized configuration is favored over a uniform lattice. As the nature of the nucleated phases depends only
on the Majorana tunneling, our results are expected to apply also to other system supporting localized Majorana
mode arrays, such as Abrikosov lattices in p-wave superconductors, Wigner crystals in Moore-Read fractional
quantum Hall states, or arrays of topological nanowires.

DOI: 10.1103/PhysRevB.89.085121 PACS number(s): 05.30.Pr, 73.43.Nq, 74.25.Uv, 75.10.Jm

I. INTRODUCTION

Topologically ordered states of matter can be characterized
by topological invariants. In the bulk of a two dimensional
topologically ordered system, their nontrivial values can imply
that the vortex or quasiparticle excitations exhibit anyonic
statistics. Of particular interest are the so called non-Abelian
anyons. Their presence leads to a macroscopic ground state
degeneracy, which has been proposed as a robust memory
to store and manipulate quantum information [1]. While
the details of such topological quantum computing schemes
depend on the specific platform, the basic idea is to have a
large number of anyons, usually arranged in a regular array
to enable systematic control, which are locally manipulated to
implement robust quantum gates [2–4].

As quasiparticles the non-Abelian anyons will always be
interacting due to system specific microscopics. These interac-
tions mean that the topological degeneracy will only be exact in
the limit of infinite quasiparticle separation [5]. Microscopics
of this degeneracy lifting have been analyzed in several
systems including Moore-Read fractional quantum Hall states
[6], p-wave superconductors [7], Kitaev’s honeycomb model
[8], and topological nanowires [9]. As any realization of
topological order will ultimately be in a finite system, the
anyons are forced to be in proximity to each other and thus
the interactions are rarely negligible. For instance, it has been
recently appreciated that they can have direct consequences
for the experiments to detect non-Abelian anyons [10,11]. A
more dramatic consequence is the possibility of interacting
non-Abelian anyons to form a new collective topological state
[12,13]. This mechanism of topological liquid nucleation has
been postulated to occur when the anyons form a regular

array, such as an Abrikosov vortex lattice in a topological
superconductor [14–16] or a quasiparticle Wigner crystal in
a quantum Hall state [17]. It has been recently realized that
topological phase transition in quasi-1D systems can also be
related to this mechanism [18].

While the interactions underlie the nucleation mechanism,
there is no critical interaction strength—if the vortex lattice
is uniform nucleation should always occur. However, as
the interaction strength decays with increasing anyon sep-
aration, so does the interaction induced energy gap. Thus
disorder effects are expected to become more and more
relevant as the vortex lattices get sparser. In this paper we
study microscopically three distinct types of perturbations
in non-Abelian anyon arrays: anisotropic interactions due to
anisotropic vortices, dimerization of the vortex lattice, and
random local vortex position disorder. We perform the studies
in the context of Kitaev’s honeycomb lattice model [19], where
the microscopics of nucleation have been previously studied
[20]. In particular, it was shown that the collective state of
the vortices in the non-Abelian phase of the model could be
fully understood from a model of free Majorana fermions
tunneling between the vortex cores. Here we generalize the
corresponding tight-binding model to include anisotropic,
staggered, and random couplings, which we show to be
sufficient to fully capture the behavior of the perturbed vortex
lattices in the honeycomb model. Our main result is that while
the nucleated phases are stable to moderate perturbations
of all types—as expected for a gapped topological phase—
very different physics is obtained for strong perturbations.
Anisotropy in the interactions stabilizes the strong-pairing-like
phases, while dimerization can drive the system back to the
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underlying non-Abelian phase. Local random disorder, on
the other hand, is found to drive the nucleated phases to a
recently predicted thermal metal state [21]. Furthermore, we
find that the Majorana tunneling can give rise to a Peierls-like
instability, where the Majorana mode binding vortices may
energetically prefer to dimerize over forming a uniform lattice.

Qualitatively similar collective behavior is expected to oc-
cur in any system where localized Majorana modes can tunnel
on a regular array. By studying the system specific pairwise
tunneling amplitudes [6–8], the collective state of the system
can be predicted from the generalized Majorana tight-binding
model presented here. In addition to the honeycomb model [19]
and its generalizations [22,23], Majorana arrays may naturally
occur as Abrikosov vortex lattices in p-wave superconductors
[24] or as quasihole Wigner crystals in Moore-Read fractional
quantum Hall states [25]. They could also be engineered in two
dimensional arrays of topological nanowires [2,26] or realized
in optical lattice experiments for fractional quantum Hall
physics [27]. The latter offers a particularly exciting prospect
for probing the collective behavior of Majorana modes due
to the precise control one can have over the vortex lattice
geometry [28]. The disorder effects considered in the present
work are relevant to all these microscopically distinct systems
due to the ever present impurities.

This paper is structured as follows. In Sec. II we review the
solution of the honeycomb model. In Sec. III the phase diagram
and the characteristic band structure in the presence of vortex
lattices is studied. In Sec. IV we review the vortex-vortex
interactions and introduce the tight-binding Majorana model
to study perturbed vortex lattices. In Sec. V we apply this
model to study the effects of vortex anisotropy, dimerization
of the vortex lattice, and random local disorder. This section
contains the main results of our work. In Appendix A we
present an analytic solution to a staggered Majorana model and
study its general properties. Appendix B contains supporting
supplementary data.

II. VORTICES IN THE HONEYCOMB LATTICE MODEL

Kitaev’s honeycomb model is a lattice model of spin 1/2
particles residing on the vertices of a honeycomb lattice [19].
The spins interact according to the Hamiltonian

H =
∑

α=x,y,z

∑

⟨i,j⟩
Jασα

i σα
j + K

∑

⟨i,j,k⟩
σα

i σ
β
j σ

γ
k , (1)

where Jα are nearest neighbor spin exchange couplings along
links of type α and K is the magnitude of a three spin
term that explicitly breaks time reversal symmetry. The latter
is required for the model to support gapped topological
phases characterized by nonzero Chern numbers. For every
hexagonal plaquette p one can associate a Z2 valued six
spin operator Ŵp = σ x

1 σ
y
2 σ z

3 σ x
4 σ

y
5 σ z

6 that describes a local
symmetry [H,Ŵp] = 0. The Hilbert space of the spin model
thus breaks into sectors labeled by the patterns W = {Wp}
of the eigenvalues of Ŵp. We refer to these sectors as vortex
sectors, because, as we argue below, Wp = −1 corresponds to
having a π -flux vortex on plaquette p.

The interacting spin system (1) can be mapped to a system
of Majorana fermions ci = c

†
i coupled to a Z2 gauge field ûij

[19,29]. The corresponding Hamiltonian is then given by

H = i

2

∑

⟨i,j⟩
Jij ûij cicj + i

2
K

∑

⟨⟨i,j⟩⟩
ûikûkj cicj , (2)

where the first sum is over nearest neighbor sites ⟨i,j ⟩,
Jij = Jx, Jy , or Jz depending on the type of link, and the
second over next nearest neighbors ⟨⟨i,j ⟩⟩ with k denoting
the connecting site. The gauge field is static, i.e., the local
gauge potentials satisfy [H,ûij ] = 0. The plaquette operators
become Z2 valued Wilson loop operators Ŵp =

∏
(i,j )∈p ûij ,

which justifies the interpretation of the eigenvalues Wp = −1
corresponding to the presence of a π -flux vortex on plaquette
p. By choosing a gauge, i.e., replacing the operators ûij

with their eigenvalues uij = ±1, one restricts to a particular
vortex sector W (u). In each sector the Hamiltonian HW (u) is
quadratic in the ci’s and hence readily diagonalizable, with
the resulting spectrum of free fermions depending only on
the vortex sector W . This spectrum encodes the physics of
the underlying vortices, whose properties can be probed by
studying the spectrum over various vortex sectors [8].

There is a subtlety in the mapping from the spins to free
Majorana fermions. The gauge field ûij emerges as one embeds
the Hilbert space of spins into an enlarged space of fermionic
modes and then subsequently projecting the states back to the
physical space [19,30]. This amounts to imposing a set of local
constraints on the physical states, as well as a global constraint
on the fermionic parity PW that depends on the vortex sector
W . The latter can be obtained either from the eigenvectors [30]
or through a singular value decomposition [31]. The fermionic
parity needs to be taken into account when connecting the
vortex-vortex interactions to the nucleated phases.

A. Simulating vortex transport by tuning the spin
exchange couplings

The vortex sectors form a discrete set with the states in
different sectors being orthogonal to each other. However, the
spectra of two distinct sectors can be adiabatically connected
by noticing that in Eq. (2) the local gauge potentials ûij

are always uniquely paired with the local couplings Jij .
Tuning adiabatically Jij → 0 → −Jij (and the corresponding
couplings K) will therefore interpolate between Hamiltonians
HW ({uij }) and HW ({−uij }) that differ by the vortex occupation on
the two plaquettes sharing the link (i,j ). This means that while
the vortex sector, as characterized by the pattern of eigenvalues
W , does not change under such adiabatic process, the spectrum
will smoothly interpolate between the two orthogonal vortex
sectors.

This process can be viewed as simulating adiabatic vortex
transport, which has been employed to verify the non-Abelian
statistics of the vortices [32,33] and to uncover the oscillating
interactions between them [8]. Here we will employ this
equivalence between coupling and gauge configurations to
simulate perturbations in vortex lattices. From now on, when
talking about perturbing vortex lattices, we thus mean that we
perturb the couplings Jij in the corresponding manner.
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(a)

(b)

FIG. 1. Phase diagram in (a) the vortex-free sector and in (b) the
vortex lattice sectors when K > 0. In the presence of a vortex lattice,
the non-Abelian phase characterized by Chern number ν = −1 is
always replaced by one or more Abelian phases characterized by
even Chern numbers. The strong-pairing-like TC phases are also
always stabilized. The data how the phase diagram is modified for a
particular vortex lattice of spacing D is given in Appendix B.

III. PHASE DIAGRAM AND THE VORTEX SECTORS

In this section we first review the phase diagram of the
honeycomb model both in the absence and presence of vortex
lattices. Then we discuss the characteristic band structure that
arises in the presence of vortex lattices.

A. Vortex-free sector: Non-Abelian phase

The ground state over all vortex sectors resides in the
vortex-free sector (Wp = 1 on all plaquettes) [34]. The phase
diagram of this sector, as illustrated in Fig. 1, admits an analytic
solution that has been obtained by Kitaev in his original work
[19]. When Jα < Jβ + Jγ for all permutations of α,β,γ =
x,y,z and K ̸= 0, the system is in a gapped topological
phase characterized by Chern number ν = −sgn(K) = ±1.
This means if one introduces few vortices, i.e., considers
vortex sectors with few Wp = −1 eigenvalues, one finds
isolated exponentially localized modes on the sites around
these plaquettes [35]. These modes are Majorana modes and
the vortices binding them exhibit non-Abelian statistics of

FIG. 2. (Color online) Two different types of equidistant triangu-
lar vortex lattices. Left: The shortest vortex separation is orthogonal
to the links of the lattice, which gives integer superlattice spacings
D = 1,2,3, . . .. Right: The shortest vortex separation is parallel to the
links giving superlattice spacings D =

√
3,2

√
3, . . . . For each type

of vortex lattice, the nearest neighbor (ϵD) and next nearest neighbor
(ϵD

√
3) interaction energies are shown.

Ising anyons [32]. In the language of p-wave superconductors,
this phase is adiabatically connected to the weak-pairing phase
[36].

In the three opposing limits Jα > Jβ + Jγ the spins
dimerize and the system will be in gapped topological phases
with Chern number ν = 0. In these strong-pairing-like phases
the vortices behave as Abelian anyons with mutually semionic
statistics (often referred to as toric code anyons). We denote
these spin dimerized phases by TC to distinguish them from
the ν = 0 phases that can emerge in the presence of vortex
lattices.

Unless otherwise mentioned, we use the parametrization
J = Jx = Jy and Jz = 1. In this notation the TC phase spans
the regime 0 < J < 1

2 , while the non-Abelian Ising phase
spans the 1

2 < J ! 1 regime. We often consider the isotropic
J = 1 couplings at the center of the non-Abelian phase,
where the gap is maximized and the model has rotational C3
symmetry.

B. Vortex sectors: Nucleated Abelian phases

To study the phase diagram across the vortex sectors, we
restrict ourselves to considering equidistant triangular vortex
lattices, which we parametrize by D—the vortex superlattice
spacing in the units of plaquette spacings between all nearest
neighbor vortices. In particular, we consider lattices with
spacings D = 1,2, . . . and D =

√
3,2

√
3, . . ., as illustrated

in Fig. 2. While the presence of the vortex lattice reduces
translational symmetry, the systems with homogenous vortex
lattices are still translationally invariant with respect to larger
(magnetic) unit cells. In general, a vortex superlattice of
spacing D will give rise to a Bloch Hamiltonian that is a
4D2 × 4D2 matrix. While an analytic solution is available only
for the densest case of D = 1 [37,38], sparser vortex lattice
systems can still be readily solved numerically [29]. Unless
explicitly mentioned that a finite-size system has been used,
all the data in the manuscript has been obtained by Fourier
transforming with respect to these vortex lattice unit cells.

As illustrated in Fig. 1, there are two general ways the
presence of a vortex lattice modifies the phase diagram:
(i) the non-Abelian phase is always replaced by one (or
more) Abelian phases characterized by even Chern numbers
ν = 0,−2, or −4 (see Fig. 7) and (ii) the strong-pairing-like
TC phases are always enlarged, i.e., the transition out of the TC
phase occurs always for some Jc > 1

2 . It has been shown that
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FIG. 3. Band structure of nucleated phases consists of the high-
energy bands (±

NA that originate from the underlying non-Abelian
phase and the hybridized low-energy bands (±

V that live effectively
on the vortex lattice. )V is the energy gap of the nucleated phase,
)NA is the gap to (±

NA, and * is the bandwidth of the hybridized
vortex band.

the character of the Abelian phases around isotropic couplings
(J = 1) can be fully traced back to pairwise vortex-vortex
interactions [20], i.e., they emerge through the mechanism of
topological liquid nucleation [13]. Here we study the stability
of these phases when the vortex lattices are perturbed away
from the uniform triangular configurations.

Before proceeding, we note that it has been observed that the
phase diagram of the honeycomb model can also be modified
in the absence of a vortex lattice if, for instance, the spin
exchange couplings Jα are suitably staggered [39,40]. As we
show in this paper, the picture of nucleation applies also to
such staggered coupling configurations, which suggests that
these results could also be understood in terms of a collective
state of non-Abelian vortices.

C. Band structure of the nucleated phases

As schematically illustrated in Fig. 3, all the nucleated
phases have a characteristic band structure: they consist of
a set of high-energy bands (±

NA,i that are an artifact of the
underlying non-Abelian Ising phase, and (a set of) low-energy
bands (±

V,i that emerge due to the presence of the vortex
superlattice. In the presence of 2N vortices, the latter will
contain N modes that have support only on the sites around
the vortices, while the modes in (±

NA,i will in general have
support on all lattice sites. As the bands are always separated
in energy by a band gap, the Chern number ν for the ground
state, that consists of the occupied negative energy bands (−

V,i

and (−
NA,i , can be written as

ν = νNA + νV , (3)

where νNA and νV are the corresponding band Chern numbers.
For K ̸= 0 one always finds νNA = −sgn(K) = ±1, consis-
tent with (±

NA,i originating from the non-Abelian phase. On
the other hand, νV depends on the superlattice spacing D.

This characteristic band structure suggests that the nucle-
ated phases can be viewed as consisting of two “layers”:
the underlying non-Abelian |νNA| = 1 phase living on the
honeycomb lattice and an emergent νV theory living effectively

on top of it on the vortex lattice. This picture is supported by
Fig. 4, which shows how the edge states in a nucleated phase
can indeed be understood as the composite of the edge states
of the two layers. We note that, when viewed as a two-layer
system, the transition to an Abelian phase due to the vortex
lattice is consistent with a condensate-induced transition [42].

The two-layer picture enables one to separate the contribu-
tions from the two distinct types of dynamics in the system:
the bands (−

V,i describe the microscopics of the Majorana
modes bound to the vortex cores, whereas the bands (+

NA,i

describe microscopics of the vortices themselves. Since only
νV depends on the vortex lattice spacing D, it is the first energy
band that describes the topological behavior of the system
for a given vortex configuration. The dynamics associated
with the latter, such as an electrostatic repulsion between
vortices in actual superconductors, can still affect the behavior
of the system though. Some vortex configurations can be
energetically favored over others and, as we will show below,
the collective state of the Majorana modes depends in general
on the vortex lattice geometry.

IV. VORTEX-VORTEX INTERACTIONS AND THE
EFFECTIVE MAJORANA MODEL

In this section we first review the interactions between
vortices and then define a generalization of the effective
Majorana model that has been shown to fully capture the
behavior of the uniform vortex lattices [20].

A. Pairwise vortex-vortex interactions

The vortices have been shown to be interacting in the
non-Abelian phase [8], which means both the ground state
energy and degeneracy depend on the relative vortex positions.
As illustrated in Fig. 5, the presence of a vortex pair gives
rise to two ground states which are exponentially degenerate
as the vortex separation d increases. As they are brought
closer (simulating continuous vortex transport by tuning the
couplings), one finds the energy splitting ϵd between the two
states oscillating. This energy splitting can be approximated
by

ϵsim
d ∼ )0 cos(ωd)e− d

ξ . (4)

Here )0 is the energy gap of the non-Abelian Ising phase,
ω ∼ k+

F − k−
F is the difference of the two Fermi momenta (for

)0 = 0 the spectrum exhibits[19] two Dirac cones at k±
F ), and

ξ is the coherence length. For isotropic J = 1 couplings the
energy gap scales as )0 = 6

√
3K and the coherence length is

well approximated [8] by ξ ≈ 1.4
)0

.
Oscillating degeneracy splitting of the form (4) has been

shown to originate from Majorana modes bound to the vortex
cores [7]. Their wave functions, while being exponentially
localized at the vortex cores, have oscillating tails [35,43].
Depending on the vortex separation, the interference between
two such wave functions can thus be either constructive or
destructive. This leads to oscillations in the amplitude for the
Majorana mode to tunnel between the vortex cores and thus
also to oscillations in the degeneracy splitting.

When we simulate continuous vortex transport, we restrict
first to the vortex-free sector and then tune the couplings in a
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FIG. 4. (Color online) Composition of the nucleated edge states. (a) When the D = 1 vortex lattice spans only part of the cylinder, the
spectrum consists of the overlapping spectra of the nucleated ν = −2 phase in the area covered by the vortex lattice and the non-Abelian
ν = −1 phase on the sides of the cylinder. Due to the Chern number difference, there are |νV | = 1 edge states on each domain wall between
the nucleated and the non-Abelian phase (dashed lines crossing E = 0 at ky = 0), and |νNA| = 1 edge states on each physical edge between the
non-Abelian phase and the vacuum (solid lines crossing E = 0 at ky = π ). (b) When the vortex lattice covers the whole cylinder, the domain
walls are brought close to the physical edge and the edge states can tunnel between them. Depending on the direction of propagation (the slope
of the edge modes), they either cancel or add up giving |ν| = |νV + νNA| low-energy edge states crossing E = 0 at the same momenta. The
figure also shows the characteristic band structure with the high-energy (low-energy vortex) bands denoted by solid (dashed) lines. The plots
are for J = 1 and K = 0.1 and calculated on a cylinder of length L = 80 (160 sites in x direction, L/ξ ≈ 60).

way that corresponds to creation and transport of the vortices.
The spectrum evolves as if the vortices were continuously
moved between plaquettes, but the state of the system remains

0 2 4 6 8 10 12 14
0.6

0.4

0.2

0

0.2

0.4

0.6

d

E

d

0

dd

FIG. 5. (Color online) Microscopics of the interaction between
a pair of vortices in Kitaev’s honeycomb lattice model [8]. In the
non-Abelian Ising phase the vortices bind localized Majorana modes
γi = γ

†
i . Two vortices thus share a complex fermionic mode di =

(γi + iγi+1)/
√

2. This fusion degree of freedom manifests itself as
the presence of a midgap mode in the spectrum (shown in red, dashed
line for the particle and the dotted line for the hole conjugate). Its
energy ϵd decreases exponentially with vortex separation d and shows
oscillations of the form (4). The circles show the physical interaction
energy (5) at integer values of d when the fermionic parity is taken
into account. )0 is the energy gap of the extended states which is
insensitive to d . The plot is for J = 1 and K = 0.05 and calculated
using a finite L × L plaquette system (L = 40, 3.2 × 103 sites, and
L/ξ ≈ 15).

in the vortex-free sector. This contrasts with the situation when
one restricts to a two-vortex sector that corresponds to vortex
spacing d. In this case one would find that the degeneracy of the
two exponentially degenerate states is split by |ϵsim

d |, but that
the sign of the splitting now depends on the fermionic parity
Pd of the respective vortex sector [30]. For even (odd) parity
the midgap mode has positive (negative) energy and is thus
unoccupied (occupied) in the ground state. Thus the physical
interaction energy between a pair of vortices at separation
d = 1,2, . . . is given by

ϵd = (−1)Pd
∣∣ϵsim

d

∣∣, (5)

as illustrated in Fig. 5. We find that the parity is odd for
linear separations d = 3,6,9, . . . , as well as for all diagonal
separations d =

√
3,2

√
3,3

√
3, . . . .

We should point out that this extra condition imposed by the
fermionic parity on the interaction energy originates from the
mapping from the spins to fermions and is thus specific only
to the honeycomb model. In a p-wave superconductor or the
5/2 fractional quantum Hall state, where similar oscillatory
interactions have been discovered [6,7], continuous vortex
transport is well defined and both the magnitude and the sign
of the interaction energy can be directly obtained from the
oscillating energy splitting.

B. Effective Majorana model for the vortex band

We now connect the pairwise vortex-vortex interactions
to the character of the nucleated many-vortex phases. To
do this we view the interactions as tunneling processes of
the Majorana modes γi = γ

†
i bound to the vortex cores with

085121-5



LAHTINEN, LUDWIG, AND TREBST PHYSICAL REVIEW B 89, 085121 (2014)

FIG. 6. (Color online) Effective Majorana model living on the
vortex lattice with the sites coinciding with the vortex cores, as shown
here for the D = 2 vortex lattice. Including both nearest t1 (solid links)
and next nearest t√3 tunneling (dashed links), there are three distinct
types of plaquettes: T1 and T√

3 plaquettes that consists of only t1 or
t√3, respectively, and the intermediate T1,

√
3 plaquettes that consist of

both.

the interaction energy ϵd giving the tunneling amplitude at
separation d. The collective state of a vortex lattice can thus
be modeled by a tight-binding model of Majorana modes
tunneling on the lattice whose sites coincide with vortex cores
[20]. We show that by using the interaction energies ϵd as the
only inputs, such an effective model captures the behavior of
the vortex bands (±

V with the spectral gap )V , band energy
EV , and the observed Chern number ν predicted correctly.

The Hamiltonian for our effective Majorana model is given
by

HM = i
∑

⟨i,j⟩
t1
ij s

1
ijγiγj + i

∑

⟨⟨i,j⟩⟩
t
√

3
ij s

√
3

ij γiγj . (6)

The Majorana operators satisfying {γj ,γj } = 2δij live on the
vortex cores that coincide with the sites of the vortex lattice,
as illustrated in Fig. 6. The nearest and next-nearest neighbor
tunneling amplitudes t1

ij and t
√

3
ij , respectively, are vortex lattice

geometry dependent and possibly locally varying. The Z2

valued gauge variables s1
ij and s

√
3

ij , on the other hand, depend
only on the topology of the vortex lattice [14]. The latter give
rise to flux .ijk = ln(−isij sjkski) = ±π

2 on every plaquette
with corners i, j , and k. As illustrated in Fig. 6, there are three
distinct types of plaquettes: T1 and T√

3 plaquettes that consist
only of t1 and t√3 links, respectively, and the intermediate T1,

√
3

plaquettes that consist of both. It has been shown [20] that the
flux on them should be fixed to be .1 = π

2 , .√
3 = −π

2 , and
.1,

√
3 = π

2 .
To employ (6) to model behavior of the vortex band of a

particular vortex lattice, the tunneling amplitudes t1
ij and t

√
3

ij

are identified with the interaction energies ϵd corresponding
to the vortex separations. It has been shown [20] that a model
with uniform couplings, i.e.,

t1
ij → t1 = ϵD, t

√
3

ij → t√3 = ϵD
√

3, (7)

accurately describes vortex lattices with uniform spacing D
for isotropic exchange couplings Jx = Jy = Jz. Indeed, Fig. 7
shows that for a wide range of superlattice spacings 1 ! D !
15, the gap )M of the effective Majorana model provides
an excellent approximation of the observed gap )V of the
full honeycomb model. There is also systematic agreement

10−5
10−3
10−1

10−5
10−3
10−1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−4
−2

0

D

ν

Non−Abelian gap and the nucleated bandwidth

Nucleated gap and pairwise interaction

Chern numbers of the nucleated phases

ν
M

−1
ν

E

E

FIG. 7. (Color online) Nucleated phases in the presence of uni-
form vortex lattice of spacing D. Top: The exponentially decaying
energy gap )V of the full model and the energy gap )M predicted
from the exponentially decaying pairwise interactions ϵD are in
quantitative agreement. Middle: Emergence of the nucleated band
structure of Fig. 3. As the vortex lattice spacing D increases, the
bandwidth * of the vortex band decays exponentially giving a
macroscopically degenerate zero energy band at large vortex lattice
spacings. In this limit the band gap )NA converges to the spectral
gap )0 in the absence of a vortex lattice. Bottom: The Chern number
νM − 1 (red) predicted by the Majorana model (6), with ϵD obtained
from Fig. 5 as the only input, show in general agreement with the
observed Chern numbers ν (black). The observation of ν = 0 for all
D = 3,6, . . . is in agreement with previous studies [41]. The data is
for J = 1 and K = 0.1.

between the vortex band Chern number νV and the Chern
number νM characterizing the ground state of our effective
model. Depending on the vortex lattice spacing D, we find
phases characterized by Chern numbers ν = 0,−2, or −4. In
terms of the effective model, these phases arise when |t1| ≫
|t√3| and t1 < 0 or t1 > 0, or t√3 ≫ t1, respectively [20].

The agreement between the observed and predicted Chern
numbers is exact in the range 2 ! D ! 7. We attribute the
disagreement for the tightly packed case of D = 1 for the
vortex lattice spacing being smaller than the coherence length
ξ of the underlying non-Abelian phase. The Majorana wave
functions are thus strongly overlapping and individual vortices
are no longer well defined. This means that our assumption
that the energy splitting equals the tunneling amplitude breaks
down and the effective model, as we defined it, no longer
captures accurately the behavior of the full system. Indeed,
the general form (4) for the interaction energy holds [7]
strictly speaking only for d ≫ ξ . For the same reason the
approximation becomes worse for parameter regimes where
the gap )0 becomes small, i.e., near J = 1/2, or when K
becomes small. Thus we take D > ξ as a physical requirement
for our Majorana model to accurately describe the behavior of
the vortex lattices.

On the other hand, we attribute the periodically occurring
disagreeing cases D = 8,11,14, . . . to finite-size errors in
calculating the Majorana tunneling amplitude tDl = ϵD . Such
corrections become more significant as the interaction energy
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ϵD becomes exponentially small with increasing vortex sepa-
ration D. They are assumed to be particularly pronounced for
those vortex lattices whose spacings are in the vicinity of the
nodes in the interaction oscillations. As shown in Fig. 5, in our
case these occur for D = 2,5,8,11,14, which strongly suggests
that the disagreeing cases for larger spacings are indeed due to
such finite-size effects in the calculation of ϵD .

The appearance of only even Chern numbers across the
whole 1 ! D ! 15 range confirms that nucleation is not a
process that is driven by the interactions—there is no critical
interaction strength. Even if the energy gap )V and the
bandwidth * become exponentially small, nucleation occurs
for uniform vortex lattices of arbitrary spacing. However, this
is a highly idealized case as real physical systems always
come with impurities. These pin the vortices, which results
in perturbations in the vortex lattice. We now turn to a
quantitative study of the robustness and the fate of nucleated
topological phases under anisotropy, dimerization, and random
local disorder.

V. PERTURBED NUCLEATED PHASES

In this section we consider three distinct types of pertur-
bations in the vortex lattices: anisotropy in the interactions
arising from anisotropic vortices, dimerization of the vortex
lattice, and random local disorder of the vortex positions.
For each case we show how to choose the effective tunneling
amplitudes such that the effective Majorana model (6) captures
the behavior of the full honeycomb model.

A. Spatially anisotropic vortices

As the first type of perturbation we consider anisotropic
interactions which occur when the vortices are not spatially
isotropic. In the honeycomb lattice model this happens when
the spin exchange couplings are tuned away from the C3
rotationally symmetric J = 1 couplings. In p-wave supercon-
ductors it could arise when impurities deform the magnetic
field through a vortex or, more generally, when the Fermi
surface is anisotropic.

As schematically illustrated in Fig. 8, anisotropy means
that the bound Majorana wave functions become spatially
deformed, which in turn gives unequal overlaps and thus
unequal tunneling amplitudes in different spatial directions.
To account for anisotropic interactions in the effective model
(6), we define the tunneling amplitudes by

t lij → t lα = ϵα
lD, l = 1,

√
3, (8)

when the tunneling between sites i and j is in the direction α
(see Fig. 6). For J = 1 all the couplings of the same range will
be equal, but for J < 1 we find t lz couplings acquiring different
behavior from t lx and t ly that in turn will behave identically. This
different J dependence is shown in Fig. 9, which also shows
for the case D = 4 that when these couplings are inserted
into (6), we find excellent agreement with the observed and
predicted gaps and Chern numbers. Further data presented in
Appendix B shows that this holds also for other vortex lattice
spacings. This confirms that the description by our Majorana
model is valid in the presence of spatial anisotropy.

FIG. 8. (Color online) Spatial vortex anisotropy and the effective
Majorana model. (a) When Jz < Jx,Jy , the vortices and the Majorana
wave functions bound to them are effectively stretched in the
direction of the weaker vertical Jz links. (b) This leads to different
anisotropic overlaps, and thus anisotropic tunneling amplitudes for
the Majoranas. When Jx ̸= Jy ̸= Jz the C3 rotational symmetry
is broken and shown the vortex-vortex interaction energies are
anisotropic such that ϵx

d ̸= ϵ
y
d ̸= ϵz

d . The solid (dashed) arrows show
the directions identified with the (next) nearest neighbor interactions
of the effective Majorana model.

The interactions between the non-Abelian vortices are only
defined in the coupling regime 1

2 < J ! 1, which supports
the non-Abelian Ising phase. One might thus expect that this
regime would be fully covered by the nucleated phases with
any ν = 0 phase in this regime being distinct from the TC
phase in the J < 1

2 regime. Instead, as illustrated in Fig. 1
and shown by the actual data in Appendix B, we find that
the TC phase is always enlarged into the J < 1

2 region. As
this occurs for all vortex lattice spacings D, we conclude that
the strong-pairing-like TC phases are always stabilized in the
presence of a vortex lattice.

B. Dimerization of the vortex lattice

Above we kept the vortex lattice uniform while tuning
the couplings to induce anisotropic interactions. A somewhat
more complicated situation arises when the vortex lattice is
periodically deformed such that the vortices dimerize. As
some vortices are now closer to each other while being further
away from others, the effective Majorana tunneling couplings
become not only anisotropic, but also staggered. This can
in general occur in the presence of a periodic background
potential, but it could also arise due to multiscale interactions
in superconductors [44] or be induced in an optical lattice
setting through long-range dipolar interactions [28]. As we
will show below, it may also occur spontaneously due to a
possible dimerizing instability arising from the oscillations in
the pairwise vortex interactions.

To study the effect of such staggering on the Majorana
model (6), we simplify the model in two ways. First, we set
t
√

3
ij = 0 and consider staggered nearest neighbor t1

ij tunneling
only. This amounts to the model neglecting the ν = −4 phases
[20]. These, however, are rare special cases, which we do
not consider now. Second, we consider a strongly modulated
deformation where, as illustrated in Fig. 10(a), the vortex
separation varies periodically such that in z direction we have
an alternating pattern of separations D + δ and D − δ. In the
case of δ = 0 there is no deformation, while for δ = D all
the vortices are fused and one recovers the vortex-free sector.
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FIG. 9. (Color online) Prediction by the Majorana model (6) with the anisotropic tunneling couplings (8) for the D = 4 vortex lattice. Left:
The behavior of the anisotropic tunneling couplings t1

x,y = ϵ
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3
as we tune J away from the isotropic

J = 1 spin exchange couplings towards the non-Abelian phase boundary at J = 1/2. Right: The observed ()V ) and the predicted ()M ) energy
gaps when the anisotropic couplings on the left are input to (6). We find the effective model predicting correctly both the locations of the
phase transitions as well as the Chern numbers ν = νM − 1 of the various nucleated phases, including the transition to the extended TC phase
J " 0.7. The data is for K = 0.1.

The assumption is that when vortices become strongly paired
(δ → D), the system locks into a localized configuration of
complex fermions bound to the dimerized vortex pairs. This
suppresses any collective state of the Majorana modes and
is thus expected to drive a transition back to the underlying
non-Abelian Ising phase.

In the absence of t
√

3 tunneling the effective Majorana
model (6) has a two site unit cell. Labeling these sites as
black (b) and white (w), the unit cell accommodates up to
six independent nearest neighbor tunneling amplitudes. To
account for the staggering, we will identify these couplings
with the interaction energies as follows:

txb = ϵ̄D−δ, txw = ϵ̄D+δ,

t
y
b = ϵD, t

y
w = ϵD,

tzb = ϵD−δ, tzw = ϵD+δ,

(9)

where the ϵ̄δ is the staggered interaction energy in x direction,
as illustrated in Fig. 10(b). The comparison between the
honeycomb model data and the prediction by our effective

FIG. 10. (Color online) Dimerization of the vortex lattice.
(a) Deforming the uniform vortex lattice of spacing D periodically by
δ leads to a dimerization of the vortices into pairs of separation D − δ.
In our parametrization δ = 0 corresponds to no deformation (uniform
vortex lattice), while δ = D corresponds to a fusion of all vortices.
As described in Sec. II A, this can be achieved by staggering the
local couplings Jij suitably. (b) The corresponding staggered nearest
neighbor interaction energies that are identified with the tunneling
amplitudes according to (9).

model with amplitudes (9) is shown in Fig. 11. We find that, as
the vortex lattice dimerizes, there will indeed be a transition at
some δc away from the nucleated phase in the uniform (δ → 0)
vortex lattice limit. However, this transition will in general be
to another nucleated phase and only when the dimerization
is sufficiently strong is the underlying non-Abelian phase
recovered. As Fig. 11 shows, this series of transitions is fully
captured by the effective Majorana model.

To systematically study how much vortex lattice dimeriza-
tion the nucleated phases tolerate, we have studied a wide
range of vortex lattices with spacings 1 ! D ! 10 (some of
the data can be found in Appendix B). We find that the critical
dimerization δc oscillates with D such that those lattices
whose spacing coincides with oscillations minima/maxima
(nodes) are in general more stable (unstable). The critical
deformations we find are bounded from above, such that a
dimerization by δ # λ/8, where λ is the wavelength of the
interaction oscillations (4), will always destroy the nucleated
phase. The proportionality of the critical deformation δc to
the interaction wavelength can be understood in terms of the
effective Majorana model. As we show in Appendix A by
analytically solving the staggered nearest neighbor Majorana
model, dimerization larger than δc = λ/4 will always result in
some of the Majorana tunneling amplitudes changing signs.
This corresponds to a change of the flux sector of the effective
model, which we find to be associated with a phase transition.
The smaller upper bound observed in the honeycomb model
suggests that microscopics not accounted for by the Majorana
model, such as the neglected longer range interactions, make
the nucleated phases more unstable with respect to vortex
lattice dimerization.

The dimerization required to drive the system back to the
non-Abelian phase does not exhibit such systematic behavior,
but the data presented in Appendix B suggests that this occurs
in general for dimerizations δ # D/2. The effective model can
again be used to understand why such strong dimerization is
required. In Appendix A we find that the staggered Majorana
model can be driven into a νM = 0 phase in two distinct ways.
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FIG. 11. (Color online) Dimerized D = 3 vortex lattice and the effective description by the staggered Majorana model. (a) The staggered
tunneling amplitudes (9). t
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w does not change with δ and takes always the δ = 0 value. When these are input to (6), we find agreement in
the observed and predicted (b) energy gaps )V and )M , (c) the band energies EV and EM , and (d) Chern numbers ν and νM − 1, respectively.
The data is for K = 0.1, while the couplings |Jij | ! 1 are suitably locally staggered for each δ to simulate the dimerization.

Either the effective couplings are sign staggered such that
one obtains a stripey flux sector with ±π/2 flux alternating
on adjacent triangular plaquettes, or one remains in the same
flux sector, but one of the tunneling amplitudes becomes at
least twice as large compared to the other amplitudes. These
correspond to different phases of the effective model, with the
spectrum of the latter exhibiting localization and degeneracy
as the dominant coupling increases. This motivates us to
interpret the intermediate ν = −1 phase in Fig. 11 to arise
due to the first mechanism (the magnitude of the tunneling
amplitudes is roughly the same). On the other hand, the
underlying non-Abelian phase in the δ → D limit is recovered
due to the second mechanism as t zb amplitude becomes much
larger than the others. The Majoranas are paired into localized
complex fermion modes bound to dimerized vortex pairs and
the collective state of the vortex lattice is suppressed.

1. Possible Peierls instability due to Majorana tunneling

We found above that nucleated phases are in general stable
with respect to a dimerization that is small compared to the
wavelength of the interaction oscillations. In general, vortex
lattice dimerization could be externally induced by subjecting
the system to a periodic (impurity) potential, but it could
also occur spontaneously in a clean system if the system
energetically favors the pairing of vortices over forming a
uniform triangular lattice.

We investigate the existence of such Peierls-like instability
by studying the ground state energy when the vortex lattice
is dimerized. The band structure of the nucleated phases, as
illustrated in Fig. 3, allows the ground state energy to be
decomposed as E = EV + ENA, where ENA and EV are the
energies corresponding to the high-energy non-Abelian band
(−

NA and the low-energy vortex band (−
V , respectively. The

first describes the model specific microscopic contribution to
the ground state energy, whereas the latter is the universal
contribution due to the collective state of the Majorana modes
[Fig. 11(c) shows that the ground state energy EM of our
effective Majorana model provides an accurate approximation
of EV ]. We plot the band energies in Fig. 12 and observe
that both exhibit periodic behavior, although of very different
type. The minima of ENA have the periodicity of the plaquette
spacing and occur always when the vortices are pinned
on the plaquettes. It is also essentially independent of the
dimerization, which suggests it should be interpreted as a
periodic microscopic dependent vortex potential [8]. The
minima of EV , on the other hand, have the periodicity of
λ/2 and coincide with minima/maxima of the interaction
oscillations. Moreover, EV decreases as δ → D, which is
consistent with the vortex-free state being the lowest-energy
state over all vortex sectors.

The distinct behavior of the band energies suggests a
competition of two distinct types of dynamics trying to
minimize the energy of the many-vortex system. A vortex
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FIG. 12. (Color online) Band energies EV and ENA per plaquette
as a function of the deformation δ for D = 2 and 3 vortex lattices.
Top: The total ground state energy E = ENA + EV with respect to the
vortex-free sector ground state energy E0. While the energy minimum
is reached always when the vortices are fused (δ → D), moving
vortices between plaquettes is penalized by a potential with a period
of a plaquette spacing. Middle: This potential is encoded in ENA and
it is independent of the interplay between the vortices. Bottom: EV

encodes the instability due to Majorana tunneling. For the D = 3
lattice the energy is at a local minimum for δ = 0 implying that the
uniform lattice is stable. On the other hand, for the D = 2 lattice the
energy is at a local maximum, which means that from the point of
view of pure Majorana tunneling, the system energetically prefers to
dimerize. The data is for K = 0.1.

pinning background potential, as described by ENA, favors the
vortices to be pinned on plaquettes. On the other hand, the
energetics of Majorana tunneling, as described by EV = EM ,
favor the vortices to be within distance nλ/2 (n = 1,2, . . .) of
each other. Figure 12 shows that unless the vortices are next to
each other, the vortex pinning potential is in general stronger
than the instability due to Majorana tunneling. This means that
even if the vortices were allowed to move freely, the vortex
lattice would be pinned to the uniform configuration by the
background potential.

The vortex pinning potential encoded in ENA is specific
only to the honeycomb model, while the instability due to
Majorana tunneling is universal to any system supporting
localized Majorana modes. In Moore-Read fractional quantum
Hall liquids or p-wave superconductors, such an instability
would compete with the electrostatic repulsion that favors
the formation of Wigner crystals or Abrikosov lattices,
respectively. Since the repulsion decays polynomially, whereas
the attractive tunneling decays exponentially with vortex
separation, one expects that unless the system is at a very
high vortex density (D ≈ ξ ), uniform vortex lattices in general
minimize the ground state energy. One should note though
that even if the instability did occur, it would not necessarily
prevent nucleation necessarily from occurring. Assuming that
the system would relax into a configuration minimizing EV ,
such a process would result in a maximum dimerization of δ !
λ/4. As this is the upper bound for critical dimerization, some
of the stabler nucleated phases would be expected to survive.

C. Random local disorder

Finally, we turn to the effect of random spatial disorder
on the vortex lattices. In real materials there always exists
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FIG. 13. (Color online) Disorder averaged energy gap ⟨)0⟩ of
the non-Abelian phase, the participation ratio of the lowest lying
state ⟨PR1⟩, and the vortex density ⟨ρV ⟩ as functions of the disorder
strength δJ . The maximum of ⟨PR1⟩ around δJ ≈ 1.1 at low vortex
density implies the emergence of localized states bound to vortex
pairs. As disorder is further increased, vortex density increases
implying an emergence of a random vortex lattice. The low-energy
states re-delocalize as the bound Majorana modes can now tunnel
across the whole system. The data is for K = 0.1, averaged over 200
disorder realizations and calculated using a finite system of L × L

plaquettes (L = 40, 3.2 × 103 sites, and L/ξ ≈ 30 in the clean limit).

impurities that pin some of the anyonic quasiparticles. In the
presence of an anyon lattice such impurities will lead to local
random deformations away from a spatially uniform lattice. In
the effective Majorana model (6) this translates to the tunneling
amplitudes t lij becoming local random variables. This problem
has been studied in Refs. [21,45], where it is predicted that
when the disorder is sufficiently strong to cause sign flips in
the effective tunneling amplitudes, the system is driven to a
thermal metal state. In this section we study the microscopics
of this transition in the context of the honeycomb model.

We model the random vortex lattice disorder as local
random disorder in the couplings Jα , that we parametrize by
δJ . More precisely, by magnitude δJ disorder we mean that
the couplings can vary locally as

Jij → (1 + δ), −δJ ! δ ! δJ, (10)

where δ is the deviation from the mean ⟨Jij ⟩ = 1 selected
randomly from a uniform distribution −δJ ! δ ! δJ . We
identify two distinct regimes of the disorder. For δJ < 1 the
disorder causes deformations of the vortex lattice that do not
change the vortex number and thus preserve the triangular
lattice, whereas for δJ > 1 the disorder is strong enough to
start effectively moving vortices between plaquettes and/or
creating/annihilating them in pairwise fashion.

1. Disorder in the vortex-free sector

Before proceeding to study the vortex lattices, we first
consider local random disorder in the non-Abelian phase in
the absence of a vortex lattice. Agreeing with previous studies
[46,47] on weak disorder (δJ < 1), Fig. 13 shows that the
disorder averaged energy gap ⟨)0⟩ decreases monotonously
with increasing disorder strength δJ . When disorder becomes
sufficiently strong, the system is driven gapless around
δJ ≈ 1.2. By looking at the participation ratio for the nth
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mode ψn,

PRn =
∫

d2r|ψn|4, (11)

we find that the lowest lying states localize in the vicinity
of the transition to the gapless regime, but re-delocalize as
disorder is further increased. We can understand this transition
in terms of vortices which are created for δJ > 1, as shown
in Fig. 13. Around δJ ≈ 1.1 only a few isolated vortex pairs
are present, and the Majoranas hybridize pairwise resulting in
localized states bound to the pairs. When disorder is further
increased, the vortices are forced into proximity of each other
and a random vortex lattice is created. The Majoranas can now
tunnel all across the system and the localized states delocalize
again.

In terms of the effective model (6) the random vortex
lattice translates into random Majorana tunneling couplings.
When the disorder is strong enough, the signs of the tunneling
amplitudes become sufficiently random and the resulting
gapless state is predicted to be a thermal metal [21]. This
state is characterized by a logarithmically diverging density of
states, which at low energies (at the order of the mean level
spacing) exhibits characteristic oscillations. Indeed, Fig. 14(a)
shows that for disorder of strength δJ = 1.5 the density of
states diverges and displays oscillatory behavior at the energy
scale of the mean level spacing. In the presence of pure sign
disorder, the precise form of these oscillations is known [48]
to be

ρ(E) = α + sin(2παEL2)/(2παEL2), (12)

where α is a nonuniversal constant and L2 is the system size.
Figure 14(b) shows that when the signs of Jij are completely
randomized (while keeping their amplitudes fixed to |Jij | = 1),
the oscillations become clearly visible over several periods.
The logarithmic divergence is also confirmed by studying the
scaling E1 ∼ 1

Lγ of the lowest lying states in the gapless region.
Considering systems of linear size 10 < L < 100, we find
γ = 2.6 and 2.2 for the δJ = 1.5 amplitude and pure sign
disorders, respectively. Scaling faster than with the system size
(γ > 2) implies at least logarithmic divergence of the density
of states [45].

We note that our method of averaging over increasing
disorder is qualitatively similar to averaging over thermal
fluctuations, which has been used to study the p-wave
superconductor in a finite temperature [49]. There increasing
temperature also leads first to confined vortex pairs, which after
some critical temperature deconfine to create a random vortex
lattice that gives rise to the same thermal metal state. Thus
had we sampled the couplings Jij from a thermal distribution
instead of a uniform distribution, we expect to have discovered
a different critical temperature, but otherwise similar results.

2. Disordered vortex lattices

When a vortex lattice is already present, we expect the
thermal metal to emerge for some δJc < 1 that coincides with
the interactions between the already present vortices becoming
sufficiently disordered. We will show below that this is indeed
the case by explicitly studying how the local random disorder
modifies the vortex-vortex interactions.
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FIG. 14. Low-energy density of states ρ(E) in the presence of
(a) δJ = 1.5 amplitude disorder and (b) pure sign disorder (|Jij | =
1 for all links, but the signs are completely random). Both show
the random matrix theory predicted oscillation at the mean level
spacings ⟨Ei+1 − Ei⟩ = 3 × 10−4 and 1.3 × 10−3, respectively. The
amplitude disorder dampens the oscillations in (a), whereas for pure
sign disorder they are clearly visible for several periods. The data
is for K = 0.05, averaged over 104 disorder samples and calculated
using a finite system of L × L plaquettes (L = 60, 7.2 × 103 sites,
and L/ξ ≈ 22 in the clean limit).

Figure 15 shows that in the presence of random local dis-
order the energy splitting ϵd acquires fluctuations. Averaging
over many disorder realizations, we find two general ways
the interactions are modified. The mean value ⟨ϵd⟩ decreases
monotonously with increasing disorder, while the fluctuations
around the mean, Fd = ⟨⟨ϵd⟩ − ϵd⟩, increase with it. The mean
value remains finite all the way up to δJ ≈ 1.2, where we found
disorder averaged gap ⟨)0⟩ of the non-Abelian phase to close.
Thus while the interactions are strongly influenced by disorder,
they remain well-defined throughout the non-Abelian phase.
Moreover, the wavelength of the oscillating interaction energy
is relatively unaffected by the disorder. This insensitivity
derives from the disordered Jij couplings randomly shifting
the two Fermi points [37]. As the interaction oscillation
wavelength in Eq. (5) depends only on their difference, this
effect cancels out.

The effect of local random disorder on the nucleated phases
themselves is shown in Fig. 16. As expected we find all of
them being driven gapless (the disorder averaged gap ⟨)V ⟩
closes) for some critical disorder δJc < 1 that depends on
the vortex lattice spacing D. In general, those nucleated
phases whose spacing coincides with the oscillation nodes
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FIG. 15. (Color online) Effect of coupling disorder on the vortex-vortex interactions. (a) The spectrum as the function of vortex separation d

in the presence of disorder of magnitude δJ = 0 (black), 0.2 (red), and 0.5 (green). (b) The mean energy splitting ⟨ϵd⟩ decreases monotonously
with increasing disorder, but remains finite until the closure of the disorder averaged gap ⟨)0⟩. (c) This contrasts with the mean relative
fluctuation, ⟨Fd⟩/⟨ϵd⟩ = ⟨⟨ϵd⟩ − ϵd⟩/⟨ϵd⟩, that increases with increasing disorder. The rate depends on the proximity to the oscillation nodes
with those nearby to them increasing faster. The data is for K = 0.05, averaged over 103 disorder samples and calculated using a finite system
of L × L plaquettes (L = 40, 3.2 × 103 sites, and L/ξ ≈ 15 in the clean limit).

have smaller gaps and are driven gapless for weaker disorder,
while the phase whose spacing coincides with the oscillations
minima/maxima are more stable. When the effective Majorana
tunneling amplitudes t lij are picked from the distribution
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FIG. 16. (Color online) Disorder averaged energy gaps ⟨)V ⟩ for
some of the nucleated phases as functions of δJ . For all cases the
nucleated gaps decrease monotonously and close at some critical
value δJ c < 1, i.e., for smaller disorder than what is required to drive
the non-Abelian phase gapless. The data is for K = 0.05, averaged
over 200 disorder samples and calculated using a finite system of
L × L plaquettes (L = 40, 3.2 × 103 sites, and L/ξ ≈ 15 in the clean
limit).

ϵlD(δJ ), the transition to the thermal metal phase is predicted to
correlate with the onset of finite probability p for the tunneling
amplitudes to have random signs [21]. This is verified in
Fig. 17(a), which shows how the closure of ⟨)V ⟩ coincides
with a finite sign flip probability of p ≈ 0.1. Data for other
vortex lattices confirming this correlation can be found in
Appendix B.

Finally, to verify that the gapless state in the presence of
a vortex lattice is indeed the thermal metal state, we plot in
Fig. 17(b) the disorder averaged low-energy density of states
⟨ρ(E)⟩ for the D = 1 vortex lattice in the presence of disorder
of magnitude δJ = 0.8. This disorder strength is sufficient to
drive the nucleated phase gapless, but not strong enough to
destroy the underlying non-Abelian phase. Like in the case
of the sufficiently disordered non-Abelian phase, we find the
characteristic logarithmic divergence and the characteristic
oscillations (12), which again confirm that the gapless state
in the presence of a disordered vortex lattice is indeed the
thermal metal.

VI. CONCLUSIONS

We have studied the stability of nucleated topological
phases [13] in the context of Kitaev’s honeycomb model
[19] under three different kinds of perturbations: anisotropic
interactions due to spatially anisotropic vortices, dimerization
of the underlying vortex lattice, and local random disorder.
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FIG. 17. (Color online) (a) Gap closures of the nucleated phases always correlate with the disorder being strong enough to give rise to a
finite probability p # 0.1 for the interactions to flip signs. (b) The low-energy density of states in the presence of strength δJ = 0.8 disorder.
The oscillations and the logarithmic divergence agree with the prediction of the random matrix theory [48] (RMT) with the first bump occurring
at the mean level spacing of ⟨Ei+1 − Ei⟩ ≈ 8 × 10−4. The data is for D = 1 vortex lattice with K = 0.05, averaged over 2 × 104 disorder
samples and calculated using a finite system of L × L plaquettes (L = 60, 7.2 × 103 sites, and L/ξ ≈ 22 in the clean limit).

While the system remains stable with respect to moderate
perturbations of every type, something one expects for a
gapped topological phase, for strong perturbations very differ-
ent physics is obtained. Spatial anisotropy is found to stabilize
the strong pairing phases and to explain how the phase diagram
of the honeycomb model is modified in the presence of vortex
lattices. Dimerization of the vortex lattice, on the other hand,
was found to be able to recover the underlying non-Abelian
phase. The maximal dimerization tolerated by the nucleated
phases was found to be directly proportional to the wavelength
of the interaction oscillations. Finally, we showed that local
random disorder drives all the nucleated phases into a thermal
metal state. The transition to this phase could be traced back to
the predicted microscopic onset of sign disorder in Majorana
tunneling amplitudes [21]. Our main result is to show that all
these distinct behaviors could be accurately described by an
effective Majorana tight-binding model.

The upshot of our results is that nucleated phases are
predicted to be stable with respect to various perturbations
and that the simple picture provided by the effective Majorana
tight-binding model applies also in the presence of disorder.
However, one should keep in mind that the degree of stability
is given only with respect to the interaction induced gap which
decays exponentially with the vortex lattice spacing. Thus, in
the light of potential experiments, high vortex densities (of
the order where the vortex lattice spacing is within a few
coherence lengths) are likely to be required for the nucleated
phases to survive disorder. As the energy gaps of nucleated
phases are always smaller than those protecting the parent
non-Abelian phases, something that is already challenging for
current technology, observing nucleated phases will require
delicate control over the experiments. Thus while putative p-
wave superconductors or Moore-Read fractional quantum Hall
states seem natural places to look for them (an experimental
observation of an Abelian quasiparticle Wigner crystal has
been recently reported [17]), a more promising route might
be optical lattice realizations [50–52]. Particularly promising
could be optical lattice experiments on fractional quantum Hall
states [27] that, due to their inherently clean nature and con-
trollability [28], are attractive for overcoming the challenges

faced by the realization nucleated topological phases. Another
potential route could be topological nanowires, where the
experimental evidence for Majorana fermions is augmenting
[53–55]. A regular two dimensional array of such wires would
behave much like a vortex lattice and could support collective
nucleated states of Majoranas [26]. This possibility is also
relevant to using them as topological quantum computers
[2]—nucleation would constitute the ultimate failure of the
computer since undergoing a phase transition would wipe out
any encoded information. Our results on staggering protecting
the non-Abelian phase provides a way to avoid such a scenario.

Taking the positive view that Majorana lattices could
be realized in experiments, one can speculate whether the
potential dimerizing instability due to the oscillations [6–9] in
the Majorana tunneling amplitudes is observable. To observe
it one needs a system where the quasiparticles can freely relax
into a minimum energy configuration and where the energy
scale of the system specific microscopics is weaker than the
Majorana tunneling. Potential candidates could be Abrikosov
lattices or Wigner crystals near the phase boundaries where
the coherence length diverges. In this regime the vortex lattice
spacing can become of the order of coherence length, which
enables in principle the instability to become comparable or
stronger to the Coulomb repulsion that favors uniform lattices.
Our results on the emergence of the thermal metal state in the
honeycomb model might also be relevant to a certain class of
iridates that may realize the Kitaev-Heisenberg model [56,57].
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APPENDIX A: ANALYTIC SOLUTION FOR THE
STAGGERED MAJORANA MODEL

In this Appendix we first analytically solve the staggered
Majorana model with only nearest neighbor interactions. Then
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we employ the solution to study the phase diagram due to
different types of staggered tunneling amplitudes.

In the presence of only nearest neighbor tunneling, i.e.,
setting tα√

3
= 0 in Eq. (6), the unit cell consists of two sites,

which we label black (b) and white (w). Allowing for arbitrary
staggering, the corresponding effective Majorana model has
six independent tunneling couplings. The Hamiltonian for this
model in the .1 = π/2 flux sector [20] can be written as

H = i

2

∑

i

[(
t zbbiwi+y−x − t

y
b bibi+y − txb biwi

)

+
(
t zwwibi+y + tywwiwi+y + txwwibi+x

)
+ H.c.

]
, (A1)

where bi and wi denote the Majorana fermion operators on
the black and white sites, respectively, and tαb/w are the nearest
neighbor tunneling amplitudes in the directions illustrated in
Fig. 6.

Fourier transforming with respect to the two site magnetic
unit cell, we obtain H =

∫
BZ d2pψ

†
pHpψp with the Bloch

Hamiltonian being given by

Hp =
(

gb
p ifp

−if ∗
p −gw

p

)

, (A2)

where

gα
p = 2tyα sin(py),

fp = t zbe
i(py−2px ) − txb − t zwe−ipy − txwe−2ipx .

The Hamiltonian is written in the Fourier transformed Majo-
rana basis ψ

†
p = (b†p,w

†
p) and the Brillouin zone (BZ) is halved

to px ∈ [0,π ] and py ∈ [−π,π ] to avoid double counting due
to ψ−p = ψ

†
p. The corresponding eigenvalues are given by

E±(p) = 1
4

((
gb

p − gw
p
)
±

√(
gb

p + gw
p
)2 + 4|fp|2

)
, (A3)

where

|fp|2 =
(
txb

)2 +
(
t zb

)2 +
(
txw

)2 +
(
t zw

)2

− 2t zb t
z
w cos(2py + 2px) + 2txb txw cos(2px)

+ 2
(
txwtzw − txb tzb

)
cos(2px − py)

+ 2
(
t zwtxb − txwtzb

)
cos(py).

The energy gap and the ground state energy are given by
)M = minp E+(p) and EM = 1

π2

∫
BZ d2p E−(p), respectively.

When all the couplings are equal, the solution reduces to the
analytic solution for the uniform tunneling problem [14].

1. Three distinct types of staggered tunneling

We study first separately the three distinct types of stagger-
ing that can occur due to the oscillations in the interactions.
To this end we set txb = txw = t

y
b = t

y
w = 1 for the time being

and study staggering only in z direction. The oscillations in
the interactions, as shown in Fig. 5, can lead to three distinct
types of staggering: (i) |t zb | can increase while |t zw| decreases,
or vice versa (the general case), (ii) both |t zb | and |t zw| can
decrease (special case when D coincides with the oscillation
minima/maxima), or (iii) |t zb | becomes much larger than the
other couplings (strong dimerization in the δ → D limit). The

0

0.5

1

∆ M
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E
M

0 1 2 3
−1
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1

δ t/t

ν M

(i)
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(iii)

FIG. 18. (Color online) Energy gap )M , the ground state energy
EM , and the Chern number νM for the three distinct staggerings (A4).
Both (i) and (iii) can drive the system into gapped phase characterized
by νM = 0, and thereby recover the undelrying non-Abelian phase,
whereas (ii) dimerization can only drive the system to a time-reversed
νM = 1 phase. The ground state energies show that the latter is
energetically penalized for small deformations.

tunneling couplings corresponding to these limiting cases are
given by

(i) t zb = 1 − δt, tzw = 1 + δt,

(ii) t zb = 1 − δt, tzw = 1 − δt, (A4)

(iii) t zb = 1 + δt, tzw = 1,

where δt > 0 is the magnitude of the staggering.
The effect of these three distinct types of staggering is

shown in Fig. 18. We find that both the generic staggering
(i) and the strong dimerization (iii) can drive the effective
model to a gapped phase characterized by νM = 0. This
explains why sufficiently strong periodic deformation always
recovers the underlying non-Abelian phase. Moreover, we find
the ground state energies decreasing monotonously in both
cases. This implies that, consistent with our findings in the
honeycomb model, the pure Majorana tunneling energetically
favors vortex pair dimerization. However, we should note
that, while both types of staggering lead to a νM = 0 phase,
these phases are distinct. The transition in the generic case (i)
occurs when t zw changes sign, which means that the flux sector
effectively changes from the uniform to the stripey one. In
this phase there is no net magnetic flux as the flux alternates
between time-reversed π/2 and −π/2 stripes in a columnwise
fashion. On the other hand, in the latter case the νM = 0 phase
emerges for uniform flux when the amplitude t zb becomes much
larger than the other couplings. In this case the Majoranas
become strongly dimerized, which leads to an increasingly
localized and degenerate spectrum with increasing δt . The
intermediate non-Abelian ν = −1 phases observed in the
honeycomb model (see supplementary data in Appendix B)
thus correspond to stripey flux pattern in the effective Majorana
model. On the other hand, the non-Abelian phases connected
to the vortex-free limit correspond to the strongly dimerized
scenario, where the pairing of the Majoranas suppresses the
collective vortex lattice state.

The behavior of the Majorana model for the fine-tuned
staggering (ii) is different. We find that it can drive the system
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to a time-reversed νM = 1 phase, which results from inverting
all the fluxes in the effective model. However, more important
is to notice that this staggering, which should only occur
when the vortex lattice spacing D coincides roughly with
the oscillation minima/maxima, is energetically penalized for
moderate values of δt . As we show in the next section, this is
in agreement with our result that such vortex lattices should
be stable with respect to any dimerizing instability arising due
to the Majorana tunneling.

2. Dimerization of spherically symmetric vortices in continuum

Having independently studied the limiting types of stag-
gering and the transitions they can drive, we return to the
more realistic case where several types of staggerings are
simultaneously present. To study the general behavior of the
Majorana model, we consider a simplified continuum model
with full rotational symmetry (as opposed to only C3 symmetry
of the honeycomb lattice). This means that we assume that the
interaction energy for all separations l is given by

ϵ̂(l) = cos
(

2π l

λ

)
e− l

ξ , (A5)

where the wavelength λ and the coherence length ξ are
now free parameters. The corresponding staggered Majorana
tunneling amplitudes can be identified as

txb = ϵ̂(δ′), txw = ϵ̂(δ′′),

t
y
b = ϵ̂(D), tyw = ϵ̂(D), (A6)

t zb = ϵ̂(D − δ), tzw = ϵ̂(D + δ),

where

δ′ =
√

(
√

3D/2)2 + (D/2 + δ)2,

δ′′ =
√

D2 + (D − δ)2 − D(D − δ).

This contrasts with the staggered couplings (9) related to the
full honeycomb model for which one had to study separately
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FIG. 19. (Color online) Critical deformations δM
c that drive the

idealized Majorana model with couplings (A6) out of the topological
phase in the uniform coupling limit, as the functions of the vortex
lattice spacing D. The system is always driven out of the nucleated
phase when the upper bound of δ ≈ λ/4 is breached. The stability
varies with D with the most stable phases occurring when D ≈ nλ/2
(n = 1,2, . . .). The plots are all for ξ = 2.
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FIG. 20. (Color online) Ground state energies EM of the Majo-
rana model with couplings (A6) for various vortex lattice spacings
D. The spacings D = 3,6, . . . coincide with the oscillation min-
ima/maxima and thus their corresponding ground state energies EM

are in a local minimum. For the other vortex lattice spacings the
ground state energies are near a local maximum, which implies that
these lattices could exhibit a dimerizing instability. The plots are for
λ = 6 and ξ = 2.

the interaction energy ϵd for each relative pairwise vortex
configuration.

Like the full honeycomb model, also the idealized dimer-
ized Majorana model exhibits numerous intermediate phases
between the nucleated phase in the uniform lattice limit and
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FIG. 21. Top: In the presence of a vortex superlattice, the non-
Abelian phase (ν = −1) is always replaced by one or more Abelian
phases (even Chern numbers ν) and the strong-pairing TC phases
are enlarged. Bottom: The energy gaps )V and the Chern numbers ν

along the cut 1
2 ! J ! 1 (we parametrize here J = Jx = Jy and set

Jz = 1) shown above in the presence of a vortex lattice of spacing D.
The data is for K = 0.1.
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3,2 and
four vortex lattices. The data is for K = 0.1.

the non-Abelian phase in the vortex-free limit. We plot in
Fig. 19 the critical deformations δM

c required to drive the
idealized effective model out of the uniform lattice limit
nucleated phases for several interaction wavelengths. For each
λ we find that the most stable vortex lattices can tolerate
deformations of up to δ ! λ/4, with the most stable phases
occurring periodically when D ≈ nλ/2 (n = 1,2, . . .). This is
in agreement with our findings in the honeycomb model. The
only difference is that in the honeycomb model the upper
bound for stability was lower (δc ! λ/8), which suggests
that longer range tunneling and/or reduction of the rotational
symmetry due to the lattice destabilizes the nucleated phases
with respect to dimerization.

We also verify the existence of the possible dimerizing
Peierls-like instability using the spherically symmetric vor-
tices. Like the full honeycomb model, Fig. 20 shows that also
the ground state energies EM for various vortex lattice spacings
D exhibit periodicity with the minima occurring for D ≈
nλ/2. For other spacings the system could continuously lower
its energy through dimerization. A maximum dimerization
of δ = λ/4 could occur for the most unstable cases of D =
(2n − 1)λ/4.

However, dimerization is not the only instability of uniform
configurations given that the vortices can freely relax into
a minimal energy configuration. Instead of dimerizing, the
whole lattice may uniformly shrink/expand such that every
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vortex position coincides with the interaction oscillations min-
ima/maxima. While simulating this is hard in the honeycomb
model, this can be easily studied using the idealized model
with couplings (A6). Studying the ground state energy under
such a process, we again find periodic oscillations that are
qualitatively similar to dimerization. However, the global

expansion/contraction will in general give a lower-energy
configuration than the dimerized one. This can be understood
as the system minimizing the energy in all three directions, in
contrast to dimerization minimizing it only in one direction.
Thus given that the vortex lattice could freely relax into a
minimal energy configuration and that no other dynamics were
relevant, a global expansion/contraction would be favored over
dimerization. Due to the exponential decay of the Majorana
tunneling amplitude, the system specific microscopics, such as
a Coulomb repulsion in superconductors or fractional quantum
Hall liquids, are rarely negligible though. Our study of the
effective Majorana model shows that dimerizing or global
expansion/contraction instabilities may occur in systems with
Majorana lattices. Whether they do occur in a given system is
subject to the system specific microscopics.

APPENDIX B: SUPPLEMENTARY DATA FOR THE
PERTURBED NUCLEATED PHASES

In this Appendix we present supplementary data for the
perturbed vortex lattices.

1. Anisotropic interactions

Figure 21 shows data for vortex lattices with spacings
1 ! D ! 6, which all show how the non-Abelian phase
characterized by ν = −1 is always replaced in the presence
of vortex lattices by one or more nucleated Abelian phases
characterized by even Chern numbers. In the absence of a
vortex lattice the transition between the weak-pairing-like
non-Abelian phase and the strong-pairing-like Abelian phase

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

δ J

p

D=1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

δ J

p
〈 ∆

V
〉

D=31/2

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

δ J

D=2

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

δ J

p

D=3

〈 ∆
V

〉p
〈 ∆

V
〉

〈 ∆
V

〉

FIG. 24. (Color online) Correlation between the onset of finite tunneling sign flip probability p and the closure of the disorder averaged
gap ⟨)V ⟩ in the presence of various vortex lattices of spacing D. The data is for K = 0.05, averaged over 200 disorder samples and calculated
using a finite system of L × L plaquettes (L = 40, 3.2 × 103 sites, and L/ξ ≈ 15 in the clean limit).
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(TC) occurs for J = 1/2, while in the presence of one the
transition between the nucleated phase and the TC phase
occurs always for some D dependent Jc > 1/2.

Figure 22 shows the prediction by the effective Majorana
model for the D =

√
3, 2, and 4 vortex lattices. While the

Chern numbers are correctly predicted in all cases, the predic-
tion for the nucleated gap and the precise location of the phase
transition becomes more accurate for sparser vortex lattices
and for the J → 1 regime. The reason is the same for both
cases. The coherence length of the underlying non-Abelian
phase increases, as the energy gap decreases, as one approaches
the phase transition (J → 1/2). For both tightly packed vortex
lattices, as well as for regimes near the phase transition, the
vortex lattice spacing becomes comparable or smaller than
the coherence length ξ of the underlying non-Abelian phase.
In this regime individual vortices become ill-defined and the
simple description by our Majorana model breaks down.

2. Dimerized vortex lattices

Figure 23 shows data for various dimerized vortex lat-
tices. In each case the system is driven out of the nu-
cleated phase for some D dependent critical dimerization
δc. There will in general be some intermediate nucleated
phases before the underlying non-Abelian phase is recovered
around δ # D/2.

3. Random local disorder

Figure 24 shows data on the correlation between the onset of
finite tij sign flip probability p and the collapse of the disorder
averaged nucleated gap ⟨)V ⟩. As the disorder strength δJ is
increased, a finite probability for the tunneling amplitudes to
flip signs always develops before the disorder averaged energy
gap closes.
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