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Finite-temperature phase diagram of the Heisenberg-Kitaev model
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We discuss the finite-temperature phase diagram of the Heisenberg-Kitaev model on the hexagonal lattice,
which has been suggested to describe the spin-orbital exchange in the Mott-insulating iridate Na2IrO3. The
model exhibits magnetically ordered ground states well beyond the isotropic Heisenberg limit as well as a
gapless spin-liquid phase around the anisotropic Kitaev limit. Using a pseudofermion functional renormalization
group (RG) approach we extract both the Curie-Weiss scale and the critical ordering scale from the RG flow
of the magnetic susceptibility. The Curie-Weiss scale switches sign—indicating a transition of the dominant
exchange from antiferromagnetic to ferromagnetic—deep in the magnetically ordered regime for which we find
no significant frustration. We discuss our results in light of recent susceptibility measurements for Na2IrO3.
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In the realm of solid-state physics, frustration refers to
the phenomena that arise from the competition between
interactions that cannot be simultaneously satisfied: typically a
large degeneracy of ground states and a suppression of thermal
ordering by fluctuations.1 For many magnetic solids, geometric
frustration can arise when interactions are incompatible with
the underlying lattice symmetry.2 A prominent example of the
latter are spin-1/2 Heisenberg antiferromagnets on nonbipar-
tite lattice structures, for which there is no straightforward
generalization of the Néel state but which can instead harbor
more exotic ground states, including commonly elusive spin
liquids.3 Even for bipartite lattices one can encounter geomet-
ric frustration when considering orbital degrees of freedom,
which occur in a large class of transition-metal oxides that
exhibit Jahn-Teller ions.4 For the latter, crystal-field splitting
often results in a single electron (or hole) occupying the doubly
degenerate eg level, for which the orbital occupation is then
cast in terms of a pseudospin-1/2. In contrast to ordinary
spin degrees of freedom, the exchange interactions between
these orbital degrees of freedom—arising from Jahn-Teller
distortions and/or superexchange—are highly anisotropic and
even for simple bipartite lattices cannot be simultaneously
satisfied, which has been shown to result, e.g., in a nontrivial
phase diagram of competing orbital orders on the cubic lattice5

or an orbital Coulomb phase on the diamond lattice.6

In this Rapid Communication, we consider a class of mate-
rials, certain iridates, where strong spin-orbit coupling (SOC)
results in effective degrees of freedom which fall between
the two opposing cases above. While iridates have attracted
much recent attention as candidate materials for topological
insulators,7 our study is motivated by a family of materials
of the form A2IrO3, such as Na2IrO3, which has recently
been shown to be a Mott insulator.8 In these iridates, the Ir4+
(5d5) ions form a quasi-two-dimensional hexagonal lattice of
effective j = 1/2 momenta. The latter arise from the combined
effect of crystal-field splitting of the d orbitals, resulting in a
single hole (five electrons) occupying the lowered t2g orbitals,
and spin-orbit coupling then giving rise to two Kramers
doublets, four electrons filling the (lower) j = 3/2 quartet and
a single electron in the j = 1/2 doublet. The exchange interac-
tions between these effective moments have been argued9,10 to

reflect both the original spin exchange in terms of an isotropic
Heisenberg coupling as well as strongly anisotropic orbital
interactions in terms of a Kitaev-type exchange

HHK[α] = (1 − α)
∑

〈i,j〉
�σi · �σj − 2α

∑

γ links

σ
γ

i σ
γ

j , (1)

where the σi denote the effective spin-1/2 moment of the Ir4+
ions and γ = x,y,z indicates the three different links of the
hexagonal lattice. As shown in Eq. (1), all energies are given in
units of the Heisenberg coupling divided by (1 − α) through-
out the article. The two couplings are found10 to enter with
opposite sign, i.e., the isotropic exchange is antiferromagnetic
(AFM), while the anisotropic exchange is ferromagnetic (FM).
Varying the relative coupling strength 0 � α � 1, the model
interpolates from the ordinary Heisenberg model with a Néel
ground state for α = 0 to the Kitaev model for α = 1, which
even for FM interactions is highly frustrated and exhibits a
gapless spin-liquid ground state.11 One might thus wonder
how the level of frustration varies between the spin- and
orbital-dominated limits of this model. This question is also
fueled by recent experiments8 on Na2IrO3 that reported mag-
netic susceptibility measurements, which, besides providing
unambiguous evidence of effective spin-1/2 moments, also
indicate a considerable suppression for the onset of magnetic
correlations below TN ≈ 15 K, in comparison with a Curie-
Weiss (CW) temperature of �CW ≈ −116 K. In particular, one
might wonder whether this suppression of magnetic ordering
might be interpreted as arising from a proximity to the highly
exotic spin-liquid phase of the Kitaev model, despite recent
resonant x-ray magnetic scattering experiments12 suggesting
a conventionally ordered magnetic ground state.

We address the above questions by investigating the finite-
temperature phase diagram of model (1). We use a recently
developed pseudofermion functional renormalization group
(PF-FRG)13–15 approach to compute the magnetic suscepti-
bility from the pseudofermion two-particle vertex function
evolving under a RG flow with a frequency cutoff �. We
show that the PF-FRG provides a suitable tool to obtain both
finite-temperature and ground-state properties of the model al-
lowing for a direct comparison to thermodynamic experiments.
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FIG. 1. (Color online) (a) Zero-temperature phase diagram of model (1) exhibiting two magnetic phases (AFM, s-AFM) and a spin-liquid
phase. (b) Ordering peaks in the extended Brillouin zone (BZ). The inner hexagon indicates the first BZ. s-AFM order possesses two inequivalent
peak positions in the extended BZ. (c) Evolution of the k-space-resolved static magnetic susceptibility (for a field direction along one of the
cubic axes) upon variation of α in (1). The susceptibility has the dimension of an inverse energy.

In particular, we extract the high-temperature CW behavior
from the RG flow, the onset of magnetic ordering (from
the breakdown of the RG flow), and momentum-resolved
magnetic susceptibility profiles, which also allow to identify
the nature of the various ground states of model (1).

Numerical simulations. The PF-FRG approach13–15 refor-
mulates the spin Hamiltonian in terms of a pseudofermion rep-
resentation of the spin-1/2 operators Sμ = 1/2

∑
αβ f †

ασ
μ
αβfβ ,

(α,β =↑ , ↓, μ = x,y,z) with fermionic operators f↑ and f↓
and Pauli matrices σμ. Such a representation allows to apply
Wick’s theorem leading to standard Feynman many-body tech-
niques. In this pseudofermion language, quantum spin models
become strong-coupling models with zero fermionic band-
width and a finite interaction strength. The major conceptual
advancement of the FRG approach13,14,16–18 is that it allows to
tackle this situation by providing a systematic scheme for the
(infinite) self-consistent resummations needed for the strongly
coupled fermion problem. The FRG summations are obtained
by generating equations for the evolution of all m-particle
vertex functions under the flow of a sharp infrared frequency
cutoff �. To reduce the infinite hierarchy of equations to
a closed set, a common approach is to restrict oneself to
one-loop diagrams. The PF-FRG extends this approach by also
including certain two-loop contributions19 to retain a sufficient
backfeeding of the self-energy corrections to the two-particle
vertex evolution. This allows us to compute the magnetic
susceptibility—our main diagnostic tool to study model (1).

The FRG equations are simultaneously solved on the
imaginary frequency axis and in real space. A numerical
solution requires to (i) discretize the frequency dependencies
and (ii) to limit the spatial dependence to a finite cluster,
thus keeping correlations only up to some maximal length. In
our calculations the latter extends over seven lattice spacings
corresponding to a cluster size of 112 lattice sites. The onset
of spontaneous long-range order is signaled by a breakdown
of the smooth RG flow, while the existence of a stable solution

indicates the absence of long-range order—see Refs. 13 and 14
for further technical details.

Zero-temperature states. We start our discussion by consid-
ering the zero-temperature phases of the Heisenberg-Kitaev
model (HKM) (1) and by recapitulating previous T = 0
results:10 The Néel ordered (AFM) state of the Heisenberg
limit is stable for α � 0.4, when it gives way to a “stripy” Néel
ordered (s-AFM) state illustrated in Fig. 1(a) which covers the
coupling regime 0.4 � α � 0.8. In the extended parameter
regime 0.8 � α � 1 the ground state is a gapless spin liquid
(SL) where the emerging gapless excitations are Majorana
fermions forming two Dirac cones in momentum space.11

We have calculated the characteristic magnetic susceptibil-
ity profiles for these states within our PF-FRG approach, as
given for various values of α in the main panel of Fig. 1, where
we plot the susceptibility just above the (finite) ordering scale
�c below which the RG evolution becomes unstable. We adopt
the extended Brillouin zone (BZ), illustrated in Fig. 1(b), ap-
propriate for the two-site unit cell of the hexagonal lattice. For
the Néel ordered phase we observe characteristic corner peaks
in the susceptibility. This magnetic AFM signature remains
robust for the full extent of the phase up to α ≈ 0.38, where we
observe a relatively abrupt shift of the susceptibility maxima.
The latter is indicative of a first-order phase transition, which
is in tune with previous T = 0 numerical studies.10,20 Above
α ≈ 0.38 we observe the onset of the second magnetically
ordered phase, the stripy AFM, for which the susceptibility
signature comes in the form of two (not symmetry-related)
maxima, with a dominant peak along kx = 0 in the second
BZ and a smaller peak along ky = 0 in the first BZ. From
an extrapolation of the finite-temperature crossover line that
separates dominant AFM and dominant s-AFM fluctuation
regimes, we can locate the zero-temperature transition at
α ≈ 0.4, in correspondence with previous studies.10,20 Within
the s-AFM phase, the point α = 0.5 stands out for which
the exact quantum ground state has been shown10 to be
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the classically ordered state (without any dressing). In our
calculations, the absence of (quantum) fluctuations at this
point is indicated by remarkably sharp response peaks [see
Fig. 1(c)]. For α > 0.5 we observe a pronounced decrease
of the peaks. The phase transition from the s-AFM phase to
the spin-liquid phase around the Kitaev limit is rather subtle
to detect in our calculations. Around the previously reported
quantum critical point10,20 at α ≈ 0.8 we observe a smooth
evolution of the susceptibility profile into the one expected for
the SL phase: a pure cos-type susceptibility, reminiscent of the
purely nearest-neighbor correlations in this phase.21

Finite-temperature physics. To make a connection between
the flow parameter � and the temperature T , we follow a line
of thought discussed by Honerkamp and Salmhofer:22 Both
the flow parameter � and the temperature T act as infrared
frequency cutoffs. While the former is implemented as a sharp
cutoff in the continuous frequency space, the latter allows
a description in terms of discrete Matsubara frequencies,
where the smallest mesh point sets a lower bound of the
energy resolution. Even though the precise cutoff procedures
associated with � and T are hence quite different, we find
that the identification of the two scales leads to qualitatively
correct results; quantitative uncertainties possibly enter in our
estimates of the ordering instability and its critical scale �c.
We note that our numerical simulations are restricted to finite
system sizes and thus indicate a finite (magnetic) ordering scale
even for models with continuous spin symmetry (α = 0 and
α = 0.5), seemingly violating the Mermin-Wagner theorem
(MWT) applicable in the thermodynamic limit. However,
since the microscopics of any material more often than not
relieve the MWT conditions, due to imperfect symmetry
or weak three-dimensional (3D) coupling, the estimated �c

should provide a good qualitative description of the ordering
temperature Tc as observed in experiment.

At high temperatures, we find that the homogeneous
susceptibility calculated from the RG flow for various � nicely
reproduces the expected CW behavior χ = C/(� − �CW),
as shown in Fig. 2, which allows to extract rather precise
numerical estimates for the CW scale �CW (Fig. 3). Notably,
we observe that the CW scale changes sign—indicating a
transition of the dominant exchange from AFM to FM—at ap-
proximately α ≈ 0.68, which is still deep in the magnetically
ordered regime. Such a change of the dominant exchange is
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FIG. 2. (Color online) The inverse susceptibility 1/χ as obtained
from pseudofermion FRG calculations for various coupling parame-
ters α. The solid lines indicate fits to a CW law.
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already suggestive from a semiclassical analysis of (1), which
gives TCW = −3/4 + 5α/4 and thus indicates a sign change at
approximately α = 0.6. This supports that the cutoff � indeed
retains the features of a temperature parameter and that � can
be used to deduce finite-temperature properties of model (1).

We can now investigate whether a substantial frustration
builds up as one interpolates between the spin-dominated
(unfrustrated) Heisenberg regime to the orbital-dominated
(strongly frustrated) Kitaev regime. A commonly used mea-
sure for frustration is the ratio between CW and ordering scale,
the so-called frustration parameter

f = |�CW|/Tc ≈ |�CW|/�c , (2)

with a small value f � 5 indicating the absence of frustration,
and systems with f � 10 being commonly referred to as
highly frustrated.1 We estimate the ordering scale �c from
the breakdown of the RG flow, as shown in Fig. 4 for the full
parameter range α except for a region around the transition
between the s-AFM phase and the SL (α ≈ 0.8), where our
approach does not allow to reliably calculate the transition
temperature. As shown in Fig. 5, we observe a rather constant
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of enhanced numerical uncertainties is seen near α ≈ 0.8. The inset
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plateau f ≈ 2 for the frustration parameter in the AFM regime
before it decreases linearly starting at approximately α ≈ 0.4
with the onset of the s-AFM phase. At α = 0.5 in the s-AFM
phase, model (1) can be mapped to a fluctuation-free classical
system.10 This is consistent with our result of f ≈ 1 at
α = 0.5, as a frustration parameter close to unity signals the
absence of fluctuation-induced frustration. For larger α, the
frustration parameter crosses zero as the CW scale changes
sign and beyond a regime of numerical uncertainty rapidly
diverges as expected for the spin-liquid regime (Fig. 5).

Connection to experiments. We compare our findings to
recent thermodynamic measurements8 on the iridate Na2IrO3.
The reported CW temperature of �CW ≈ −116 K indicates
a dominant AFM exchange and the considerable suppression
of magnetic ordering down to TN ≈ 15 K corresponds to a
frustration of f ≈ 8. While our finite-temperature analysis
of the HKM (1) indicates an AFM CW temperature for a
wide range of couplings 0 � α � 0.68, the ground states

in this regime are relatively simple, magnetically ordered
states that do not give rise to a significant suppression of the
ordering temperature, as the frustration parameter f never
exceeds f ≈ 2 in our calculations (Fig. 5). On the other hand,
we find a strong suppression of the ordering temperature in
the spin-liquid phase for α > 0.8 and its proximity, but the
dominant couplings in this regime are FM (�CW > 0). To
reconcile the combination of an AFM CW temperature and
a simultaneous suppression of the ordering temperature, one
might thus want to look beyond the HKM (1). In particular,
one might want to consider various mechanisms that could
suppress the ordering temperature in the magnetically ordered
regime, such as a next-nearest-neighbor exchange introducing
geometric frustration as suggested in Ref. 23 or the role of
disorder,24 especially in the form of nonmagnetic impurities
arising from the experimentally observed8 site mixing between
Ir and Na atoms. While the current analysis suggests that
Na2IrO3 is not in close proximity to the spin-liquid phase
of the Kitaev limit, one might still speculate how one could
drive the system closer to that regime. One promising path
to experimentally increase the anisotropic couplings might be
to exert pressure along the ab plane to counteract the c-axis
lattice distortion in the material, which quenches the SOC. A
similar relief of the lattice distortions might also be expected
when replacing the Na ions by smaller Li ions25 and consider
Li2IrO3 as a candidate material for more exotic ground
states.
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R. Moessner, and P. Wölfle. R.T. thanks all participants of
the “Korrelationstage 2011” in Dresden for discussions. J.R.
thanks Microsoft Station Q for hospitality. J.R. is supported
by DFG-FOR 960, and R.T. by the Humboldt Foundation.

1A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
2R. Moessner and A. P. Ramirez, Phys. Today 59(2), 24 (2006).
3L. Balents, Nature (London) 464, 199 (2010).
4D. I. Khomskii and M. V. Mostovoy, J. Phys. A 36, 9197 (2003).
5A. van Rynbach, S. Todo, and S. Trebst, Phys. Rev. Lett. 105,
146402 (2010).

6G.-W. Chern and C. Wu, e-print arXiv:1104.1614.
7See, e.g., J. E. Moore, Nature (London) 464, 194 (2010); M. Z.
Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010); X.-L. Qi
and S.-C. Zhang, e-print arXiv:1008.2026.

8Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010).
9G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

10J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 105,
027204 (2010).

11A. Kitaev, Ann. Phys. 321, 2 (2006).
12X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y. J. Kim,

H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B
83, 220403(R) (2011).
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