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Majorana corner modes in a second-order Kitaev spin liquid
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Higher-order topological insulators are distinguished by the existence of topologically protected modes with
codimension two or higher. Here, we report the manifestation of a second-order topological insulator in a two
dimensional frustrated quantum magnet, which exhibits topological corner modes. Our exactly solvable model is
a generalization of the Kitaev honeycomb model to the Shastry-Sutherland lattice that, besides a chiral spin liquid
phase, exhibits a gapped spin liquid with Majorana corner modes, which are protected by two mirror symmetries.
This second-order Kitaev spin liquid remains stable in the presence of thermal fluctuations and undergoes a
finite-temperature phase transition evidenced in large-scale quantum Monte Carlo simulations.
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I. INTRODUCTION

The study of topological band theory for noninteracting
electron systems has led to the advent of a plethora of
topological insulators (TIs) [1–5]. A central feature of these
systems is the existence of gapless boundary modes, which are
protected by the topology of the bulk bands, i.e., they cannot
be gapped out by any deformation of the Hamiltonian which
keeps the bulk gap open and preserves certain symmetries.
These systems are termed “topological” because their low
energy behavior is governed by a topological action, which
is independent of microscopic details of the system such as
the underlying lattice structure. However, this is strictly true
only for strong TIs, which are protected by time reversal and/or
charge conjugation symmetries. In recent years, a class of more
“fragile” variants of these phases, termed crystalline TIs, has
been explored. For these systems, the boundary modes are
protected only under Hamiltonian deformations that preserve
certain lattice symmetries [6], and exist only on boundaries that
are themselves invariant under these symmetries. Importantly,
for these more fragile systems the crystal structure remains
important even for the low-energy physics.

Recently, the family of crystalline TIs has been expanded
by what are best called higher-order topological insulators
[7–9]. In this paradigm, an nth-order TI is a d-dimensional
insulator that exhibits topologically protected gapless modes
only in d − n spatial dimensions localized at the intersection of
n boundary planes, while the boundaries of codimension less
than n remain gapped. For instance, a second-order TI (SOTI)
in two spatial dimensions is an insulator whose edge state
itself is a one-dimensional TI, with zero modes localized only
at the corners of the system. Various crystalline symmetries
have been invoked for the protection of the zero modes,
including order-two lattice symmetries [7,8,10,11] (such as
mirror reflection, twofold rotation, or inversion symmetry)
or higher-order lattice symmetries such as threefold [12,13],
fourfold [9,14,15], and sixfold [16] rotation symmetries.
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Inspired by this theoretical work, experimental realizations
of higher-order TIs have been observed as phononic TI in
a cleverly designed mechanical metamaterial [17] and as
quantized quadrupolar TIs in electrical [18] and microwave
[19] circuits, along with the recent discovery that elemental
bismuth is in fact a second-order TI [13].

In this article, we introduce an exactly solvable microscopic
spin model of a frustrated quantum magnet, which exhibits
an analog of the SOTI in a strongly interacting system.
More precisely, our model exhibits spin liquid physics at low
temperatures, with a fractionalization of its local degrees of
freedom into itinerant Majorana fermions and a staticZ2 gauge
field. The band structure of the Majorana fermions reveals a
phase diagram with not only a conventional Chern insulator,
but also a SOTI with topologically protected corner modes.
The former corresponds to the formation of a chiral spin
liquid ground state, while the latter is the first instance of
a second-order spin liquid [20]. Both spin liquids describe
states with spontaneously broken time-reversal (TR) symme-
try, which are separated from the high-temperature paramagnet
by a finite-temperature phase transition. We track this thermal
phase transition and the prior spin fractionalization in various
thermodynamic observables calculated via sign problem-free
quantum Monte Carlo (QMC) simulations of our spin model.

The rest of this article is organized as follows. In Sec. II, we
introduce our generalization of the Kitaev honeycomb model to
the Shastry-Sutherland lattice and present its exact solution. In
Sec. III, we derive the ground state phase diagram and identify
various phases. The finite temperature results from QMC are
discussed in Sec. IV, and we conclude in Sec. V. Explicit details
of the computations have been relegated to the Appendixes.

II. MICROSCOPIC MODEL

We consider a higher-spin realization of the Kitaev honey-
comb model [21] to the Shastry-Sutherland lattice [22] illus-
trated in Fig. 1. This lattice is best known for the orthogonal-
dimer model, which has been solved exactly by Shastry and
Sutherland [22] and is a remarkably good description for
the low-temperature physics of the transition metal oxide

2469-9950/2018/98(5)/054432(9) 054432-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.054432&domain=pdf&date_stamp=2018-08-30
https://doi.org/10.1103/PhysRevB.98.054432


DWIVEDI, HICKEY, ESCHMANN, AND TREBST PHYSICAL REVIEW B 98, 054432 (2018)

FIG. 1. Higher-order Kitaev model on the Shastry-Sutherland lattice. (a) The Shastry-Sutherland lattice, with the spin x, y, z bonds for the
1D Kitaev chain depicted by solid blue, green, and red lines, respectively, while the orbital x, y bonds are depicted by dashed blue and green
lines, respectively. The dark and light gray shading denotes the two kinds of plaquettes with couplings J0 + δJ and J0 − δJ , respectively. The
dotted gray lines denote the two mirror axes. (b) The phase diagram as a function of average couplings and staggerings on the rhombi. Here,
Jc = 1

2
√

2
. (c) The zero energy wave functions |ψij |2 on a 16×16 lattice for the four corner modes in the SOSL phase and a single zero energy

wave function corresponding to the edge mode in the CSL phase.

SrCu2(BO3)2 [23]. As a five-coordinated lattice, it shares an
odd coordination number for every site with the tricoordinated
honeycomb lattice, which is a crucial ingredient [24] to
construct an exactly solvable Kitaev model. For the honeycomb
Kitaev model, the tricoordination of the sites matches perfectly
with the decomposition of the original spin-1/2 degrees of
freedom into three “bond Majorana fermions,” which are
recombined into Z2 gauge fields (assigned to the bonds), and
one itinerant Majorana fermion. By analogy, a five-coordinated
lattice asks for six Majorana fermions, which in principle span
a Hilbert space of eight states. However, keeping in mind that
the physical subspace of a Kitaev model needs a projection
to precisely half of this Hilbert space, we are looking for
constituent degrees of freedom that span a local Hilbert space
of only four states. This can be achieved by either considering a
j = 3/2 spin degree of freedom or, alternatively, two coupled
spin-1/2 degrees of freedom, such as spin and orbital degrees
of freedom. Using the latter, we first define our microscopic
model as

H =
∑
〈i,j〉

Jγ

(
τ z
i τ z

j

) ⊗ (
σ

γ

i σ
γ

j

) +
∑
(i,j )

J ′
δτ

δ
i τ δ

j ⊗ 1, (1)

where the Pauli matrices σ and τ denote the spin and orbital
degrees of freedom and 〈i, j 〉 and (i, j ) indicate couplings
along the solid/dashed bonds in Fig. 1(a), respectively. Five
different bond types that couple spin and orbital compo-
nents γ ∈ {x, y, z} and δ ∈ {x, y}, respectively, are defined
as marked in Fig. 1(a). We further allow a staggering of the
couplings on the two kinds of rhombi [shaded in dark and light
gray in Fig. 1(a)].

In order to solve this model exactly, we first recast it
into a Kitaev-like form by defining, for each site, the 4×4
anticommutating matrices,

�1 = τ x ⊗ 1, �2 = τ y ⊗ 1, �3 = τ z ⊗ σx,

�4 = τ z ⊗ σy, �5 = τ z ⊗ σ z, (2)

so that the Hamiltonian becomes [25,26]

HKitaev = −
∑

γ bonds

Jγ �
γ

j �
γ

k , (3)

where γ = 1, . . . , 5 labels the j−k bond. Following Kitaev’s
original solution [21], we represent the � matrices in terms
of the aforementioned six Majorana operators by setting
�

γ

j = ia
γ

j cj . The Majoranas associated with the bonds can
then be recombined into a Z2 gauge field ûjk ≡ ia

γ

j a
γ

k with
eigenvalues ujk = ±1. Like in the honeycomb Kitaev model,
this Z2 gauge field is static, since all ûjk commute with the
Hamiltonian. The relevant gauge-invariant quantities are the
Z2 fluxes through the elementary closed loops of the lattice
(0, π through 4-loops and ±π/2 for 3-loops, respectively).
The fluxes ±π/2 are related by TR, so that any choice of
ground state flux configuration breaks the TR symmetry of
the Hamiltonian. We next need to identify the precise ground-
state configuration of the Z2 fluxes. Since the lattice at hand
does not meet the requirements to apply Lieb’s theorem [27]
to immediately identify the ground-state configuration, we
instead resort to a numerical exact solution of this problem
via QMC simulations, described in more detail below. The net
result is that each loop of length 4 exhibits a π flux, while for
the triangular plaquettes (two of which add up to one 4-loop)
the flux is ±π/2 [28,29].

The resulting free Majorana Hamiltonian has a particle-hole
symmetry, which follows directly from the reality condition
for Majorana fermions. Since the TR symmetry is broken
spontaneously by the ground state, the system resides in
symmetry class D (instead of BDI for the honeycomb Kitaev
model). With the systematic classification of TIs [30,31] in
mind, symmetry class D allows for a Z invariant in two spatial
dimensions, i.e., the occurrence of Chern insulators, as well
as the possibility of a SOTI in the presence of a second-order
lattice symmetry [11]. Indeed, the Shastry-Sutherland lattice
possesses two mirror symmetries along the diagonals of the
rhombi [indicated by the dotted lines in Fig. 1(a)], which are
also symmetries of the Majorana Hamiltonian. In particular,
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the mirror operators M11 and M11̄ anticommute with the
Hamiltonian as well as with each other (see Appendix A for
explicit definitions).

III. GROUND-STATE PHASE DIAGRAM

We next discuss the ground-state phase diagram as a
function of the coupling strength J0 and the staggering δJ ,
with Jx = Jy = J0 + δJ and J ′

x = J ′
y = J0 − δJ . Following

a Fourier transformation of the four-band itinerant Majo-
rana Hamiltonian, we obtain a bulk band structure, which
is gapless along the lines Jz = ±2

√
2J0 [at k = (0, 0)] and

Jz = ±2
√

2δJ [at k = (π, π )], and gapped otherwise. The
four resulting gapped phases are indicated in the phase diagram
of Fig. 1(b). The phase diagram is reflection symmetric about
the lines J0 = ±δJ , since such a reflection is equivalent to a
Z2 gauge transformation.

By a direct computation, we find that the valence band car-
ries a (non-Abelian) Chern number +1 in two of these gapped
phases, indicated by red in the phase diagram. In terms of the
Majorana fermions, these are conventional Chern insulators,
while in the language of the original spin model, these phases
constitute chiral spin liquids (CSLs) [32]. Discussed previously
[25] in the context of the �-matrix model (3), these CSLs are
higher-spin analogs of the CSL first discovered in a decorated
honeycomb model by Yao and Kivelson [33]. While the Chern
number vanishes in the two remaining gapped phases, not both
of them are trivial. For sufficiently large staggering δJ (i.e.,
in the upper right corner of the phase diagram), we find a
SOTI phase, which, in the language of the original spin model,
can be termed a second-order spin liquid (SOSL). Computing
the spectrum for the real space Hamiltonian on a square with
open boundary conditions, we obtain four states near zero
energy (ε = 0), separated by a gap from the continuum. The
corresponding wave functions are exponentially localized at
the corners of the square, as shown in Fig. 1(c). We contrast
this with the CSL, where we get a topologically protected chiral
mode localized at the edge. We also observe that the SOSL does
not exhibit any zero modes on a system with periodic boundary
conditions along one or both directions.

The existence of corner modes is a hallmark of SOTIs.
These modes can be intuitively understood as a domain wall
between two 1D topological phases [10]. To wit, the system
exhibits modes localized on mirror symmetric edges [i.e, along
a diagonal in Fig. 1(a)], which disperse along the edge and
can be described by a 1 + 1D massless Dirac Hamiltonian.
For the (non-mirror-symmetric) edges depicted in Fig. 1(a),
these edge modes are gapped out by a mass term. However,
since the two edges meeting at a corner are related by a mirror
symmetry under which the mass term must be odd, the corner
is a mass domain wall in a Dirac Hamiltonian, which explains
the presence of the corner mode.

The topologically protected corner modes can also be
inferred from the bulk bands using the Wannier centers [8].
Explicitly, we compute the hybrid Wannier functions [34],
a basis of wave functions localized along x but delocalized
along y (or vice versa), and plot their centers rx (ky ) modulo
lattice translations [35], so that zero and 1 correspond to
the same Wannier centers. Since the mirror symmetries take
(x, y) → ±(y, x) and anticommute with Hamiltonian, the
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FIG. 2. Wannier bands for (a) the CSL (δJ = 0.2) and (b) the
SOSL (δJ = 0.5) phase with J0 = 0.8, Jz = 1. Since the Wannier
centers zero and 1 are equivalent, the plotted region is topologically
a two-torus. The CSL is characterized by a winding of the Wannier
bands along the torus, while the SOSL is characterized by gapped
Wannier bands along both x and y (not shown). (c) The transition
between the CSL and SOSL phases.

Wannier centers along y satisfy ry (k) = −rx (k) mod 1. In
Figs. 2(a) and 2(b), we plot the Wannier bands for the CSL
and the SOSL phase, which exhibit distinct topologies.

The Wannier bands can then be used to deduce the topo-
logical phase. For the CSL (CI), the Wannier band exhibits
a nontrivial winding around the torus, but no such winding
for the trivial and the SOSL (SOTI) phase. The latter can be
distinguished [8] by computing the Berry phase p associated
with a Wannier band (see Appendix C). The mirror symmetries
restrict this Berry phase to 0, π , which correspond to the
trivial and SOSL phase, respectively. For the plot in Fig. 2(b),
the Berry phase for both the Wannier bands along x and y

is computed to be π , thereby demonstrating a SOSL phase.
Finally, as we tune δJ through the CSL-SOSL transition, we
see a transition between these two scenarios, where a branch of
the winding Wannier band of the CSL detaches and reattaches
to a different branch to form the Wannier band structure of the
SOSL, as shown in Fig. 2(c).

IV. THERMODYNAMICS

To explore the thermal stability of the SOSL and the
finite-temperature transition associated with spontaneous TR
symmetry breaking, we have employed large-scale QMC
simulations of our spin model, which are sign problem free
in the Majorana basis [36]. Our results, summarized in Fig. 3,
indicate three relevant temperature scales, each one associated
with a peak in the specific heat and a corresponding drop
in the entropy per site. At the lowest temperature scale of
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FIG. 3. Thermodynamics of the SOSL. The upper panel shows
the specific heat, the middle panel the entropy per spin, and the
lower panel the Z2 flux per plaquette as a function of temperature for
J0 = 0.9, δJ = 0.4, and Jz = 1. The three characteristic temperature
scales for the low-temperature ordering transition (extrapolated to the
thermodynamic limit) and the two high-temperature crossovers are
indicated by the dashed vertical lines.

T ≈ 0.01Jz the system undergoes a phase transition, at which
the Z2 gauge field orders into its ground-state configuration
with a π/2 flux through all triangular plaquettes and a π flux
through all 4-loops; see Fig. 3(c). A finite-size scaling analysis
of the specific heat peak indeed reveals a divergence of the
peak and a finite transition temperature Tc = 0.012(1)Jz in the
thermodynamic limit (see Appendix D). Above this transition,
we observe two independent thermodynamic crossovers, indi-
cated by nondiverging peaks around T1 ≈ 0.25Jz and T2 ≈ 2Jz

in the specific heat; see the inset of Fig. 3(a). The higher
crossover can be associated with the release of entropy of
the Majorana fermions, whose energy scale is set by the
hopping strength Jz, while the lower crossover is associated
with a partial release of entropy of the Z2 gauge field due
to the staggering δJ . The appearance of this lower crossover
can be best understood by considering the limit δJ → J0, in
which the system decomposes into decoupled 1D chains (see
Appendix B), formed by the dark gray plaquettes connected by
the solid bonds in Fig. 1(a). At zero temperature, the individual
chains are gapped and exhibit a π flux per tetragonal plaquette
[37]. At finite temperature these fluxes, which constitute 1/4
of the total flux of the 2D system, order at the temperature T1,
while the remaining plaquettes remain disordered. This results
in a plateau in the Z2 flux per plaquette at −1/4, which clearly

evolves as one approaches the 1D limit (as illustrated in Fig. 6
in Appendix D) and is accompanied by a smooth nondiverging
peak in the specific heat (since this 1D physics does not give
rise to a true phase transition). When δJ �= J0 the remaining
3/4 of the plaquettes order at a much lower temperature scale,
giving rise to the actual phase transition at T ≈ 0.01Jz.

It is interesting to note that, for the purely 1D tetrago-
nal chain, the Z2 gauge field freezes into its ground state
configuration at a temperature scale of order O(J ). This is
in marked contrast to the Kitaev model in two and three
spatial dimensions where the same phenomenon occurs at
O(10−2J ) [36,38,39]. The significantly higher temperature
scale could have interesting experimental consequences for
quasi-1D magnetic materials which realize Kitaev interactions.

V. DISCUSSION

The search for an experimental realization of the second-
order Kitaev spin liquid and its clear thermodynamic signatures
of fractionalization at comparatively high temperature scales
could bring some diversity to the current hunt for Kitaev
materials [40]. A natural starting point is to first look for
realizations of the Shastry-Sutherland lattice in spin-orbit
dominated materials. One step in this direction has been taken
by exploring the 4f material DyB4 [41–44], for which the
spin-orbit coupling—enhanced by the relatively high atomic
number of Z = 66 for Dy (compared to Z = 44/77 for the
Ru-/Ir-based Kitaev materials)—holds promise to give rise
to the required bond-directional exchange interactions. Given
a suitable candidate material, the experimental detection of
the corner modes of a second-order Kitaev spin liquid still
poses a number of challenges. The density of states of the
emergent Majorana fermions cannot be directly probed by
scanning tunneling techniques, in contrast to conventional
electronic systems [45]. A more subtle experimental protocol
is thus called for, perhaps taking advantage of the emergent
quasiparticles’ ability to carry heat. Indeed, the challenges
mirror many of the problems of detecting emergent Majorana
fermions in conventional Kitaev spin liquids, due to their lack
of spin or charge quantum numbers.

The study at hand complements previous theoretical work
[46] on classifying topological band structures for gapless
Majorana metals in two- and three-dimensional Kitaev mod-
els. Depending on the crystalline symmetries, these systems
exhibit semimetals with Dirac [21] or Weyl points [47],
nodal lines [48,49], or topological metals with Majorana
Fermi surfaces [50]. Together with the present study this
underpins the notion that Kitaev spin liquids can realize all
known topological band structures in analytically tractable
microscopic spin models. As such we expect that one can also
construct Kitaev models that realize other higher-order spin
liquids, including a SOSL with gapless hinges in three spatial
dimensions, which we leave to future studies.
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APPENDIX A: LATTICE MODEL

The Shastry-Sutherland lattice can be constructed from a 2D
square lattice by adding diagonal bonds in every other square.
A more “symmetric” version of this lattice can be constructed
by deforming the squares into rhombuses with corner angle θ .
The lattice has a four site unit cell, with lattice positions

r1 = (0, 0), r2 = 1
2 (1,−a), (A1)

r3 = 1
2 (b, b), r4 = 1

2 (a,−1), (A2)

where a = tan
(

π
4 − θ

2

)
and b = √

2 cos
(

θ
2

)
sec

(
π
4 − θ

2

)
. The

lattice possesses two mirror symmetries along the diagonals,
a twofold and a fourfold rotation symmetry (about the centers

of the rhombuses and the squares, respectively), as well as two
glide symmetries.

The generalized Kitaev model discussed in the manuscript
is solved by decomposing �’s into six Majoranas, as �

γ

j =
ia

γ

j cj . This doubles the dimension of the Hilbert space, and
the physical Hilbert space is the eigenvalue +1 sector of the
operator Dj = ia1

j a
2
j a

3
j a

4
j a

5
j cj for each site j . The ground state

flux configuration of the Z2 gauge field, viz., π flux through
the 4-loops and π/2 through the 3-loops, is realized by setting
ujk = 〈iaγ

j a
γ

k 〉 = 1 whenever j is a lower-numbered site than
k. The resulting itinerant Majorana Hamiltonian is

H = i
∑
m,n

[Jx (cm,n,1cm−1,n,2 + cm,n,3cm−1,n,4)

+ Jy (cm,n,1cm,n−1,4 + cm,n,2cm−1,n,3)

+ J ′
x (cm,n,1cm,n,2 + cm,n,3cm,n,4)

+ J ′
y (cm,n,1cm,n,4 + cm,n,2cm,n,3)

− Jz(cm,n,2cm,n,4 + cm,n,1cm+1,n−1,3)]. (A3)

By a Fourier transform, we get a Bloch Hamiltonian for a
four-band model:

H = i

⎛
⎜⎜⎝

0 J ′
x + Jxe

−ikx −Jze
−i(kx−ky ) J ′

y + Jye
iky

−J ′
x − Jxe

ikx 0 J ′
y + Jye

iky −Jz

Jze
i(kx−ky ) −J ′

y − Jye
−iky 0 J ′

x + Jxe
ikx

−J ′
y − Jye

−iky Jz −J ′
x − Jxe

−ikx 0

⎞
⎟⎟⎠, (A4)

where Jx = Jy = J0 + δJ and J ′
x = J ′

y = J0 − δJ . The uni-
tary operators for the mirror symmetries along the 11 and 11̄
directions are

M11 =

⎛
⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1

⎞
⎟⎠, M11̄ =

⎛
⎜⎝

−1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠,

(A5)

which satisfy {M11,M11̄} = 0.

APPENDIX B: TETRAGONAL 1D CHAINS

Our lattice model on the Shastry-Sutherland lattice reduces
to a Kitaev model on a tricoordinated 1D chain for J ′

x = J ′
y = 0

(or equivalently for δJ = J0). This model is described by the
spin-orbit Hamiltonian

H =
∑
〈i,j〉

Jγ

(
τ z
i τ z

j

) ⊗ (
σ

γ

i σ
γ

j

)
, (B1)

which can be thought of as a Kitaev model with a background
described by an Ising model. The ground state flux sector for
this model is identical to the case of the Shastry-Sutherland
lattice, viz., π flux through each four plaquette. This model
has been previously studied as tetragonal chains in Ref. [37].

For Jx = Jy = 2J0 > 0 and Jz = 1, we get two gapped
phases separated by the gapless point J0 = 1

2
√

2
≡ Jc, with

the gap closing at k = 0 of the 1D Brillouin zone. These two
phases are topologically distinct, and correspond to the bulk

polarization being zero or π , which can be calculated as

p =
∮

TrA, A = −i〈u|du〉 (B2)

being the non-Abelian Berry phase of the occupied bands. For a
finite chain, depending on the termination, one of these phases
exhibits a protected mode at the end. For the embedding of
the chain in a finite Shastry-Sutherland lattice, we note that
the chain always terminates on a z bond [see Fig. 1(a) of
the main text). In this case, for J0 > Jc, the system exhibits
a topologically protected mode at the ends of a finite 1D chain,
since in the limit of J0 → ∞ the system reduces to a set of
decoupled squares and two leftover sites at the end, which are
the end modes. The other phase has no such modes, since for
J0 → 0 the system consists of a set of dimers.

APPENDIX C: WANNIER CENTERS AND BERRY PHASE

A bulk invariant for the SOSL/SOTI phase can be defined
in terms of the Wannier band topology of the system. The
maximally localized Wannier functions for a one-dimensional
system can be defined in terms of a Wilson loop. Given a set
of q bands with Bloch wave functions ua (k), one defines a
Wilson loop along kx as

Wx,k0 (ky ) = P exp

{∮
k0

A
}
, Aab = −i〈ua|dub〉, (C1)

whereA denotes the non-Abelian Berry connection,P denotes
the path ordering, and k0 the base point of the Wilson loop, i.e.,
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FIG. 4. Wannier bands on various points on the line defined by δJ = 0.9J0: (a) trivial SL (J0 = 0.30), (b) CSL (J0 = 0.37), and (c) SOSL
(J0 = 0.60). Both the trivial spin liquid and the SOSL exhibit gapped Wannier bands which have a winding number zero in rx , but they can be
distinguished by the Berry phase (nested Wilson loop) of the individual Wannier bands, which is zero for the trivial case and π for the SOSL
case (as labeled in the figure).

the loop integral is performed from kx = k0 to kx = k0 + 2π .
The Wilson loop is a q×q unitary matrix, so that its eigenvalues
lie on the unit circle, i.e.,

Wx,kx
(ky )�(kx, ky ) = e2πirx (ky )�(kxky ),

which defines the Wannier center rx (ky ) ∈ [0, 1) parametrized
by ky , which is referred to as the Wannier band. This definition
is independent of the choice of a base point kx , since the Wilson
loops with different base points are related by unitary trans-
formations. An efficient recipe for a numerical computation of
the Wannier bands is discussed in Refs. [8,34].

In Fig. 4, we plot the Wannier bands for the three phases of
the generalized Kitaev model on the Shastry-Sutherland lattice.
Note that the Wannier band has a nonzero winding number
along rx for the CSL phase, while the winding number is zero
for the other two phases. The SOSL phase can be distinguished
from the trivial SL phase by the Berry phase associated with
one of the Wannier bands (also termed a nested Wilson loop),
well defined only for gapped Wannier bands. Explicitly, let
�(ky ) be an eigenvector ofWx associated with a Wannier band,
and define v(k) = ∑

a �a (k)ua (k), with a = 1, . . . , q. The

nested Wilson loop is then defined as

W̃y (kx ) ≡ P exp

{∮
Ã

}
, (C2)

where Ã = −i〈v|dv〉 is the nested Berry connection and the
integral is now performed over a loop along ky (for the original
Wilson loop along kx). Defining its eigenvalues as e2πĩry (kx ), the
SOSL invariant is simply

p =
∮

dkx r̃y (kx ), (C3)

computed over a loop along kx . A nonzero value of p signifies
that the Wannier centers are not aligned with the lattice
positions. In the presence of certain lattice symmetries, p is
restricted to 0, π , which indicate the trivial and second order
phases, respectively.

APPENDIX D: NUMERICAL ANALYSIS

For our numerical analysis of thermodynamic observables,
we have employed large-scale quantum Monte Carlo simula-
tions. In this appendix, we describe the numerical setup as well
as additional results.
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FIG. 5. Finite-size scaling analysis. (a) Gauge field contribution to the specific heat around the low-temperature peak for different system
sizes L. (b) Scaling plot of the peak position versus the inverse system size 1/L. The solid line indicates a linear fit.
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FIG. 6. Approaching the 1D limit. (a) Specific heat and (b) plaquette flux as one approaches the 1D limit δJ → J for J0 = 0.9.

1. Monte Carlo approach

The Monte Carlo simulations are sign-problem free in the
Majorana basis. In this approach, which has been spearheaded
in Ref. [36], one samples configurations {ujk} of the Z2

gauge field with the statistical weight for each configura-
tion calculated via an exact diagonalization of the Majorana
fermions. Specifically, the Hamiltonian in a fixed gauge field
configuration is diagonalized to a canonical form [21]

H =
N/2∑
λ=1

ελ

(
a
†
λaλ − 1

2

)
, (D1)

whereN denotes the number of spins in the system, whilea
†
λ,aλ

are the creation and annihilation operators of spinless fermions,
each one composed of two itinerant Majorana modes. The
partition function of the full system can be written as

Z = tr{ujk}tr{ci }e
−βH = tr{ujk}e

−βF ({ujk}), (D2)

where F ({ujk}) denotes the free energy of the itinerant Ma-
jorana fermions in a given Z2 gauge field configuration. The
free energy F and all other thermodynamic observables are

derived from the partition function of the Majorana system in
a fixed {ujk} which is obtained via the explicit summation over
all fermionic Fock states

Z{ci } =
N/2∏
λ=1

2 cosh

(
βελ

2

)
. (D3)

The energy of the Majorana system is then given by

EF ({ujk}) = −
∑

λ

ελ

2
tanh

(
βελ

2

)
. (D4)

In order to separate the specific heat contribution of the itinerant
Majorana fermions from the fluctuations in the Z2 gauge field,
we calculate [51]

Cv,F (T ) = 1

T 2

(〈E2({ujk})〉F − 〈E({ujk})〉2
F

)
= 1

T 2

∑
λ

ε2
λ

4

(
1 − tanh2

(
βελ

2

))

= − 1

T 2

∂Ef ({ujk})

∂β
, (D5)

which gives a total specific heat of

Cv (T ) = 1

T 2

⎛
⎜⎜⎜⎝〈

E2
F ({ujk})

〉
MC

− 〈
EF ({ujk})

〉2
MC︸ ︷︷ ︸

gauge field contribution

−
〈
∂Ef ({ujk})

∂β

〉
MC︸ ︷︷ ︸

it. Majorana contribution

⎞
⎟⎟⎟⎠. (D6)

We note that in deriving the Majorana partition function,
we have not distinguished between physical and unphysical
fermionic Fock states. It is well known that a given Z2

gauge field configuration on a system with certain boundary
conditions allows for either even or odd fermionic parity
states [52], with only one of the two constituting the physical
states. The unphysical states, which correspond to states of the
expanded Hilbert space, contribute deviations of order 1/N

[53] to observables and can be neglected in the thermodynamic
limit.

2. Results

All the simulations were performed on systems with pe-
riodic boundary conditions. To avoid the slowing down and
freezing of the Monte Carlo sampling at low temperatures,
we employed parallel tempering with 24–64 replicas in each
simulation. For all the systems, 20 000 measurement sweeps
were performed (after 10 000 thermalization sweeps), with
every sweep being followed by an attempted replica exchange.
The estimate for the critical temperature in the thermodynamic
limit was obtained from linear extrapolation of the position of
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the low-temperature peak of the specific heat versus the inverse
system size 1/L, as illustrated in Fig. 5(b).

The approach to the 1D limit of the model for δJ → J

is illustrated in Fig. 6, which shows the specific heat and

plaquette flux forJ0 = 0.9 and different values of δJ . While the
low-temperature crossover of the specific heat peak wanders
towards T1 ≈ 0.55Jz, a plateau at −1/4 forms in the plaquette
flux (Fig. 3).

[1] C. L. Kane and E. J. Mele, Z2 Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).

[2] L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in Three
Dimensions, Phys. Rev. Lett. 98, 106803 (2007).

[3] M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod.
Phys. 82, 3045 (2010).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] B. A. Bernevig, Topological Insulators and Topological Super-
conductors (Princeton University Press, Princeton, NJ, 2013).

[6] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106,
106802 (2011).

[7] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[8] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[9] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological
insulators, Sci. Adv. 4, eaat0346 (2018).

[10] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[11] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors with
an order-two crystalline symmetry, Phys. Rev. B 97, 205135
(2018).

[12] M. Ezawa, Higher-Order Topological Insulators and Semimetals
on the Breathing Kagome and Pyrochlore Lattices, Phys. Rev.
Lett. 120, 026801 (2018).

[13] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani,
S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov,
H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, and T.
Neupert, Higher-order topology in bismuth, Nat. Phys. (2018),
doi:10.1038/s41567-018-0224-7.

[14] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge States
of Rotation Symmetry Protected Topological States, Phys. Rev.
Lett. 119, 246402 (2017).

[15] M. Ezawa, Magnetic second-order topological insulators and
semimetals, Phys. Rev. B 97, 155305 (2018).

[16] M. Ezawa, Strong and weak second-order topological insulators
with hexagonal symmetry and Z3 index, Phys. Rev. B 97,
241402(R) (2018).

[17] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen,
L. G. Villanueva, and S. D. Huber, Observation of a phononic
quadrupole topological insulator, Nature (London) 555, 342
(2018).

[18] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp, T.
Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R.

Thomale, Topolectrical circuit realization of topological corner
modes, arXiv:1708.03647.

[19] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
A quantized microwave quadrupole insulator with topologically
protected corner states, Nature (London) 555, 346 (2018).

[20] The second-order spin liquid is an example of a “symmetry-
enriched topological” (SET) phase, a phase with intrinsic topo-
logical order enriched by the presence of additional symmetries,
in this case additional lattice symmetries.

[21] A. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. (NY) 321, 2 (2006), January Special Issue.

[22] B. S. Shastry and B. Sutherland, Exact ground state of a
quantum mechanical antiferromagnet, Physica B+C 108, 1069
(1981).

[23] H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K.
Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y.
Ueda, Exact Dimer Ground State and Quantized Magnetization
Plateaus in the Two-Dimensional Spin System SrCu2(BO3)2,
Phys. Rev. Lett. 82, 3168 (1999).

[24] Analytically tractable generalizations of the Kitaev model to
lattices with an even coordination number have been put forward
in Refs. [54–56].

[25] C. Wu, D. Arovas, and H.-H. Hung, �-matrix generalization of
the Kitaev model, Phys. Rev. B 79, 134427 (2009).

[26] Z. Nussinov and G. Ortiz, Bond algebras and exact solvability
of Hamiltonians: Spin S = 1

2 multilayer systems, Phys. Rev. B
79, 214440 (2009).

[27] E. H. Lieb, Flux Phase of the Half-Filled Band, Phys. Rev. Lett.
73, 2158 (1994).

[28] This flux assignment is what Lieb’s theorem would dictate, were
it applicable.

[29] This ground state of theZ2 fluxes is separated from all other flux
configurations by a finite vision gap for all coupling parameters.

[30] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconduc-
tors in three spatial dimensions, Phys. Rev. B 78, 195125
(2008).

[31] A. Kitaev, Periodic table for topological insulators and supercon-
ductors, AIP Conf. Proc. No. 1134 (AIP, Melville, NY, 2009),
p. 22.

[32] We restrict the term chiral spin liquid to systems which possess
a chiral edge mode, and call systems with broken TR symmetry
but no edge mode a trivial chiral spin liquid.

[33] H. Yao and S. A. Kivelson, Exact Chiral Spin Liquid with Non-
Abelian Anyons, Phys. Rev. Lett. 99, 247203 (2007).

[34] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized Wannier functions: Theory and
applications, Rev. Mod. Phys. 84, 1419 (2012).

[35] For details, see Sec. II A of Ref. [57] or Sec. IV of Ref. [8].
[36] J. Nasu, M. Udagawa, and Y. Motome, Vaporization of Kitaev

Spin Liquids, Phys. Rev. Lett. 113, 197205 (2014).

054432-8

https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
http://arxiv.org/abs/arXiv:1708.03647
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1103/PhysRevLett.82.3168
https://doi.org/10.1103/PhysRevLett.82.3168
https://doi.org/10.1103/PhysRevLett.82.3168
https://doi.org/10.1103/PhysRevLett.82.3168
https://doi.org/10.1103/PhysRevB.79.134427
https://doi.org/10.1103/PhysRevB.79.134427
https://doi.org/10.1103/PhysRevB.79.134427
https://doi.org/10.1103/PhysRevB.79.134427
https://doi.org/10.1103/PhysRevB.79.214440
https://doi.org/10.1103/PhysRevB.79.214440
https://doi.org/10.1103/PhysRevB.79.214440
https://doi.org/10.1103/PhysRevB.79.214440
https://doi.org/10.1103/PhysRevLett.73.2158
https://doi.org/10.1103/PhysRevLett.73.2158
https://doi.org/10.1103/PhysRevLett.73.2158
https://doi.org/10.1103/PhysRevLett.73.2158
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.99.247203
https://doi.org/10.1103/PhysRevLett.99.247203
https://doi.org/10.1103/PhysRevLett.99.247203
https://doi.org/10.1103/PhysRevLett.99.247203
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevLett.113.197205
https://doi.org/10.1103/PhysRevLett.113.197205
https://doi.org/10.1103/PhysRevLett.113.197205
https://doi.org/10.1103/PhysRevLett.113.197205


MAJORANA CORNER MODES IN A SECOND-ORDER … PHYSICAL REVIEW B 98, 054432 (2018)

[37] A. Saket, S. R. Hassan, and R. Shankar, Manipulating unpaired
Majorana fermions in a quantum spin chain, Phys. Rev. B 82,
174409 (2010).

[38] J. Nasu and Y. Motome, Thermodynamics of Chiral Spin Liquids
with Abelian and Non-Abelian Anyons, Phys. Rev. Lett. 115,
087203 (2015).

[39] P. A. Mishchenko, Y. Kato, and Y. Motome, Finite-temperature
phase transition to a Kitaev spin liquid phase on a hyperoctagon
lattice: A large-scale quantum Monte Carlo study, Phys. Rev. B
96, 125124 (2017).

[40] S. Trebst, Kitaev materials, arXiv:1701.07056.
[41] R. Watanuki, G. Sato, K. Suzuki, M. Ishihara, T. Yanagisawa,

Y. Nemoto, and T. Goto, Geometrical quadrupolar frustration in
DyB4, J. Phys. Soc. Jpn. 74, 2169 (2005).

[42] D. Okuyama, T. Matsumura, H. Nakao, and Y. Murakami,
Quadrupolar frustration in Shastry Sutherland lattice of DyB4

studied by resonant x-ray scattering, J. Phys. Soc. Jpn. 74, 2434
(2005).

[43] S. Ji, C. Song, J. Koo, J. Park, Y. J. Park, K.-B. Lee, S. Lee,
J.-G. Park, J. Y. Kim, B. K. Cho, K.-P. Hong, C.-H. Lee, and
F. Iga, Resonant X-Ray Scattering Study of Quadrupole-Strain
Coupling in DyB4, Phys. Rev. Lett. 99, 076401 (2007).

[44] H. Sim, S. Lee, K.-P. Hong, J. Jeong, J. R. Zhang, T. Kamiyama,
D. T. Adroja, C. A. Murray, S. P. Thompson, F. Iga, S. Ji, D.
Khomskii, and J.-G. Park, Spontaneous structural distortion of
the metallic Shastry-Sutherland system DyB4 by quadrupole-
spin-lattice coupling, Phys. Rev. B 94, 195128 (2016).

[45] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation
of Majorana fermions in ferromagnetic atomic chains on a
superconductor, Science 346, 602 (2014).

[46] K. O’Brien, M. Hermanns, and S. Trebst, Classification of
gapless Z2 spin liquids in three-dimensional Kitaev models,
Phys. Rev. B 93, 085101 (2016).

[47] M. Hermanns, K. O’Brien, and S. Trebst, Weyl Spin Liquids,
Phys. Rev. Lett. 114, 157202 (2015).

[48] S. Mandal and N. Surendran, Exactly solvable Kitaev model in
three dimensions, Phys. Rev. B 79, 024426 (2009).

[49] M. G. Yamada, V. Dwivedi, and M. Hermanns, Crystalline
Kitaev spin liquids, Phys. Rev. B 96, 155107 (2017).

[50] M. Hermanns and S. Trebst, Quantum spin liquid with a
Majorana Fermi surface on the three-dimensional hyperoctagon
lattice, Phys. Rev. B 89, 235102 (2014).

[51] Y. Shimomura, S. Miyahara, and N. Furukawa, Frustration-
induced dodecamer ordering in the double-exchange spin ice
model on the kagome lattice, J. Phys. Soc. Jpn. 74, 661 (2005).

[52] F. L. Pedrocchi, S. Chesi, and D. Loss, Physical solutions
of the Kitaev honeycomb model, Phys. Rev. B 84, 165414
(2011).

[53] F. Zschocke and M. Vojta, Physical states and finite-size effects
in Kitaev’s honeycomb model: Bond disorder, spin excitations,
and NMR line shape, Phys. Rev. B 92, 014403 (2015).

[54] H. Yao, S.-C. Zhang, and S. A. Kivelson, Algebraic Spin Liquid
in an Exactly Solvable Spin Model, Phys. Rev. Lett. 102, 217202
(2009).

[55] S. Ryu, Three-dimensional topological phase on the diamond
lattice, Phys. Rev. B 79, 075124 (2009).

[56] R. Nakai, S. Ryu, and A. Furusaki, Time-reversal symmetric
Kitaev model and topological superconductor in two dimen-
sions, Phys. Rev. B 85, 155119 (2012).

[57] M. Taherinejad, K. F. Garrity, and D. Vanderbilt, Wannier center
sheets in topological insulators, Phys. Rev. B 89, 115102 (2014).

054432-9

https://doi.org/10.1103/PhysRevB.82.174409
https://doi.org/10.1103/PhysRevB.82.174409
https://doi.org/10.1103/PhysRevB.82.174409
https://doi.org/10.1103/PhysRevB.82.174409
https://doi.org/10.1103/PhysRevLett.115.087203
https://doi.org/10.1103/PhysRevLett.115.087203
https://doi.org/10.1103/PhysRevLett.115.087203
https://doi.org/10.1103/PhysRevLett.115.087203
https://doi.org/10.1103/PhysRevB.96.125124
https://doi.org/10.1103/PhysRevB.96.125124
https://doi.org/10.1103/PhysRevB.96.125124
https://doi.org/10.1103/PhysRevB.96.125124
http://arxiv.org/abs/arXiv:1701.07056
https://doi.org/10.1143/JPSJ.74.2169
https://doi.org/10.1143/JPSJ.74.2169
https://doi.org/10.1143/JPSJ.74.2169
https://doi.org/10.1143/JPSJ.74.2169
https://doi.org/10.1143/JPSJ.74.2434
https://doi.org/10.1143/JPSJ.74.2434
https://doi.org/10.1143/JPSJ.74.2434
https://doi.org/10.1143/JPSJ.74.2434
https://doi.org/10.1103/PhysRevLett.99.076401
https://doi.org/10.1103/PhysRevLett.99.076401
https://doi.org/10.1103/PhysRevLett.99.076401
https://doi.org/10.1103/PhysRevLett.99.076401
https://doi.org/10.1103/PhysRevB.94.195128
https://doi.org/10.1103/PhysRevB.94.195128
https://doi.org/10.1103/PhysRevB.94.195128
https://doi.org/10.1103/PhysRevB.94.195128
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevLett.114.157202
https://doi.org/10.1103/PhysRevLett.114.157202
https://doi.org/10.1103/PhysRevLett.114.157202
https://doi.org/10.1103/PhysRevLett.114.157202
https://doi.org/10.1103/PhysRevB.79.024426
https://doi.org/10.1103/PhysRevB.79.024426
https://doi.org/10.1103/PhysRevB.79.024426
https://doi.org/10.1103/PhysRevB.79.024426
https://doi.org/10.1103/PhysRevB.96.155107
https://doi.org/10.1103/PhysRevB.96.155107
https://doi.org/10.1103/PhysRevB.96.155107
https://doi.org/10.1103/PhysRevB.96.155107
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1143/JPSJ.74.661
https://doi.org/10.1143/JPSJ.74.661
https://doi.org/10.1143/JPSJ.74.661
https://doi.org/10.1143/JPSJ.74.661
https://doi.org/10.1103/PhysRevB.84.165414
https://doi.org/10.1103/PhysRevB.84.165414
https://doi.org/10.1103/PhysRevB.84.165414
https://doi.org/10.1103/PhysRevB.84.165414
https://doi.org/10.1103/PhysRevB.92.014403
https://doi.org/10.1103/PhysRevB.92.014403
https://doi.org/10.1103/PhysRevB.92.014403
https://doi.org/10.1103/PhysRevB.92.014403
https://doi.org/10.1103/PhysRevLett.102.217202
https://doi.org/10.1103/PhysRevLett.102.217202
https://doi.org/10.1103/PhysRevLett.102.217202
https://doi.org/10.1103/PhysRevLett.102.217202
https://doi.org/10.1103/PhysRevB.79.075124
https://doi.org/10.1103/PhysRevB.79.075124
https://doi.org/10.1103/PhysRevB.79.075124
https://doi.org/10.1103/PhysRevB.79.075124
https://doi.org/10.1103/PhysRevB.85.155119
https://doi.org/10.1103/PhysRevB.85.155119
https://doi.org/10.1103/PhysRevB.85.155119
https://doi.org/10.1103/PhysRevB.85.155119
https://doi.org/10.1103/PhysRevB.89.115102
https://doi.org/10.1103/PhysRevB.89.115102
https://doi.org/10.1103/PhysRevB.89.115102
https://doi.org/10.1103/PhysRevB.89.115102



