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A series of Pr(TM)2X20 (with TM = Ti, V, Rh, Ir and X = Al, Zn) Kondo materials, containing non-Kramers
Pr3+ 4f 2 moments on a diamond lattice, have been shown to exhibit intertwined orders such as quadrupolar order
and superconductivity. Motivated by these experiments, we propose and study a Landau theory of multipolar
order to capture the phase diagram and its field dependence. In zero magnetic field, we show that different
quadrupolar states, or the coexistence of quadrupolar and octupolar orderings, may lead to ground states with
multiple broken symmetries. Upon heating, such states may undergo two-step thermal transitions into the
symmetric paramagnetic phase, with partial restoration of broken symmetries in the intervening phase. For
nonzero magnetic field, we show the evolution of these thermal phase transitions strongly depends on the field
direction, due to clock anisotropy terms in the free energy. Our findings shed substantial light on experimental
results in the Pr(TM)2Al20 materials. We propose further experimental tests to distinguish purely quadrupolar
orders from coexisting quadrupolar-octupolar orders.
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I. INTRODUCTION

Heavy fermion materials with partially filled 4f or 5f

shells often exhibit unusual phases attributed to broken sym-
metries involving higher-order multipolar degrees of free-
dom. Given the challenging task of experimentally probing
such broken symmetries, they are generally dubbed “hidden
orders” [1–11]. To obtain a broad understanding of such
systems, it is useful to study families of materials which share
similar underlying microscopics and related phenomenology.
A particularly useful example is provided by the Pr(TM)2X20

intermetallic compounds, with TM = Ti, V, Rh, Ir and
X = Al, Zn [12–24]. All these materials have been shown
to exhibit quadrupolar orders and superconductivity at lower
temperatures. The common ingredient in this family is the
local moment degree of freedom provided by the Pr ion.
The interplay of strong spin-orbit coupling (SOC) and weaker
crystal field splitting leads to a ground state �(3) non-Kramers
doublet on Pr, with a significant gap to the higher order multi-
plets. This doublet carries no dipole moment but has nonzero
quadrupolar and octupolar moments [14]. A key motivation
to explore such materials was the theoretical proposal that
conduction electrons scattering off such doublets would lead
to non-Fermi liquid behavior associated with the single ion
two-channel Kondo model [25–27]. The low-temperature fate
of the Kondo lattice system, however, remains an important
open question. An understanding of these ground states is
also important for clarifying the possible quantum phase
transitions of these heavy fermion materials [28–31].
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Recent experiments on these Pr(TM)2X20 materials have
confirmed the existence of quadrupolar ordering. For in-
stance, PrTi2Al20 displays ferroquadrupolar (FQ) order below
TQ ∼2 K, while antiferroquadrupolar (AFQ) order is found
in PrV2Al20 (TQ ∼0.75 K), in PrIr2Zn20 (TQ ∼0.11 K), and
PrRh2Zn20 (TQ ∼0.06 K) [13,17–19,23,32,33]. Interestingly,
PrV2Al20 exhibits an additional phase transition at T ∗ ∼
0.65 K and shows non-Fermi liquid behavior above TQ in
contrast to the Fermi liquid behavior observed in PrTi2Al20

[16,22,32]. This may be due to stronger hybridization be-
tween local moments and conduction electrons in PrV2Al20,
leading to proximity to an underlying quantum critical point
[22,34,35]. The precise nature of the antiferroquadrupolar
orders and the additional transition in PrV2Al20, however,
remain to be understood.

Further insights into the phase diagram come from exper-
iments studying the impact of a magnetic field [22,32,33,36–
39]. For FQ order, it is well known that the magnetic field
couples at O(B2) directly to the order parameter, which
converts the sharp paramagnet-to-FQ thermal transition into a
crossover; this has been observed in PrTi2Al20 [32]. However,
the multiple transitions in PrV2Al20 at TQ and T ∗ are found
to survive at nonzero fields and, moreover, evolve in a manner
which depends strongly on the field direction [40].

In this work, we investigate a symmetry-based Landau
theory to gain insight into multipolar orders, their phase
transitions, and the impact of the magnetic field, which are
motivated by experiments on Pr(TM)2Al20 with TM = Ti,
V. Given that a microscopic model of the Pr doublet, which
hosts both quadrupolar and octupolar moments hybridized
to conduction electrons, is likely to depend on details of
the material-specific band structure and Kondo couplings, we
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believe such a symmetry-based approach should also be of
broader relevance.

We emphasize that our approach is a reasonable starting
point on the ordered side of the conventional Doniach phase
diagram, as we progressively come closer to the transition into
the hybridized heavy Fermi liquid phase. On the heavy Fermi
liquid side, where the local moments are strongly hybridized
with the conduction electrons, it is no longer meaningful or
legitimate to integrate out the conduction electrons, and a
Landau theory for local moment ordering is inappropriate.

Our Landau theory includes uniform and staggered
quadrupolar orders which are relevant to the FQ and AFQ
states. For FQ order, we find that the Landau theory permits
a cubic anisotropy term, which was previously pointed out
within a microscopic theory and classical Monte Carlo study
of a lattice model [41,42]. This selects an FQ ordered state
which is consistent with experimental results on PrTi2Al20

[37]. However, AFQ order is generally accompanied by a
“parasitic” FQ order due to a cubic term which couples them.
However, previous work found a single transition at which
both orders are generated, and it thus does not explain the
emergence of the two transitions observed in PrV2Al20 at zero
field. Moreover, the octupole moment carried by the doublet
is ignored in previous studies. Our Landau theory approach,
which incorporates quadrupolar as well as octupolar order pa-
rameters, and symmetry-allowed clock anisotropies in the free
energy, suggests two possible ways to explain the multiple
thermal transitions in PrV2Al20 [16] and understand the field
evolution of the phase diagrams.

(i) Within a purely quadrupolar description, we show that
the interplay of AFQ and FQ orders can lead to a second
(lower temperature) transition at T ∗ within the AFQ phase
due to a competition between different clock terms in the free
energy. The intermediate phase in this picture preserves an
Ising S4z symmetry, which is further broken for T < T ∗.

(ii) Alternatively, we consider the more exotic possibility
that the lower-temperature transition at T ∗ might correspond
to the ordering of octupolar degrees of freedom within the
AFQ phase, which would lead to spontaneous time-reversal
symmetry breaking for T < T ∗.

We find that both scenarios can potentially lead to similar
experimental phase diagrams and their magnetic field evolu-
tion while the way that zero and finite temperature transitions
are connected may be different in the two cases. We therefore
conclude with a discussion of possible further experimental
tests to distinguish between these two scenarios.

II. SYMMETRIES

Pr(TM)2X20 (with TM = Ti, V, Rh, Ir and X = Al, Zn) are
cage compounds with the space group Fd3̄m. In particular, the
Pr3+ 4f 2 ions live on a diamond lattice, with each ion at the
center of the Frank Kasper cage formed by 16 neighboring X
ions with the local point group Td [14]. Strong SOC leads to
a total angular momentum J = 4 on the Pr ion, while crystal
field splitting leads to a �3 doublet ground state. (We note
that PrRh2Zn20 has the local point group T due to a further
structural transition, and has a �23 doublet ground state)

[14,32]. The �3 doublet wave functions are given by [13,41]
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In these compounds, the first excited triplet �4 or �5 is sepa-
rated from the ground doublet by � ≈ 30–70 K. This allows
us to study the broken symmetry phases, which typically have
transition temperatures � 5 K, by projecting to the �3 (or
�23) doublets. Using these doublets, we define pseudospin-1/2
basis as in Ref. [43], namely,
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We identify the corresponding pseudospin operators in
terms of Stevens operators [44,45] O22 =
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Here, the components of the pseudospin 
τ are such that
(τ x, τ y )≡ 
τ⊥ describes a time-reversal invariant quadrupolar
moment, while τ z describes a time-reversal odd octupolar
moment.

The point group symmetries of Pr3+ ions include S4z (π/2
rotation about z axis and inversion about a site), C31 (2π/3
rotation along (111) direction), σd1(mirror reflection with a
plane perpendicular to (11̄0) direction), and I (bond-centered
inversion). Under these point group operations and time rever-
sal (�), the pseudospins transform as

� : τ z
A/B → − τ z

A/B, (5)

I : 
τA ↔ 
τB, (6)

S4z : τ±
A/B → − τ∓

A/B ; τ z
A/B → − τ z

A/B, (7)

σd1 : τ±
A/B → − τ∓

A/B ; τ z
A/B → − τ z

A/B, (8)

C31 : τ±
μ → e±i2π/3τ±

μ . (9)

Note that we have dropped explicit site indices, keeping in
mind that these sites will transform under lattice operations.
However, we have kept sublattice labels since this will be
important when we construct the Landau theory in the next
section. We next use these symmetries to construct the Landau
theory.

III. LANDAU THEORY

In this paper, we study the simplest scenarios with uniform
or two-sublattice orders which do not enlarge the unit cell
of the diamond lattice. Thus, we consider FerroQuadrupole
(FQ), AntiFerroQuadrupole (AFQ), FerroOctupole (FO),
and AntiFerroOctupole (AFO) broken symmetry states.
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Some of these orders could potentially coexist. Let us intro-
duce uniform and staggered multipolar order parameters:

φu,s ≡〈τ+
A 〉 ± 〈τ+

B 〉, (10)

mu,s ≡ 〈
τ z
A

〉 ± 〈
τ z
B

〉
. (11)

Here, the complex scalars φu,s denote, respectively, the
uniform (for FQ) and staggered parts (for AFQ) of the XY

quadrupolar order, while the real scalars mu,s refer to the
uniform (for FO) and staggered parts (for AFO) of the Ising
octupolar order. The underlying crystal and time-reversal
symmetry transformations act on the order parameters φu,s

and mu,s as follows:

� : φu,s → φu,s ; mu,s → −mu,s, (12)

I : (φu,mu) → (φu,mu); (φs,ms ) → −(φs,ms ), (13)

S4z : φu,s → −φ∗
u,s ; mu,s → −mu,s, (14)

C31 : φu,s → ei2π/3φu,s ; mu,s → mu,s. (15)

For two-sublattice orders, the pseudospins transform in the
same manner under S4z and σd1 (since we do not have to keep
track of the precise sites); thus, we drop the σd1 symmetry in
the following analysis. The symmetry-allowed terms in the
Landau free energy with independent order parameters are
thus:

Fφu = ruφ|φu|2+iv
(
φ3

u−φ∗3
u

)+guφ|φu|4+· · · , (16)

Fφs = rsφ|φs |2+gsφ |φs |4+w
(
φ6

s +φ∗6
s

)+· · · , (17)

Fmu = rumm2
u+gumm4

u+· · · , (18)

Fms = rsmm2
s +gsmm4

s +· · · , (19)

where the ellipses denote dropped higher order terms. The im-
portant difference between the FQ versus AFQ free energies
appears in the “clock” anisotropy terms which break XY sym-
metry for φu, φs , respectively; this is cubic for FQ and sixth
order for AFQ. This free energy must be supplemented by Fint

which encapsulates interactions between the different order
parameters. Symmetry allows for a single cubic interaction,

F (3)
int = iλ

(
φ2

s φu − φ∗2
s φ∗

u

)
. (20)

This leads to “parasitic” FQ order φu ∼φ∗2
s in an AFQ state.

Additional quartic interactions between order parameters take
the form

F (4)
int = c1|φu|2|φs |2 + c2m

2
um

2
s + c3|φu|2m2

u

+ c4|φs |2m2
s + c5|φu|2m2

s + c6|φs |2m2
u . (21)

Such terms can lead to coexistence of quadrupolar and octupo-
lar order parameters depending on the signs of the coefficients.
Below, we will analyze this Landau free energy in various
cases, starting from the simplest example.

A. FQ order in PrTi2Al20

PrTi2Al20 exhibits FQ order, so we can focus on the single
term Fφu in Eq. (16) above [13,32,33]. For ruφ > 0, this
describes a paramagnetic (PM) phase with φu = 0, while
ruφ < 0 leads to FQ order with φu �= 0. The phase of φu ≡
|φu|eiθu is determined by the clock term v. For v > 0, we
favor θu = π/6 + 2nπ/3 (with integer n), while v < 0 pins
θu = π/6 + (2n + 1)π/3. In particular, either sign of v favors
O20 order over O22 order, which is consistent with nuclear
magnetic resonance (NMR) experiments [37] on PrTi2Al20. In
the “hard-spin” limit, the theory for the PM-to-FQ transition
is a Z3 clock model which is known to exhibit a first-order
transition in three dimensions (3D) [46,47]. However, disorder
effects [48] may modify this expectation, leading to a contin-
uous transition as appears to be observed in experiments; this
needs further theoretical investigation.

B. AFQ with “parasitic” FQ order

Let us ignore the octupolar orders mu,ms , and focus on
the free energy Fφu + Fφs + F (3)

int + c1|φu|2|φs |2. For an AFQ
transition driven by rsφ < 0, we get φs �= 0. This AFQ tran-
sition will happen within mean field theory at TQ if we set
rsφ = αs (T − TQ), with αs > 0. In this case, even if ruφ > 0,
the cubic interaction λ �= 0 in F (3)

int leads to φu �= 0. It is useful
to begin our analysis of the interplay of AFQ and FQ orders
by considering the regime where ruφ is large. The resulting
FQ order is then parasitic, and it will be slaved to the AFQ
order. Let us simplify the problem by setting (v, guφ ) → 0 to
leading order, and minimizing the free energy with respect to
φu which leads to

φu = iλ

ruφ

φ∗2
s . (22)

Substituting back, the full free energy is given by

F eff
φs = rsφ|φs |2 + geff

sφ |φs |4 + weff
(
φ6

s + φ∗6
s

) + · · · , (23)

where

geff
sφ = gsφ − λ2

ruφ

, (24)

weff = w + v
λ3

r3
uφ

. (25)

With φs = |φs |eiθs , we find that the clock term with weff > 0
favors θs = (2n + 1)π/6, while weff < 0 would favor θs =
2nπ/6. Now, even if ruφ > 0, it may have a temperature
dependence as ruφ = ruφ (0) + αuT with ruφ (0) > 0, αu > 0.
Such a (benign) temperature dependence of ruφ could, never-
theless, lead to a change of sign of geff

sφ which could lead to
first-order transitions, or a sign change of weff (if the product
wvλ < 0), which may modify the competition between the
different clock terms. This, admittedly crude, argument sug-
gests that the interplay of AFQ and FQ orders could lead to a
rich phase diagram with new phases and phase transitions.

To examine this scenario, we numerically minimize the
Landau free energy Fφs + Fφu + F (3)

int , as a function of ruφ

and rsφ , while keeping ruφ > 0. For illustrative purposes, we
fix guφ = 1 and gsφ = 1/2 and consider the choice for the
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(a) (b)

(c)(c)

FIG. 1. (a) Phase diagram of the Landau theory described by
Fφu + Fφs + F (3)

int with AFQ and FQ order parameters as functions
of rsφ and ruφ . Solid (dashed) lines indicate the second (first) order
phase transitions. Here, we take wvλ< 0. The various phases are
paramagnet (PM), FQ and three distinct phases (I), (II), and (III)
for AFQ with parasitic FQ (AFQFQ). See main text for details. (b)
Plot of the order parameters as a function of temperature T , a cut
through the trajectory (purple line) in panel (a). Red and blue lines
represent the magnitude of order parameters φs and φu. (c) Common
origin plots of distinct AFQFQ phases (I), (II), and (III). Red and
Blue arrows exhibit AFQ and FQ, respectively, and purple arrow
is the direction of quadrupolar order resulting from combination
of both AFQ and FQ. All these spin configurations have threefold
degeneracies with 2π/3 rotation in τx-τy plane.

coefficients of the clock terms (w, v, λ) ≡ (1/4,−1/4, 1/4).
The resulting phase diagram is shown in Fig. 1(a), and ex-
hibits five different phases: a paramagnet (PM), a FQ state
driven by the cubic term v, and three types of AFQ phases
(with coexisting FQ order), which result from competition
between the different clock terms in the free energy. Solid
and dashed lines indicate the second order and the first-order
phase transitions, respectively. Figure 1(c) shows the nature
of the different AFQ phases, which are distinguished by the
behavior of the quadrupole moment on the two sublattices.

In AFQ-I, the staggered quadrupolar order points along τx

(O22) while the parasitic uniform component points along τy

(O20). This phase minimizes the clock anisotropy terms v and
λ. The AFQ-I state depicted in Fig. 1(c) preserves S4z and �

symmetries.
In AFQ-III, both the staggered and uniform components

favor O20 order, so the overall magnitude of the ordered
quadrupole moment is different on the two sublattices. This
phase minimizes the clock terms w and λ. Again, the AFQ-III
state depicted in Fig. 1(c) preserves S4z and � symmetries.

Finally, AFQ-II is a “frustrated” phase, where the compe-
tition of the different clock terms (w, v, λ) results in none of
them being fully minimized. This phase exhibits a generically
complex superposition of O20 and O22 orders, with unequal
magnitude of the ordered moment on the two sublattices,
and only preserves �. We thus expect the AFQ-II state,

which breaks the residual S4z symmetry, and thus has lower
symmetry than AFQ-I or AFQ-III, to arise from either one of
them upon cooling.

We find that different choices for these clock coefficients,
keeping the product wvλ < 0 yield phase diagrams with the
same phases and a roughly similar topology. For instance,
when we decrease λ = 1/16, we find the following differ-
ences: (i) the AFQ-I phase shrinks, (ii) the AFQ-II to AFQ-III
phase transition becomes first order, and (iii) there is no direct
transition from PM into AFQ-I.

To see how this (rsφ, ruφ ) phase diagram might translate
into a phase diagram as a function of temperature, consider a
cut through Fig. 1(a) at large ruφ . Such a cut will yield a PM
to AFQ-III transition, i.e., a single transition into a phase with
coexisting AFQ order and parasitic FQ order. This scenario is
consistent with what has been previously explored by Hattori
and Tsunetsugu [41,42].

However, for smaller ruφ , along the cut shown in Fig. 1(a),
we find that the transition splits into two transitions, a PM
to AFQ-III transition, and a subsequent AFQ-III to AFQ-II
transition. Such phase transition originates from a competition
between different clock terms of AFQ and FQ orders, thus
can be captured by cubic and higher orders of spin-spin
interactions. Figure 1(b) shows the evolution of the order
parameters with “temperature,” where going along the cut
from PM to AFQ-III to AFQ-II is viewed as corresponding
to decreasing temperature. The two thermal transitions in this
scenario might potentially explain the two observed zero field
thermal transitions in PrV2Al20 [16,22]. We note that while
there are many possible cuts we could take which would lead
to multiple thermal transitions, the one we have chosen seems
most promising from the point of view of understanding the
magnetic field evolution as discussed in Sec. IV.

C. Coexisting AFQ and octupolar orders

Finally, let us turn to the most interesting possibility, that
the two thermal transitions in PrV2Al20 correspond, respec-
tively, to the onset of AFQ and of octupolar order which
spontaneously breaks time-reversal symmetry. In previous
work, we have considered this possibility within a particular
(phenomenological) microscopic Hamiltonian with compet-
ing two-spin and four-spin interactions which we studied
using classical Monte Carlo simulations [43]. Here, we re-
visit this scenario using Landau theory which goes beyond
a specific microscopic model. We note the precise type of
octupolar order, either ferrooctupolar or antiferrooctupolar,
does not change our Landau theory analysis performed below;
without loss of generality, we thus consider the case with
ferro-octupolar order. This distinction will of course be impor-
tant when we turn in the end to a discussion of experimental
consequences.

To illustrate this interplay of AFQ and octupolar orders,
Fig. 2(a) shows a phase diagram obtained using the Landau
free energy F eff

φs + Fmu + F (4)
int , where we consider having in-

tegrated out φu and assumed large ruφ so any multiple thermal
transitions must arise from additional octupolar order. We pick
c6 �= 0 in F (4)

int in Eq. (21); specifically, we chose c6 < 0 to
allow for a coexistence phase. As we vary rsφ, rum, there exist
four distinct phases: a paramagnet (PM) (φs =φu =ms =0),
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(a) (b)

(c)

FIG. 2. (a) Phase diagram of the Landau theory described by
Fφu+Fφs +Fmu+F (3)

int +F (4)
int with AFQ, FQ and FO order param-

eters as functions of rsφ and rsm. Here, we set wvλ> 0 distinct with
the case depicted in Fig. 1. Thus, the second phase transition only
arises from developing additional octupolar order. In this case, three
phases exist described by continuous phase transitions: paramagnet
(PM), AFQ with parasitic FQ (AFQFQ), and coexisting AFQ and
FO with parasitic FQ order (AFQFQ FO). See main text for details.
(b) Plot of the order parameters along shown trajectory (purple line)
in panel (a). Red, blue and green lines represent the magnitude of
order parameters φs and φu and mu. (c) Common origin plots of each
phase. Red, blue, and green arrows exhibit magnitudes of AFQ, FQ,
and FO phases, respectively, and purple arrow is the combination
of them, determining the direction of pseudospin τ . All these spin
configurations have threefold degeneracies with 2π/3 rotation in
τx-τy plane. (Here we chose the quadrupole order configuration
having only τy component.)

an AFQ phase with parasitic FQ order (φs �=0, φu �=0,mu =
0), an FO phase (φs =φu =0,mu �= 0), and finally a phase
with coexisting AFQ and FO orders with parasitic FQ order
(φs �=0, φu �=0,mu �=0). Figure 2(b) shows the temperature
dependence of the order parameters as we “cool” from the
PM into the phase with coexisting AFQ and FO orders; for
simplicity, we consider going along the trajectory indicated
in Fig. 2(a), i.e., keeping rsm fixed and varying rsφ . This
clearly shows the double transition, with the upper transition
TQ being associated with AFQ order (with parasitic FQ) and
the lower transition at T ∗ arising from the octupolar order.
Figure 2(c) shows the common origin plots of pseudospin τ

for AFQ and AFQ-FO, respectively (both with parasitic FQ).

IV. IMPACT OF A MAGNETIC FIELD

We next consider the impact of an applied magnetic field
B on the Landau free energy and its phases and phase tran-
sitions. The leading term is a quadratic-in-field coupling to
the quadrupolar order; microscopically, this arises via second-
order perturbation theory in B · J , where J is the J = 4
angular momentum operator. Projecting to the �3 doublet, we

arrive at the form [41]

Hfield =γB2(b1τ
x +b2τ

y ), (26)

where b1 ≡
√

3
2 (b̂2

x − b̂2
y ), b2 ≡ 1

2 (3b̂2
z − 1), and (b̂x, b̂y, b̂z) de-

scribes the unit vector pointing along B. The coupling con-
stant,

γ ∝
(
− 14

3�(�4)
+ 2

�(�5)

)
, (27)

with �(.) being the energy of the indicated higher energy
crystal field multiplets [43].

Note that a magnetic field along the (111) direction does
not directly couple to the quadrupolar moment, but even along
this direction B2 could couple to the energy density via |φs |2
or |φu|2, with the coupling to |φu|2 being less important if the
FQ order is parasitic and small. Moreover, along this special
(111) direction, the magnetic field can couple to the octupolar
moment at cubic order in the field as ∼|B|3b̂x b̂y b̂zτz; however,
given that this last term is expected to be much weaker for
typical fields, we omit it in the analysis below.

To proceed, it is useful to define a complex scalar ψB ≡
b1+ib2 representing the external magnetic field, which trans-
forms identical to the FQ order parameter φu, and thus
couples to it linearly. This leads to terms in the Landau free
energy,

FB =γB2(ψ∗
Bφu+φ∗

uψB )+B2(r̃sB |φs |2+r̃uB |φu|2), (28)

where we have included extra, symmetry allowed, couplings
r̃sB, r̃uB to the energy density as discussed above. Along
key high symmetry directions, ψB (111) = 0, ψB (100) =
eiπ/2+i2nπ/3, ψB (110) = 1

2 e−iπ/2+i2nπ/3.

A. FQ order in PrTi2Al20

As seen from the coupling in FB above, the direction of
the magnetic field pins the quadrupolar moment direction,
thus explicitly breaking the Z3 symmetry associated with the
choice of phase of φu. This converts the PM-FQ transition into
a smooth crossover for both (001) and (110) field directions,
as has also been predicted based on microscopic model studies
and confirmed by specific heat measurements on PrTi2Al20.

B. AFQ with parasitic FQ order

For this case, we proceed by considering the Landau free
energy Fφs + Fφu + F (3)

int supplemented by the field term FB .
For simplicity, we set r̃sB = 0 and r̃uB = 0, and only consider
the impact of the coupling γ . Minimizing this full free en-
ergy along the cut shown in Fig. 1(a), we find the strongly
direction-dependent field evolution displayed in Fig. 3 for
fields along (001) and (110) directions. In both cases, the field
couples linearly to φu, and thus pins its phase as soon as B �=0.
We refer to the resulting phase as “FQ” to denote that it is
not a symmetry broken FQ state, but rather a field induced
FQ state which is thus qualitatively similar to a PM. Along
the (001) direction, the entire region of AFQ-III and AFQ-II
gets replaced by the AFQ-II phase as φu cants away from
pure O20 order, while phase AFQ-I emerges only for nonzero
B from the PM-to-AFQ-III transition point. Along the (110)
direction, however, all three phases present at zero field and
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(a) (b)

FIG. 3. (a) Phase diagram of quadrupolar order as functions
of magnetic field B//(001) and temperature T taking the shown
trajectory along the purple line in Fig. 1(a). In the presence of field
B//(001), the type (I) phase of AFQFQ is stabilized at intermediate
temperature, whereas the type (III) phase is no longer stable with
fields along (001) direction. See the main text for details. (b) Phase
diagram of quadrupolar order with B//(110). With fields, the type
(III) phase is stable favored by both cubic anisotropy and field
coupling of FQ.

the corresponding two thermal phase transitions survive even
for B �= 0.

C. Coexisting AFQ and octupolar orders

Finally, let us turn to the field evolution in the case where
we assume ruφ is large and positive and integrated out φu but
study the interplay of φs and mu as we have done at B = 0.
We thus minimize the free energy F eff

φs + Fmu + F (4)
int , and we

supplement this with

F eff
B = iB2γeff

(
ψBφ2

s − ψ∗
Bφ∗2

s

) + B2r̃sB |φs |2 , (29)

where the term γeff arises from the coupling γ in Eq. (28) upon
integrating out φu. Figure 4 shows the direction dependent
field evolution of multiple transitions for coexisting AFQ and
octupolar orders. When a magnetic field is applied, the tran-
sition temperature [blue lines in Figs. 4(a) and 4(b)] between
paramagnet (PM) and AFQ with parasitic FQ phase (AFQFQ)
increases due to field coupling term r̃sB which is quadratic

(a) (b)

FIG. 4. (a) Phase diagram of quadrupole-octupole order as func-
tions of magnetic field B//(001) and temperature T taking the shown
trajectory along the purple line in Fig. 2(a). With fields along (001)
direction, the phase transition temperature between AFQFQ and
AFQFQ-FO decreases, whereas increases for between AFQFQ and
paramagnet. (b) Phase diagram of coexisting quadrupole-octupolar
order as functions of magnetic field B//(110). In this case, magnetic
fields induce the increase of phase transition temperature for both
cases. See the main text for details.

in φs , and since the phase is directly locked to the field
direction. However, the lower transition temperature strongly
depends on field direction; it decreases with B//(001) [red
line in Fig. 4(a)] and increases with B//(110) [red line in
Fig. 4(b)]. The decrease of transition temperature with field
(001) originates from the competition between the sixth-order
anisotropy term and field coupling terms for finite magnitudes
of φs . Thus, an anisotropic evolution of the phase diagram in a
magnetic field can be also present due to AFQ and octupolar
orders.

V. DISCUSSION

In this paper, we have formulated and studied the Landau
theory of multipolar orderings in the Pr(TM)2Al20 systems,
including quadrupolar and octupolar orders. In the absence of
any octupolar order, the phases of the Landau theory preserve
time-reversal symmetry. In this case, examining the differ-
ent quadrupolar orders, we find that while a single thermal
transition is expected in the case of FQ order, there may
be multiple thermal transitions for the case of AFQ orders.
Such a scenario involves a higher temperature transition from
a paramagnetic phase into an AFQ order which breaks all
point group symmetries except S4z, followed by a lower-
temperature transition into a phase where this residual Ising
symmetry is broken. The residual S4z symmetry in the inter-
mediate phase has implications for 27Al NMR experiments
which probe the induced dipole order for a “probe” magnetic
field applied along the (111) direction. For a (111) field, there
are a set of “3c” Al sites on the Frank-Kasper cage which
are symmetry equivalent in the paramagnetic phase, and yield
a single NMR line [37]. Based on symmetry, an AFQ-III
state with S4z symmetry is expected to split this into four
NMR lines, with a 1:2 intensity ratio (i.e., two weak and two
strong). However, the lower-temperature AFQ-II state with
broken S4z should exhibit six NMR lines with equal intensity.
Thus, upon cooling from the AFQ-III state, which preserves
S4z symmetry, into the low-temperature AFQ-II state with
broken S4z symmetry, each of the two original high-intensity
lines should split into two peaks. Alternatively, the lower-
temperature transition may be from an intermediate AFQ-III
state which preserves S4z and time reversal into a state where
time-reversal is broken by the octupolar order. In this case,
the NMR should show four lines with a 1:2 intensity ratio
in both broken symmetry phases assuming that the octupolar
order is only weakly affected by field, but the time reversal
breaking or distinctions between FO and AFO could be
possibly detectable by μSR [24]. Further work is needed to
understand the role of domains and nature of domain walls
in systems with such multipolar orders due to possible spin-
lattice couplings. Clarifying the nature of these multipolar
orders in the Pr(TM)2Al20 systems would be a significant
step in understanding the phase diagram and quantum critical
points of such multipolar Kondo materials.
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