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Disorder-induced Majorana metal in interacting non-Abelian anyon systems
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We demonstrate that a thermal metal of Majorana fermions forms in a two-dimensional system of interacting
non-Abelian (Ising) anyons in the presence of moderate disorder. This bulk metallic phase arises in the ν = 5/2
quantum Hall state when disorder pins the anyonic quasiparticles. More generally, it naturally occurs for various
proposed systems supporting Majorana fermion zero modes when disorder induces the random pinning of a finite
density of vortices. This includes all two-dimensional topological superconductors in so-called symmetry class
D. A distinct experimental signature of the thermal metal phase is the presence of bulk heat transport down to
zero temperature.
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Quantum matter with exotic non-Abelian quasiparticle
statistics has become a highly sought after state of matter.1

Theoretical proposals suggest the existence of the most
elementary incarnation of such a state—arising from zero
modes of Majorana fermions—in diverse two-dimensional
(2D) systems such as the fractional quantum Hall liquid at ν =
5/2 filling,2 px + ipy superconductors,3 heterostructures of
topological insulators and superconductors,4 heterostructures
of spin-orbit coupled semiconductors and superconductors,5

and possibly certain iridates which effectively realize the
Kitaev honeycomb model.6 However, despite intense efforts,
experimental observation of these states has proven elusive to
date. In this Rapid Communication we point out a distinct
collective phenomenon of these states in the presence of
disorder—the formation of a thermal metal manifesting itself
in bulk heat transport which may be amenable to a more
direct observation than previously considered experimental
signatures such as sophisticated interferometric setups.7 As
we show, this thermal metal phase arises when a finite
density of quasiparticles is spatially pinned by disorder, and
the resulting macroscopic degeneracy—characteristic of non-
Abelian statistics—hybridizes in the presence of interactions
between the quasiparticles. For concreteness, we will discuss
our results in the context of the ν = 5/2 quantum Hall state,
but point out that our results hold for other 2D systems with
randomly pinned zero modes of Majorana fermions.

The disordered ν = 5/2 quantum Hall state. Since the
seminal work by Moore and Read,8 the quantum Hall state
on the ν = 5/2 plateau has been a prominent candidate state
supporting quasiparticles which obey non-Abelian statistics.
Detuning the magnetic field from the middle of this plateau
will introduce a finite density of charged quasiparticles (or
quasiholes) which for a clean system will naturally form a
triangular Wigner crystal, as recently observed for the ν = 1/3
quantum Hall state.9 Even though pinned, these quasiparticles
still carry a fluctuating quantum mechanical degree of freedom,
similar to the spin degree of freedom of an electron in a
Mott insulator. It is this degree of freedom which encodes
the non-Abelianness of the quasiparticle, which is referred to

as an Ising anyon σ . Similar to a pair of ordinary spin-1/2
moments, which can combine as 1/2 × 1/2 = 0 + 1 into a
singlet or triplet state, two Ising anyons can form two distinct
collective states

σ × σ = 1 + ψ, (1)

where the state 1 refers to the vacuum (or trivial) state and ψ is
another quasiparticle excitation. An immediate consequence of
this so-called fusion rule (1) is the formation of a macroscopic
degeneracy of states, which in the case of N ordinary spin-1/2
moments grows as 2N and for the case of Ising anyons grows

asymptotically as
√

2
N

for a system of N Ising anyons. This
macroscopic degeneracy is lifted by interactions between the
Ising anyons. The most elementary example of such a splitting
occurs for a pair of Ising anyons brought into spatial proximity
which will naturally split the energies of the two states on the
right-hand side (rhs) in Eq. (1), in analogy to the splitting
of singlet and triplet states for a pair of ordinary spin-1/2
moments. For more than two anyons the many-body problem
arising from these interactions can be formulated10 in terms of
pairwise projectors �jk (Ref. 11) energetically favoring one
of the two states on the rhs of Eq. (1),

H = −2
∑
〈jk〉

Jjk�jk, (2)

where we choose a convention that �jk projects onto the trivial
state 1 of Eq. (1). In analogy with ordinary spin systems we
refer to Jjk > 0 as antiferromagnetic (AFM) interactions and
Jjk < 0 as ferromagnetic (FM) interactions.

The microscopics governing the interaction strength Jjk

are not universal and in particular depend on the underlying
physical system. For the ν = 5/2 quantum Hall state it
has been shown13 that the interactions between quasiholes
(qh’s) exponentially decay with the separation between the
qh’s (on the scale of the magnetic length) and oscillate in
sign [analogous to Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions between magnetic moments]. The strength of the
pair interactions Jjk has been estimated13 to become as large
as 80 mK for a qh separation of 0.1 μm, which for a uniform
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Wigner crystal corresponds to a magnetic field detuning of
about two-thirds of the typical plateau width. Similar behavior,
though quantitatively different in the sign and strength of the
oscillations, was found for vortex interactions in px + ipy

superconductors14 and in the Kitaev honeycomb model.15

In the presence of spatial disorder, the Wigner crystal
does not form an ideal triangular lattice but rather exhibits
a random distribution of bond lengths. If the variation of
these bond lengths exceeds the characteristic length of the sign
oscillations (the magnetic length of the quantum Hall state),
the exchange coupling constants Jjk will exhibit significant
sign disorder. Due to the exponential decay of the coupling
strength with distance, the essential physics of the anyon
model with random interactions is expected to be captured by
a Hamiltonian of the form (2) with independently distributed
nearest-neighbor exchange interactions Jjk of random sign.
Recalling the analogy of the anyonic degrees of freedom
to ordinary magnetic moments, the random anyon problem
thus bears a striking similarity with the Edwards-Anderson
quantum spin glass.16

One natural angle to study the random anyon model is
to pursue a strong-randomness renormalization group (RG)
approach.17 For one-dimensional arrangements of anyons, it
has been found that disordered anyon models generically
flow to infinite randomness fixed points.18,19 However, as
we will report elsewhere,20 for two-dimensional arrangements
the system flows toward weaker disorder under this RG and
thus is not governed by an infinite randomness fixed point.
This renders the strong-randomness approach incapable of
capturing the essential physics of the problem. Below, we
therefore follow an alternative path exploiting the equivalence
of our random anyon model with the problem of Anderson
localization of disordered Majorana fermions. This problem
is accessible to exact diagonalization studies of large samples
which allow us to identify the analytic low-energy theory for
the underlying phase.

Majorana fermions. For the ν = 5/2 quantum Hall state,
quasihole (or quasiparticle) excitations are Ising anyons, which
can also be thought of as vortexlike excitations carrying edge
degrees of freedom, as illustrated in Fig. 1. The non-Abelian
aspects of the Ising anyon σ can be described in terms of
the Majorana fermion field living on this edge. The Majorana
fermion on an isolated vortex has an exact eigenstate at zero
energy. We denote the creation operator for such a Majorana
fermion zero mode by γj . This represents the Ising anyon at
position j . In terms of these Majorana operators the original
anyon Hamiltonian (2) can be recast into the form

H =
∑
〈jk〉

iJjkγjγk (3)

γi

γj

FIG. 1. Going from Ising anyons (left) to Majoranas (right).

up to an additive constant. Because Majorana fermions are
their own Hermitian conjugates, i.e., γ †

j = γj , we can interpret
Hamiltonian (3) as a hopping problem where the matrix Jjk

must be real and antisymmetric in order to ensure hermiticity.21

Thus the interacting anyon problem reduces to a hopping
problem of noninteracting (Majorana) fermions.22 This map-
ping was used to solve the uniform interacting anyon problem
on a triangular lattice,23 which maps to a hopping problem
with uniform π/2 flux around each triangular plaquette,
producing a gapped topological state with a nonvanishing
Chern number. This was later understood to be a special case
of topological liquid nucleation24,25 in interacting non-Abelian
systems. In general, two distinct gapped topological phases
emerge depending on the sign of the (uniform) coupling J in
any given non-Abelian theory.24,25 For the case of Majorana
fermion zero modes, the nucleated topological liquids are
both Abelian and if brought into spatial proximity would be
separated by an edge state of conformal central charge c = 1,
which corresponds to a difference �ν = 2 in Chern numbers.

In the presence of disorder we are interested in the physics
of anyons with interactions of random signs. We introduce sign
disorder26 by randomly flipping the sign of the couplings Jjk =
±1 on the lattice independently with probability p ∈ [0,1].
The limits p = 0 and p = 1 then correspond to the uniform
problem with J = +1 and J = −1, for which the ground states
are gapped topological states, which can be characterized by
Chern numbers ν = −1 and ν = +1, respectively. Around
these limits these insulating ground states appear to be stable
to a small amount of sign disorder, as indicated in the phase
diagram of Fig. 2. They are gapped only in the limit of strictly
zero disorder, while for weak disorder there should be a low
density of Anderson-localized states for energies |E| less than
a critical energy. We note that the phase diagram is symmetric
under p → 1 − p, followed by time reversal of the Majorana
fermions, which is a (statistical) symmetry of the ensemble of
Hamiltonians (3).

In order to determine what happens at intermediate disorder,
we numerically investigate the fermion hopping problem (3).
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FIG. 2. (Color online) Phase diagram of sign-disordered triangu-
lar lattice hopping problem in the (p,μ) plane. The thermal metal
phase at μ = 0 extends from pc ≈ 0.15 ± 0.05 to 1 − pc, estimated
from the soft onset of wave-function multifractality and the log diver-
gence of the density of states at numerically accessible system sizes.
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FIG. 3. (Color online) Finite-size scaling collapse of the disorder
averaged Chern number ν̄ at μ = −0.1 with pc ≈ 0.225 and
ν ≈ 5 ± 1.

To this end, we diagonalize the matrix iJjk from Eq. (3)
by exact diagonalization techniques for lattices ranging from
L × L = 8 × 8 to 64 × 64 and considering 103–104 disorder
realizations for various disorder strengths p. For each disorder
realization we calculate the integer invariant introduced in
Ref. 27 for eigenstates filled up to a chemical potential μ.
This index is guaranteed to approximate the Chern invariant ν

when there is a mobility gap around μ. While it is beneficial to
consider the phase diagram in this enlarged parameter space
(p,μ), we note that the physically relevant ground state of
Hamiltonian (3) corresponds to the line of precisely μ = 0.

Going to nonzero μ first, we find a clear transition from
a topological insulator with ν = −1 to a topologically trivial
phase with ν = 0 as p is increased from 0 to 1/2. We can
estimate the critical coupling pc(μ) for this transition via a
finite-size scaling collapse of the disorder averaged index ν̄, as
shown in Fig. 3. These estimates provide the indicated phase
boundary of the topological insulator in the phase diagram of
Fig. 2.

At μ = 0, the chemical potential relevant to the original
Majorana problem (3), the disorder averaged index ν̄ shows
a slow crossover from ν̄ = −1 in the topological insulator to
ν̄ = 0 at p = 1/2. This crossover shows no finite-size flow in
the high p regime, in contrast with that found for the trivial
localized insulators at finite μ. This reflects a breakdown of the
index calculation. As we will demonstrate below, the system
in fact finds a metallic state in this regime and the breakdown
of the index calculation is due to the closing of the mobility
gap.28

The thermal metal. In the language of Anderson localiza-
tion, the random Majorana hopping problem (3) falls into
what is known as symmetry class D29,30 (which breaks time-
reversal symmetry31). It has been shown22,32,33 that problems
in this symmetry class can exhibit three distinct phases: a
topological insulator (or thermal quantum Hall insulator), a
(topologically) trivial insulator, and a thermal metal phase.
The most remarkable of these three phases, the thermal metal
phase, has previously been found only within the framework
of Chalker-Coddington network models,33,34 which are not
directly related to a microscopic situation. We will show that
the ν = 0 state occurring at vanishing μ = 0 in our random
Majorana hopping problem around p = 1/2 is precisely this
thermal metal phase,35 thereby also providing a concrete
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FIG. 4. (Color online) Disorder averaged density of states ρ(E)
near E = 0 at p = 1/2 collected from N = 2–3 × 104 samples per
size L.

microscopic realization for the appearance of this metallic
state.

The most direct evidence for this metallic state comes from
the density of eigenstates of Hamiltonian (3) near zero energy
E = 0 obtained in the numerical solution. We have calculated
disorder averages of the density of states ρ(E) using standard
sparse diagonalization techniques for system sizes up to 256 ×
256, again with ∼2 × 104 disorder realizations for a given
value of disorder strength p. These are plotted on a semilog
scale in Fig. 4 for p = 0.5, clearly revealing a logarithmic
divergence characteristic of the predicted behavior for the ther-
mal metal phase in class D.37 Further, the bump and oscillations
visible at the lowest energies (of the order of the inverse mean
level spacing) directly follow the form predicted from random
matrix theory29 ρ(E) = α + sin(2παEL2)/(2πEL2) , where
α is a nonuniversal parameter.

Further evidence of the metallic state reveals itself upon
close inspection of the wave functions near E = 0. A metallic
state in symmetry class D has a weak antilocalization correc-
tion corresponding to a marginally irrelevant perturbation,37

in the RG sense. This implies that the moments of the wave
functions, or the so-called inverse participation ratios, exhibit
“weak multifractal” behavior (for the qth moment)38

Iq =
∫

d2r|ψ(r)|2q ∼ 1

Lτq
,

with multifractal exponent τq = 2(q − 1) − γ q(q − 1), where
the nonuniversal coefficient γ depends only logarithmically
on the linear system size L. The moments of our numerically
obtained wave functions precisely follow this predicted decay
with system size as shown in the left panel of Fig. 5. The
extracted multifractal exponents for different moments q are
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FIG. 5. (Color online) Left: The inverse participation ratios of
the wave function for disorder strength p = 0.5 averaged over N =
2 × 103 samples per size L in an energy window E < 10−3. Right:
The multifractal exponents characterizing the decay of the inverse
participation ratios.

fitted by τq = −0.151q2 + 2.135q − 1.979, which matches
the predicted one-parameter form with γ = 0.151. These
multifractal exponents and the (disorder-averaged) density of
states (Fig. 4) are in principle experimentally accessible via
scanning tunneling spectroscopy (STM) for systems with an
exposed surface.39

Finally, we note that the thermal metal phase is generally
quite robust. Higher-order interactions between the Majorana
zero modes γi in Eq. (3) have been found to be irrelevant (in
the RG sense) in the metallic phase.40 Furthermore, we have
confirmed that the introduction of amplitude fluctuations in
|Jjk| does not modify the universal physics. Indeed, amplitude
disorder tends to enhance the low-energy density of states,

stabilizing the metallic phase and extending the critical value
of sign disorder pc to lower values (data not shown). On the
other hand, some of the superconducting candidate states
exhibit “minigap” states in the vortex cores which are not
captured by Eq. (3); these will influence the quantitative regime
in which metallic behavior can be observed in these systems.

Conclusions. We have demonstrated that moderate disorder
induces a thermal metal phase in systems which harbor a
finite density of interacting Majorana fermion zero modes.
A prominent candidate in which to look for this thermal
metal phase may be the ν = 5/2 quantum Hall plateau,
which has long been suggested to exhibit non-Abelian anyon
excitations. In fact, the experimental observation of thermal
heat transport in the bulk may help reveal the existence
of this non-Abelian state. In Abelian states, the thermal
conductivity (divided by temperature) would vanish when
approaching zero temperature, in contrast to the logarithmic
divergence κxx/T ∝ log T exhibited by the disordered thermal
metal.37 The occurrence of this thermal metal state is not
restricted to the ν = 5/2 quantum Hall state, but is expected
to be present in any two-dimensional time-reversal breaking
topological phase supporting pinned Majorana zero modes
in the presence of moderate disorder—this includes, e.g.,
px + ipy superconductors and microscopic realizations of
Kitaev’s honeycomb model.
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