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Structured volume-law entanglement in an interacting, monitored Majorana spin liquid
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Monitored quantum circuits allow for unprecedented dynamical control of many-body entanglement. Here we
show that random, measurement-only circuits, implementing the competition of bond and plaquette couplings
of the Kitaev honeycomb model, give rise to a structured volume-law entangled phase with subleading L In L
liquid scaling behavior. This interacting Majorana liquid takes up a highly-symmetric, spherical parameter space
within the entanglement phase diagram obtained when varying the relative coupling probabilities. The sphere
itself is a critical boundary with quantum Lifshitz scaling separating the volume-law phase from proximate area-
law phases, a color code or a toric code. An exception is a set of tricritical, self-dual points exhibiting effective
(14+1)d conformal scaling at which the volume-law phase and both area-law phases meet. From a quantum
information perspective, our results define error thresholds for the color code in the presence of projective error
and stochastic syndrome measurements. We show that an alternative realization of our model circuit can be
implemented using unitary gates plus ancillary single-qubit measurements only.

With the advent of digital quantum computing platforms,
quantum researchers can now do pioneer work in shaping en-
tanglement in quantum many-body systems at will through the
implementation of quantum circuits. In addition to conven-
tional unitary gates, a decisive element turns out to be the in-
clusion of non-unitary measurements that have been realized
to provide an alternative route to the creation of long-range
entanglement, either in combination with unitaries [1-19] or
even in measurement-only circuits [20-31] without any uni-
tary gate evolution. Instead it is the non-commutativity of the
measurement operators that induces entanglement, which can
even exhibit volume-law scaling.

In this manuscript, we provide an explicit example of ran-
dom, measurement-only quantum circuits that induce struc-
tured volume-law phases in two-dimensional qubit arrays
where in addition to an extensive scaling form there is an
LlIn L scaling, reminiscent of the conformal scaling of quan-
tum liquids with a nodal Fermi surface [34, 35]. Our model
circuit, schematically illustrated in Fig. 1(a), randomly sam-
ples the bond and plaquette couplings of the Kitaev honey-
comb model, which can be either represented as two or six
qubit Clifford gates or, alternatively, thought of as Majorana
bilinears and a 6-Majorana interaction term. Crucially, the
two types of couplings are not only non-commuting but also
stabilize different topological states of matter — a toric code
stabilized by the bilinear interactions [36] versus a color code
induced by the plaquette interaction [37, 38]. Some of this
competition has been previously explored [32, 33] concen-
trating on the bilinear couplings only, i.e. a monitored circuit
analogue of the Kitaev honeycomb model [36]. There, it was
shown that the frustration of the non-commuting bilinear cou-
plings induce a gapless spin liquid with L In L Fermi-surface-
like entanglement entropy [32, 33], contrasting the Majorana
Dirac cones of the Kitaev spin liquid. Here, we depart the
free Majorana fermion scenario by including the additional
plaquette coupling, and show that this has a dramatic effect
on the entanglement structure of the many-qubit system. The

entanglement phase diagram, illustrated using barycentric co-
ordinates of the probabilities of the four competing terms, is
dominated by the emergence of an interacting Majorana lig-
uid. Inside a spherically-bounded phase towards the center
of the tetrahedron (Fig. 1(b)), we find volume-law scaling of
the entanglement entropy with an additional L In L contribu-
tion, inherited from the non-interacting Majorana liquid phase
[32, 33] inside the circular cut of this sphere with the (non-
interacting) base plane of our tetrahedron (marked in yellow
in the phase diagram). Such a state withstands a structure-
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FIG. 1. Schematics of model and phase diagram. (a) (2+1)-
dimensional random measurement-only circuit on the honeycomb
lattice with physical qubits on the sites. Measurements are performed
over randomly chosen local bond or plaquette operators, as schemat-
ically shown. (b) Schematic quaternary phase diagram drawn as a
tetrahedron. A sphere tangent to the edges of the tetrahedron cuts the
tetrahedron (inset) into four gapped phases separated by a bulk gap-
less phase. The top corner of the tetrahedron stands for the topologi-
cal color code, while the three bottom corners correspond to the toric
code. The bottom plane of the tetrahedron corresponds to the mon-
itored Kitaev honeycomb model [32, 33], i.e. a free-fermion limit.
Entanglement structure: The gapless bulk phase enclosed by the
sphere is an interacting Majorana liquid with coexisting volume-law
and L In L entanglement scaling. At its boundary (red sphere) it ex-
hibits quantum Lifshitz scaling. . The yellow disk at the bottom as
well as the yellow (self-dual) dots at the edge centers indicate L In L
scaling entanglement beyond a pure area-law.



less thermalized state [39, 40] but rather implies the existence
of an extensive number of conserved gapless modes like in
a Fermi liquid [41, 42]. We therefore identify this phase with
an interacting Majorana liquid, akin to an interacting Landau-
Fermi liquid versus a free-fermion metallic state.

The phase boundary of this interacting Majorana liquid, nu-
merically determined in Fig. 2, approximates a perfect sphere
tangent to the edges of the tetrahedron. On this spherical
boundary we find quantum Lifshitz scaling of the entangle-
ment entropy. At the six tangent points, we find a dimensional
reduction into stacked (1+1)-dimensional percolation models
and a rigorous duality that can flip each edge of the tetrahe-
dron, and thus the six edge centers are self-dual critical points.
Upon perturbation along the edges, they immediately flow to
the gapped corner phases of the tetrahedron, while perturba-
tion perpendicular to the edges flow them into the volume law
gapless liquid. The six solvable edges with their self-dual
points pin the global topology of the phase diagram. Nev-
ertheless, the almost perfect spherical geometry of the phase
boundary indicates an additional hidden rotation symmetry.

Model.— We consider a random, measurement-only circuit
on a honeycomb lattice of size N = 2L2, see Fig. 1(a). In each
microstep, we measure a single, randomly chosen Kitaev-type
bond-dependent interaction K = Z4Zp, (XaXg), (YaYB)
with probability p,(y(z), or alternatively measure the 6-spin
interaction V' = Z175X3X,4Y5Ys with probability p. One
sweep consists of L? number of random measurements and
will be denoted as one time unit. Note that the operators
measured within one sweep do not have to commute with
one another, and thus cannot be simultaneously done in one
step of the circuit [14]. The non-commuting nature of the
measured operators is in fact the crucial ingredient to frus-
tration physics and dynamics [22, 32, 33]. Note also that
V' is distinct from the conserved Wilson plaquette operator
W = X 1Y573X,Y57Z and does not commute with all the
bond checks. In a rotated qubit representation, W and V' to-
gether stabilize a topological color code [37]. In the fermion
representation [36], where each spin is factorized into a Ma-
jorana fermion c¢; and a gauge field uv; = =1, K = jucacp
is the Majorana fermion hopping, and W = [];.c w; stabi-
lizes the gauge flux, while V' = —iujousquse(cicacscacscs)
is the gauged 6-Majorana interaction that stabilizes the Majo-
rana surface code [38].

In executing our circuit, we start from an initial flux-free

state [¢) = (Hq 1+;V“ ) 1)~ [43]. This initial state we then

evolve until it reaches its steady state, i.e. for sufficiently long
times of order O(L). Since the gauge flux is frozen in our
circuit model, the ensuing dynamics is solely carried by the
Majorana fermions subject to a competition of hopping and
plaquette interactions. Our model is thus a Clifford stabilizer
circuit [44] analogue to the ground state of an interacting Ma-
jorana Hamiltonian H ~ (1-p) K +pV, interpolating between
the Kitaev honeycomb model and the Majorana surface code
model [38]. While this interacting (2+1)-dimensional lattice
Hamiltonian is in general hard to solve, the Clifford stabilizer
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FIG. 2. Cuts through the tetrahedral phase diagram. Panel (a)
shows a middle cut plane, described by p.. = py, (b) is the side face of
the tetrahedron described by p,, = 0. The location of phase transitions
(indicated by the pink dots) have been deduced from the finite-size
scaling of the tripartite entanglement (see, e.g., Fig. 4(a) below) by
sweeping p and p.. The solid line is a sphere tangent to the edge
of the tetrahedron. The yellow dots indicate self-dual points at the
edge centers of the tetrahedron, with the inset on the right illustrating
the dualities. The bottom orange line indicates the non-interacting
Majorana liquid.

circuit allows for efficient numerical calculation with polyno-
mial scaling, by keeping track of the IV generators of the sta-
bilizer group rather than the 2™V-dimensional quantum many-
body wavefunction.

Entanglement phase diagram.— The key feature character-
izing the dynamically generated, steady-state phases of our
monitored quantum circuit is the von Neumann entangle-
ment entropy. To set the stage, let us first consider the non-
interacting set up corresponding to the bottom plane of our
tetrahedron. Here the random bond checks measure the local
Majorana fermion parity and effectively teleport single Ma-
jorana fermions [45]. The final state is a Gaussian fermionic
state, a product of long-range Majorana pairs, that exhibits
L1n L Fermi-surface-like entanglement entropy [32, 33] (see
also Fig. 7 of the supplemental material (SM)). By viewing
each Majorana pair as a dimer and upon disorder average that,
crucially, restores translation symmetry, one can view this
non-interacting Majorana liquid as a dynamically generated
density matrix analogue of the long-range resonating-valence-
bond (RVB) state [46]. If we now depart the free-fermion set-
ting, an onset of 6-Majorana interaction measurements glues
the Majorana pairs beyond the Gaussian fermion state. A pri-
ori, it is not clear whether the paired free Majoranas and their
consequent LIn L entanglement can survive this interaction
effect.

To explore this, we analyze the von Neumann entanglement
entropy [47] for a bipartition of the torus (of length L-by-L)
into two cylinders with smooth boundary of fixed length L,
but varying subsystem bulk length [, see the inset of Fig. 3.
We consider a most general scaling ansatz of the form

cL+c

Syn(l,L) =v-wol(l,L)+ ln(£ sin%l)ﬂzL—’y. ()
™

Here vol(l,L) = 2LIIn2 — 2*F-N-1 (1 < L/2) is the
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FIG. 3. Entanglement structure of three forms of gapless matter in our phase diagram characterized by their entanglement entropy scaling.
(a) Interacting Majorana gapless state at self-dual point p = p. = 1/2,p, = py = 0 with dimension reduction. We subtract the area law
background to exhibit data collapse for the universal super-area-law correction AS,n = (Syn(I) = Sun (L/2))/L = § Insin ”fl We find that
¢ =0.829(2)1In 2. (b) Interacting Majorana gapless state exhibits weak volume law scaling with strong L In L correction, at the center of the
tetrahedron phase diagram p, = py = p. = 1/4. The red lines illustrate the fitting scaling function, for @ = 1.615(4) In2, v = 0.00951(7) In 2,
¢=0.642(7)In2, ¢ = 2.2(2)In2, v = 1.4(1) In 2. See Fig. 8 in SM for a view of each decomposed fractions. (c) Entanglement entropy at
the critical point between interacting Majorana liquid and Majorana surface code p. = 0.683, p, = py = p-. The solid red line denotes the
scaling function with best fit coefficients 3 = 3.67(3) In2, A = 3.8(2) In 2. The dashed line shows the best fit of scaling function Insin(7l/L)
for comparison, which significantly deviates from the numerical data. The inset shows the data versus rescaled horizontal axis according to

the scaling ansatz.

volume-law contribution with a leading order Page correc-
tion [48], the second term is a subleading contribution [49, 50]
that can account for gapless modes akin to a Fermi surface
(when viewed as slices of (1+1)-dimensional conformal field
theories (CFTs) [41, 51]). We also include an O(1) cor-
rection vy, known as the topological entanglement entropy
(TEE) [52, 53]. The prefactors v, ¢, a are non-universal and
fitted in our numerics, though we note that c is reminiscent of
the central charge in a (1+1)-dimensional CFT.

Let us first consider the case p = p, = 1/2,p, = py = 0,
which is one of the exactly solvable, self-dual points in our
phase diagram. Coming from the Majorana surface code, the
6-Majorana plaquette interactions stabilize anyon excitations
on the plaquettes, while the ZZ-bond Majorana bilinear fluc-
tuates these anyons only along the z-direction [38]. Thus the
model is effectively decoupled into stacks of anyon chains and
a duality can swap the plaquette interaction and the Majorana
bilinear, akin to the Kramers-Wannier duality of the quantum
Ising chain [54]. For further discussion, see the underlying
frustration graph given in the SM [55]. Each chain can be
mapped to a classical 2d bond percolation problem [56, 57],
where the prefactor c is exactly calculated employing CFT to
be c=3v3In2 /(27), perfectly consistent with our numerical
results in Fig. 3(a).

Except at these self-dual points, the effect of a non-
vanishing Majorana interaction is the immediate formation of
a volume-law contribution. As a representative example we
show, in Fig. 3(b), the entanglement entropy for the centroid
of the tetrahedral phase diagram, p,(,(.) = p = 1/4, the point
with qualitatively strongest frustration. The growth of the en-
tanglement entropy with increasing [ clearly goes beyond the
arc-like In (sin ’Tfl) scaling of the free fermion limit, but in-
stead an almost linear increase is found for lengths [ ~ L/2,
resulting in a cusp-like feature known from Page scaling [48].

Note that even though a volume law is the leading contri-

bution in the L — oo (thermodynamic) limit, its prefactor
turns out to be two orders of magnitude smaller than the co-
efficient of the subleading L In L correction, which for small
system sizes quantitatively dominates. The existence of such
an LIn L correction implies that the volume-law phase is not
structureless, which we further comment on in the discussion
section below. When one moves along the bond-isotropic line
Pa(y)(z) = (1 =p)/3 and gradually increases p from 0, the
volume-law prefactor rapidly but smoothly grows to a peak
value around p ~ 0.15 before decreasing again and fading
away around p ~ 0.5, as shown explicitly in the SM. To di-
agnose the precise critical point of the transition out of the
volume-law phase we resort to the tripartite mutual informa-
tion [58].

At these interacting critical points, the entanglement en-
tropy is found to significantly deviate from the LIn L cor-
rection [59] in Eq. (1) and instead exhibits quantum Lifshitz
scaling [60, 61], originally derived for the gapless dimer RVB
state (quantum Lifshitz field theory [62])

Seny =aL+BJ(l/L)+...,

where J(z) = —In %, with 03 the Jacobi-theta
function and 7 the Dedekind-eta function [60, 61], while X is
a parameter related to the inverse stiffness or correlation ex-
ponent [62] in the original derivation [63]. An example of
such quantum Lifshitz scaling is shown in Fig. 3(c). On a
speculative note, this Lifshitz scaling might be a harbinger
of space-time anisotropy with a dynamical critical exponent
z = 2 (though counter-examples [61] indicate that no such
stringent connection can be made), which would possibly al-
low us to connect this scaling form to the Lifshitz transition
of Fermi surface topologies [64] — an appealing completion to
our scenario of a sequence of transitions from non-interacting
to interacting to vanishing Fermi liquid as one ascends the
vertical direction in our tetrahedral phase diagram.



Topological codes and phase transitions.— Let us round off
our discussion of the entanglement phase diagram by looking
at the four corner phases, which are gapped area-law phases
realizing either a toric code (for the three bottom corners) or
a color code (near the top of our tetrahedron). Starting from
one of these gapped phases, we can discuss the entanglement
transition into the interacting Majorana liquid. Mapping out
the phase boundary can be done, as before, by computing the
tripartite mutual information (TMI)

I(A:B:C)=Sa+Sp+Sc—-Sap~-Spc—Sac+Sasc

for a partition of the torus into four cylinders (inset of Fig. 4a).
As shown in Fig. 4(a), away from the free fermion limit p = 0
where I = —1 [32, 33], the TMI is extensive for the interacting
liquid phase, i.e. I(A: B :C) o —L? as shown in the inset.
Such an indicator of information scrambling [65] is consistent
with the volume-law entanglement entropy we found earlier.
In the color code limitp - 1, I(A: B : C) = +3 due to three
independent effective Bell pairs between A and C, formed by
the product of plaquettes of the color code (its plaquettes be-
ing 3-colorable when L mod 3 = 0). In between, the crossing
point indicates an entanglement phase transition from the in-
teracting Majorana liquid to the Majorana surface code, which
we used to quantitatively map out the phase diagram of Fig. 2.

From a quantum information perspective, we can inter-
pret the area- to volume-law transition out of the color code
as an error threshold for the color code subject to pro-
jective bond errors and stochastic syndrome measurements.
This is best revealed in the topological entanglement entropy
(TEE) [52, 53], calculated for the tripartite geometry in the in-
set of Fig. 4(b). In the color code phase, it shows a plateau at
21n 2, reflecting the two bits of information contributed from
the gauge and Majorana sector (versus one bit in the toric code
where only the gauge sector contributes). At the threshold p,.
of the color code, the TEE drops from its plateau value signal-
ing the breakdown of topological order. This transition gives
a fundamental upper-bound of the decoding threshold for the
color code under such noise. The TEE is non-quantized in the
interacting liquid regime (while still showing a system size
dependence, growing with increasing L). We note that the
volume-law phase can still be used as a code space with quan-
tum error correction [66, 67], but (in light of the small volume-
law prefactor) it might be much less effective in storing log-
ical quantum information, see SM for purification dynamics
indicating a corruption of the code space.

Outlook.— On a technical level, one might wonder whether
our highly symmetric phase diagram allows for an analyti-
cal understanding. One step in this direction is to pursue a
coupled-wire approach: Start from a bottom edge of the tetra-
hedral phase diagram, which corresponds to stacked moni-
tored Majorana chains, and then turn on either the Majorana
hopping or Majorana interactions. The former coupling leads
to the free fermion liquid within the bottom plane, while the
latter sets off a flow to the volume-law liquid in the side plane
of the tetrahedron. Despite this distinction, both directions
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FIG. 4. Topological and entanglement phase transition along the
bond isotropic line: py(y) () = (1-p)/3 (central pillar in the tetrahe-
dron is shown in the inset). The top red bar illustrates the liquid phase
while the blue bar illustrates the gapped color code phase, with the
yellow dot being the free fermion liquid state. (a) Tripartite mutual
information between three cylinders (schematically shown in the in-
set). From finite-size scaling we find p. = 0.682(4), very close to
the exact boundary of the sphere p. = (1++/3)/4 = 0.68301.. ., and
1/v = 1.01(6). For the phase region between p € (0, p.), the mu-
tual information diverges I oc —L? with system size, as shown in the
inset for the window p < 0.15. (b) Topological entanglement en-
tropy. Inset shows the distribution of v among the disorder ensemble
for p = 0.25. Data is averaged over 10,000 disorder realizations for
L < 30 and 5,000 samples for L > 30.

show surprisingly similar geometrical phase boundaries: a cir-
cle, see Fig. 2. This might be related to the similarity of their
frustration graph structure, which — albeit not exactly identi-
cal in their microscopic details — can both be viewed as a stack
of bipartite horizontal chains, with interchain degree-4 nodes
relating the two sublattices (see SM).

Concerning the practical implementation of our circuit
model, which we have here formulated as a measurement-
only, multi-qubit circuit, we note that it can alternatively be
implemented by a unitary circuit with two-qubit gates and
single-qubit measurements only. To do so, one needs to in-
troduce a set of ancillae qubits [14], one for each bond cou-
pling expanding the lattice geometry to heavy-hexagon and
one ancilla for each hexagon (see SM for details). Such an
implementation is relatively close to current quantum proces-
sor designs (such as IBM’s transmon platform) and akin to
syndrome measurements of the surface code [68].

Discussion.— A hallmark of equilibrium quantum states of



matter is their boundary-law entanglement scaling [69], which
for Fermi liquids experiences a mild violation in terms of an
Lln L “super-area-law” contribution [34, 35, 41, 42]. In con-
trast, the non-equilibrium Fermi liquid discussed in our work
exhibits an extensive (volume-law scaling) entanglement en-
tropy, with a subleading L In L contribution in (2+1) dimen-
sions. The existence of this subleading term not only distin-
guishes our state from a conventional thermal steady state,
as postulated by the eigenstate thermalization hypothesis, but
it might prove to be essential: In its (1+1)-dimensional ana-
logues, it has been argued that the subleading In L correction
indicates a protection mechanism of the volume-law entan-
glement structure as it originates from a power-law distribu-
tion of stabilizers [70] that counteract the detrimental effects
of local projective measurements on long-range stabilizers.
One might argue that a similar mechanism plays out in (2+1)-
dimensional quantum liquids indicating an essential role for
the L1n L term to allow for a stable volume-law phase as we
have observed it in the monitored quantum circuit model at
hand [71].

The coexistence of volume-law and L In L scaling we re-
port here might bear some resemblance with the observation
of quantum many-body scars [72, 73] in (1+1)-dimensional
models. There one observes a weak ergodicity breaking that
manifests itself in a tower of In L entangled non-thermal
eigenstates [74] coexisting with the otherwise volume-law en-
tangled thermal states [39, 40]. Instead of starting from an
ergodic phase our model arrives at a similar entanglement
structure, in a (2+1)d generalization, from a proximate (su-
per) area-law phase, i.e. it exhibits weak information scram-
bling. On a speculative note, this scrambling transition from
the non-interacting to interacting Majorana liquid has a renor-
malization group flavor to it, which manifests itself, e.g., in
the sudden change of the LIn L prefactor, reminiscent of the
flow of central charges dictated by the c-theorem in (1+1)d
CFTs.

A characteristic of our model is its randomness, manifest in
the space-time disorder of the circuit, in addition to measure-
ment outcomes, which results in an ensemble of disordered
pure states. This randomness spoils translation symmetries
for each individual disorder realization (of the circuit), which
makes it possible to have a stable Majorana Fermi-surface
even in the presence of time-reversal symmetry [75]. The
disorder average then restores the symmetries on a statistical
level. The disorder averaged entanglement represents typical
pure wavefunctions in the ensemble, but not the average den-
sity matrix, which may be also interpreted as a translationally
invariant state in the double Hilbert space [76]. An interest-
ing future direction is to further explore the essential role of
randomness here, e.g. by imposing space or time translation
symmetry into the protocol [77], such as a spatially random
Floquet circuit [78], a quasi-periodic protocol [79], or a trans-
lationally invariant Floquet protocol with weak measurements
[80].

Let us close our discussion with a comment on computa-
tional complexity. Highly non-trivial entanglement structures

can arise from the competition of local interactions — either in
the steady-state of the long-time evolution of a random mea-
surement circuit, as discussed in this manuscript, or in the
quantum ground state of a quantum many-body system cooled
down under Hamiltonian dynamics. Despite their similar in-
gredients the two approaches come with very different simu-
lation costs on a classical computer — an interacting ground
state with a Fermi surface is known to create a sign prob-
lem [81] in quantum Monte Carlo simulations [82], while we
have shown here that a similarly entangled state can be simu-
lated with Clifford stabilizer circuits in polynomial time [83].
This leaves us in the fascinating situation that going to the
Clifford circuit analogue state has reduced the computational
complexity of simulating an interacting Fermi liquid — a route
that should be further explored, for other quantum states of
interest, in the future.
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Supplemental Material

To complement our discussion in the main text, this ap-
pendix provides a short discussion of the frustration graph un-
derlying our circuit model, further details on an implementa-
tion using unitary gates and single-qubit measurements only,
as well as supplementary numerical data of the entanglement
structure, particularly of the structured volume-law phase, as
well as a short discussion of the purification dynamics in the
various phases of our model.

Frustration graph

FIG. 5. Frustration graph, duality and dimension reduction.
Each node stands for an operator being measured. Two operators
anticommute (commute) with each other if there is (no) link con-
necting them. (a) Complete graph for all four types of measurement
operators, with blue, green, red nodes representing the bond checks,
and the gray node for the plaquette interaction. (b)(c) Reduced graph
along the edges of the tetrahedron phase diagram. (d) Reduced graph
at the bottom plane of the tetrahedron, forming a Kagome lattice. (e)
Reduced graph at the side face of the tetrahedron.

To understand the dynamics and frustration of the
measurement-only protocol, we draw the frustration
graph [22] as in Fig. 5. The nodes of the graph do not
correspond to a basis of the wavefunction, but rather a Pauli
operator, which are the ones being measured in our protocol.
They live on the dual lattice of the original honeycomb lattice,
where the blue, green, red nodes correspond to the bonds
of the honeycomb lattice, and the gray nodes correspond to
the hexagon plaquette. The probability vector (p, ps,py, )
actually determines the “fugacity” of these nodes i.e. prob-
abilities that they are measured at a given spacetime point.
One may view a measurement event as “occupying’ the node,
which is nearest-neighbour exclusive in space. The center of
the phase diagram p = p, = p, = p, features equal fugacity of

all the nodes. Along the edges of the tetrahedron, the graph
reduces to stacks of 1d chains that has a bipartite structure,
connecting only two colors (Fig. 5bc). There is a duality
for the dynamics, described in the graph, under swapping
the two colors or translation along the chains. Since the
real-space support of nodes of different colors are different,
the entanglement entropy does not have to be invariant under
the color swapping duality. The bottom plane and the side
face of the tetrahedron share a similar graph (comparing
Fig. 5de): rows of bipartite translational invariant chains,
being coupled by degree-4 interchain nodes. The interchain
nodes couple only nearest neighbour for the former case
while 3rd nearest neighbour for the latter scenario.

Alternative circuit implementation

QO physical

ancilla

e—l%( 1=Y,3)(1-X) %)

FIG. 6. Monitored unitary circuit with 1-qubit measurements.
Alternative implementation of our circuit model where the bilin-
ear and 6-spin measurements are implemented via projective mea-
surements of ancilla qubits. The original lattice geometry of qubits
(spins) on the hexgonal lattice (orange circles) is thereby expanded
to a heavy-hexagon geometry (as implemented, e.g., in the current
transmon quantum processors of IBM) with an additional ancilla
qubit in the hexagons. The dotted line encloses one unit-cell.

Let us devise an alternative circuit implementation that re-
moves the need for multiqubit measurement operations. To
do so, we need to introduce an extensive number of ancilla
qubits — one for each physical operator that we wish to mea-
sure. Namely, we place ancilla qubits on all the bond centers
and the plaquette centers of the original honeycomb lattice,
see Fig. 6. In order to couple a given ancilla qubit to our
targeted measurement operator, we just need to apply a basis
rotated variant of the CNOT gate: exp(—ig(l -Z)(1- X)),
or exp(—ig(l -X)(1- X)), or exp(—i%(l -Y)(1- X)),
depending on the type the bond and where we always use the
physical qubit as the control qubit. All the bonds connecting
an ancilla qubit have to be turned on, and since they commute
with each other the gate sequence is irrelevant. After that, the



ancilla qubit is maximally entangled to the targeted measure-
ment operator and can be measured. To summarize, such an
implementation is in similar spirit as the syndrome measure-
ments of the surface code.

Supplemental data

Free Majoranas

We complement the entanglement characterization of Fig. 3
in the main text with an additional plot for the free Majorana
case in Fig. 7 showing the entanglement arc for the isotropic
point in the base plane of our tetrahedron (p, = p, = p, = 1/3,
p = 0). The calculation is performed over evolution times
T = 50 for L < 40 while T = 80 for L > 40, averaged over
1000 disorder samples for L < 60 and 360 samples for L = 60.
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FIG. 7. Entanglement entropy scaling for isotropic free Majo-
rana point for p, = py =p. =1/3,p=0.

Structured volume-law phase

For a better view of the three contributing fractions in the
volume-law phase according to the scaling ansatz Eq. (1), we
subtract the numerical data of entanglement entropy by the
area-law scaling function aL — v, and further subtract it by ei-
ther the fit volume law scaling function vol(l, L), or the gap-
less scaling function (¢L + ¢’) In (% sin(lf”)), see Fig. 8 left
panel. To see the gapless fraction more clearly, we show it
under the rescaled horizontal axis as shown in the right panel,
which is approximately linear with slope (cL + ¢)/3.

In the volume-law phase, we show the fit coefficients evolv-
ing along the isotropic line of the phase diagram by varying p
in Fig. 9. The fit is done with system sizes L = 18,24, 30, 36.
Note that the fit coefficient at p = 0.25 found by L < 36
is slightly different from the coefficients fit with L < 60 as
shown in the main text, which we attribute to a finite size drift
and the fitting error (note the error bar in fitting ¢ compared
with fitting a, under the background of volume law and area
law contribution). When p > 0.5, the volume-law coefficient
is approximately zero, beyond such scaling function.
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LinL
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FIG. 8. Decomposed fractions of the entanglement entropy in the

interacting Majorana liquid phase. All solid lines are the best fit
scaling function. Data is obtained from p = py(yy(.) = 1/4, L = 60.
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FIG. 9. Evolution of structured volume-law entanglement.

Shown are the fitting parameters for the volume-law, liquid, and area
law contributions, for a vertical cut through the tetrahedral phase di-
agram, i.e. p; = py = p- and p € [0, 0.5]. Data is obtained by system
size L = 36 with averaging over 1,000 disorder samples.



At the free fermion limit p = 0.0, without volume-law en-
tanglement, its entanglement entropy is dominated by the gap-
less law, which we fit in Fig. 7 with system sizes up to L = 60,
where the data collapse works perfectly and the prefactor is
consistent with Ref. [32, 33].

Topological entanglement entropy

Complementing Fig. 4 in the main text, we provide a global
view of the topological entanglement entropy in the phase dia-
gram (Fig. 10). The color coding qualitatively reflects the
three topologically distinct phases.
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FIG. 10. Topological entanglement entropy mapped out in the
phase diagram, for L = 36 and averaged over 1,000 samples.

Purification dynamics

Both the topological code and the volume-law phase can
serve as quantum error correcting codes. Starting with an
initial mixed state, which might encode some information,
the dynamics leads to a purification of the mixed state which
implies a corruption of the code space and the information
stored in it [66, 67]. Here we perform an exploratory calcu-
lation, for small system sizes, of the purification dynamics of
our quantum circuit starting from a maximally mixed state in
the flux-free space p o« Hqul_ '(1+W,) , where ¢ denotes a
hexagon plaquette. Then the purification is purely dominated
by the Majorana fermions. As shown in Fig. 11, the toric code
phase (at p = 0,p, = 0.8,p, = p, = 0.1) and the color code
phase (at p = 0.8, p, = p; = py) both show exponentially long
life-times, i.e. robust topological code space, exhibiting 2-bit
and 4-bit logical memory, respectively. The gapless states, in
contrast, do not possess such long-lived plateaus. For these,
we pick three representative points along the isotropic line
Dy = Dy = P with p = 0,0.25,0.683, where the finite size
dependence is shown in Fig. 12. They all exhibit similar size-
independent power-law decay at the beginning stage, but show
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very distinct deviation pattern away from that at late-times.
(i) The free Majorana state exhibits size independent power-
law decay S ~ 1/t, which was explained in the compact loop
model by the Lévy flight of free Majorana pairs [32]. (ii)
The volume-law interacting Majorana liquid deviates from the
power-law by slowing down at late-times, which we attribute
to the information scrambling that resists against purification
and corruption of logical memories. (iii) The quantum Lif-
shitz critical point also shows similar slowdown at late-times.
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e —Lifshitz critical
~ color code
" —2 = toric code
10
1 L -
wn 10 1080 105 1620
4 | \
2 L
1 L
0 25 50 75 100 125
t
FIG. 11. Purification dynamics of entropy starting from max-

imally mixed state in the flux-free space. L = 12, average over
1000 disorder samples. Other than the toric code point for which
we take p. = 0.8,p, = py = 0.1, all other cases are adopted along
the isotropic line p, = py = p., by taking p = 0,0.25,0.683,0.8 for
free Majorana, volume-law liquid, Lifshitz critical, and color code,
respectively. Do not confuse this thermal entropy, characterizing the
mixed state, with the entanglement entropy for pure states we dis-
cussed previously. Inset shows the same data on a double log scale.
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FIG. 12. System-size dependence of purification dynamics of the
entropy for the gapless states (p; = py = p., p = 0,0.25,0.683).
Data is averaged over 100, 500, 1000 samples for L = 24,18,12,
respectively.
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