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With the advent of noisy intermediate-scale quantum (NISQ) devices, practical quantum computing has
seemingly come into reach. However, to go beyond proof-of-principle calculations, the current processing
architectures will need to scale up to larger quantum circuits which will require fast and scalable algorithms
for quantum error correction. Here, we present a neural network based decoder that, for a family of
stabilizer codes subject to depolarizing noise and syndrome measurement errors, is scalable to tens of
thousands of qubits (in contrast to other recent machine learning inspired decoders) and exhibits faster
decoding times than the state-of-the-art union find decoder for a wide range of error rates (down to 1%).
The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window
over the underlying code, akin to a convolutional neural network in pattern recognition approaches. We
show that such a preprocessing step allows to effectively reduce the error rate by up to 2 orders of
magnitude in practical applications and, by detecting correlation effects, shifts the actual error threshold up
to fifteen percent higher than the threshold of conventional error correction algorithms such as union find or
minimum weight perfect matching, even in the presence of measurement errors. An in situ implementation
of such a machine learning-assisted quantum error correction will be a decisive step to push the
entanglement frontier beyond the NISQ horizon.
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Introduction.—In quantum computing, recent years have
seen a paradigm shift which has pivoted experimental road
maps from building devices of a few pristine qubits toward
the realization of circuit architectures of 50–100 qubits but
tolerating a significant level of imperfections—the advent
of what has been termed noisy intermediate-scale quantum
(NISQ) technology [1]. This move has enabled a funda-
mental success in the recent demonstration that such a
NISQ quantum processor is capable of exhibiting a true
“quantum advantage” over classical computing resources
[2]. One of the leading NISQ platforms involves arrays of
transmons, superconducting charge qubits [3], which by
design are particularly resilient with regard to charge
fluctuations. However, building larger quantum circuits
from transmons comes with some intricate challenges [4,5]
and will eventually mandate to incorporate quantum error
correction (QEC) schemes [6]. Arguably the most prom-
ising approach here is the implementation of a surface code
[7,8], which exploits topological properties of the system
and, at the same time, remains experimentally feasible
[9,10]. In practical settings, one downside of realizing such
surface code architectures is the relatively slow decoding
time of current quantum error correction codes.
The decoding step in quantum error correcting codes

requires, at its core, a classical algorithm that efficiently
infers the locations of errors from measured error syn-
dromes [11]. The most widely adopted algorithm for
this purpose is minimum weight perfect matching

(MWPM) [12], an algorithm which runs in polynomial
time and is known to nearly achieve the optimal threshold
for the independent noise model [13,14]. One of the
drawbacks of the MWPM algorithm, however, is that its
implementations are often simply too slow. To improve
algorithmic scaling and to push error thresholds also for
more general noise situations, a number of alternative
decoding approaches have been suggested, of which the
most notable might be the renormalization group (RG)
[15–17] and union-find (UF) [18] decoders. The RG
decoder runs, for a surface code in a two-dimensional
(2D) geometry of linear size L, inOðL2 logLÞ time, often a
significant improvement over the MWPM approach
[which, in the worst case, scales cubic in the number of
errors, i.e., OðL6Þ in code distance]. However, its threshold
value of ∼0.129 for depolarizing noise [15] is lower than
that of the MWPM algorithm (∼0.151 [14]). The most
efficient conventional algorithm is the UF decoder which
runs in O½L2αðL2Þ�, i.e., almost linear in the number of
qubits [19], with a threshold ∼0.146 for the depolarizing
noise model (see below). In addition, the last two years
have seen a flurry of activity to adopt machine learning
(ML) techniques to best the decoding times and threshold
values of these “conventional” algorithms [20–33]. As ML
methods can be easily parallelized and generally offer a
high degree of adaptability, one might easily accept their
potential, but the first practical ML-based decoders typi-
cally delivered only on one of the two benchmarks—
improving the error threshold at the expense of scalability
or the other way round, providing good scalability but
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leading to error thresholds which are sometimes even below
those of the conventional algorithms [34].
It is the purpose of this Letter to introduce a powerful

two-step decoding algorithm that combines neural network
based preprocessing and union-find decoding to simulta-
neously achieve (i) improved error thresholds for depola-
rizing noise (even in the presence of syndrome
measurement errors), (ii) algorithmic scalability up to tens
of thousands of qubits, and (iii) real-life wall-clock run
times (i.e., the elapsed time passed to execute the decoding
process) that, for a range of error rates, best even those of
the bare union-find algorithm. Our main algorithmic idea
can be described as a hierarchical approach [33] that
employs an ML decoder to preprocess local error correc-
tions and leave the unresolved longer-range errors to a
conventional UF decoding. The preprocessing step shifts a
2D subsystem over a given stabilizer code (akin to the
preprocessing in a convolutional neural network) and
decodes local errors in these subsystems. After this step,
the system still exhibits errors that require longer range
corrections, for which we employ a conventional UF
decoder. However, since the preprocessing reduces the
effective error rate—up to 2 orders of magnitude depending
on the original error rate—this second step is extremely
performant as compared to, e.g., employing UF decoding to
the original unprocessed error instances. Extensive wall-
clock time measurements of our approach (the true per-
formance indicator in many real-life applications) show that
our algorithm outperforms the bare UF decoder in a noise
regime from 1% (in which one might want to operate
quantum computing devices) up to the 10% regime where
our ML-assisted approach is found to push the error
threshold by some 15 % above the value of the bare UF
decoder, as summarized in Table I. Our approach bears
some similarity to the “lazy UF decoder” [33], which
employs hierarchical decoding with a strictly local, hard
decision preprocessing step and has been shown to sub-
stantially improve UF decoding for ultralow error rates
below the per mil range.
Hierarchical QEC.—Throughout the Letter, we apply

our decoding algorithm to the toric code in the presence of
depolarizing noise as well as a scenario with additional
syndrome measurement errors. For the latter, we use a
phenomenological noise model where ancilla qubits for
measuring syndromes are also subject to depolarizing noise
but propagation of errors between data and ancilla qubits is
neglected. The toric code is defined on a square lattice
of linear size L and the stabilizer operators around the
vertices and plaquettes are given by Xv ¼

Q
i∈v Xi and

Zp ¼ Q
i∈p Zi. The code space is then spanned by the basis

vectors fjψi∶Xvjψi ¼ 1∀ v; Zpjψi ¼ 1∀pg, which, for
periodic boundary conditions, is four dimensional (and thus
encodes two qubits) and the distance of the code is L. Each
Z (X) error on a qubit flips the value of the nearby Xv (Zp)
operators.

The decoding problem is then defined as identifying the
error configuration for a given syndrome, i.e., a given
measurement of the outcomes of all stabilizers Xv and Zp.
To do so, we employ a two-step hierarchical procedure. In
the first stage—the ML-assisted preprocessing—we aim to
remove those errors that can be inferred from local
syndromes. To this end, we only consider qubits directly
connected to so-called defects (identified by an odd
syndrome measurement Xv ¼ −1 or Zp ¼ −1), as they
are the typical source of locally correctable errors. To infer
which error is the most probable for a given qubit, our
preprocessing step shifts through all qubits with a sub-
system of size l × l centered around an “examination
qubit” located at its center (see the setup in Fig. 1).
The local inference task for each such examination qubit
is then assigned to a neural network, whose details we

TABLE I. Overview of results. For multiple variants of our
decoding algorithm we provide the error threshold pth (second
column) for depolarizing noise (upper panel) and additional
syndrome measurement errors (lower panel) where ancillary
qubits for measuring syndromes are also subject to depolarizing
noise, as well as wall-clock time measurements (in milliseconds)
of the decoding time for different error rates (averaged over 106

instances) for code distances L ¼ 255 and L ¼ 31, respectively.
The boldfaced entries identify the best performing algorithm
when optimizing for error threshold or compute times. Compar-
isons are shown for the union-find (UF) and minimum weight
perfect matching (MWPM) decoders, combined with either lazy
[33] or machine learning (ML) assisted preprocessing using
subsystems of size l ¼ 3, 5, or 7 as indicated in brackets (see
main text). We have used a custom implementation for the UF
decoder [42] and PyMatching [43] for MWPM [44]. In the
presence of additional syndrome errors, the pure MWPM
calculation was optimized by combining the Blossom and
Dykstra algorithms and for the ML-assisted MWPM with
precomputed shortest paths. Details of our hardware setup are
given in Supplemental Material [34].

Algorithm pth tp¼0.01 tp¼0.05 tp¼0.1 tp¼0.1461

Depolarizing noise (L ¼ 255)

MLð7Þ þ UF 0.167ð0Þ 10.5 25.1 43.4 78.6
MLð5Þ þ UF 0.162(5) 6.7 12.8 26.2 56.2
Lazyþ UF 0.131(9) 6.9 20.7 51.1 � � �
UF 0.146(1) 8.4 22.5 44.9 92.8
MLð7Þ þMWPM 0.167(1) ∼210 ∼530 ∼650 ∼980
MLð5Þ þMWPM 0.163(8) ∼270 ∼510 ∼650 ∼970
MWPM 0.154(2) ∼560 ∼840 ∼1100 ∼1300

Algorithm pth tp¼0.01 tp¼0.02 tp¼0.03 tp¼0.0378

Depolarizing noiseþ syndrome errors (L ¼ 31)

MLð3Þ þ UF 0.043(4) 12.1 13.5 15.4 17.8
Lazyþ UF 0.031(3) 11.1 12.8 16.6 � � �
UF 0.037(8) 11.5 13.4 15.7 18.9
MLð3Þ þMWPM� 0.044ð5Þ 14.6 25.8 81.5 229
MWPM 0.043(7) 211 239 273 294
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discuss below. The results of the inference are collected and
the respective corrections are applied in one shot at the end.
The outcome of this step is that a large number of local
errors are decoded and only a small fraction of nonlocal
errors, manifest on scales beyond the range of our sub-
system, remain.
The second stage of our algorithm is to process the

remaining nonlocal errors. To do so, we employ a conven-
tional UF decoder on the remaining syndrome. Doing so is
significantly more efficient than employing the UF decoder
on the bare decoding problem (without the preprocessing),
as we will see that the “effective error rate” for this UF
decoding step is up to 2 orders of magnitude smaller than
the original error rate.
Neural decoder.—At the heart of our hierarchical QEC

approach is a neural network that decodes error syndromes
within a local subsystem, as illustrated in Fig. 1. We train
this neural network to output the most probable error
(among the four possible fI; X; Y; Zg errors) of the central
qubit given 2l2 nearby syndromes as an input (with the
factor of 2 coming from the two types of X and Z
measurements). In machine learning, this type of task is
commonly known as a multiclass classification problem
and exceedingly well studied in the context of supervised
learning approaches. To adopt such a supervised learning
approach to optimize our neural network, we do training
with a labeled dataset, i.e., batches of error-syndrome pairs
generated for a given error rate (and noise model), training
separate networks for each error rates. In practice, we train
our networks in 106 epochs, for which we create indepen-
dent sets of 512 error-syndrome batches “on the fly,” which
also reduces the chance of overfitting.
In designing the neural network (NN) architecture, there

is an inherent trade-off between the two algorithmic layers
of our hierarchical approach: If one opts for a small NN, its
computation time remains low but its accuracy in resolving
local syndromes drops, resulting in more computational

load for the UF decoder on the higher algorithmic layer. If,
on the other hand, one opts for a large NN, its accuracy in
resolving syndromes goes up at the cost of larger compute
times, while also alleviating the load of the higher-level UF
decoder. Indeed, this trade-off leads to a sweet spot, i.e., an
intermediate NN size that results, e.g., in minimal wall-
clock run times or maximal error thresholds. To identify an
optimal configuration, we have explored a multitude of
different network architectures for the case of depolarizing
noise, varying the size of the subsystem, the depth of the
network, and the number of nodes per layer as main
parameters (as detailed in Supplemental Material [34]).
When optimizing for compute speed a 5 × 5 subsystem
turns out to be ideal, while pushing the error threshold one
might want to go with a 7 × 7 subsystem—see Table I.
However, since the error threshold of the speed-optimized
network is only 3% smaller than the threshold-optimized
network, we consider the 5 × 5 NN approach the best
compromise in achieving fast decoding and high error
thresholds for an algorithm that also delivers on high
scalability.
Benchmark results.—In benchmarking our hierarchical

QEC algorithm, we start in the high-noise regime and
calculate the error threshold of our approach. Decoding 106

random instances of depolarizing noise for different error
rates and linear system sizes in the range L ¼ 7;…; 127we
can readily deduce the error threshold from the finite-size
scaling shown in Fig. 2. In comparison to the bare UF

FIG. 1. Neural network setup. Syndromes in the immediate
vicinity (red shading) of a reference qubit (cyan circle) are used as
input, whereby measured syndromes (blue or yellow) are as-
signed the value þ1= − 1 and no syndromes (gray) are assigned
value 0, respectively. Passing the input through the feed forward
network results in the error probabilities for the reference qubit.

FIG. 2. Error threshold and scaling behavior for the conven-
tional union find (UF) algorithm (upper row), and the machine
learning assisted MLþ UF algorithm (lower row) for depolariz-
ing noise (left column) and additional syndrome errors (right
column).
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algorithm (top panel), which exhibits an error threshold of
pUF
th ¼ 0.146ð1Þ, our algorithm yields a 10% higher value

of 0.162(5) and an increase of more than 20% compared to
the lazy UF decoder’s threshold of 0.131(9) [45]. This
notable increase of the error threshold indicates that our
ML-assisted approach is capable of identifying and resolv-
ing correlated errors in the depolarizing noise, which
the bare UF decoder cannot handle. The strength of the
ML-assisted decoder in the dense error regime can also be
exemplified by the logical accuracy near the threshold
plotted in Fig. 3, which shows a higher logical accuracy for
the MLþ UF decoder in this regime, independent of
system size. It should further be noted that our threshold
values are higher than the one of the bare RG decoder [15]
with pRG

th ¼ 0.153 and comparable to those found for a
combination of RG and sparse decoders [17], or the best
ML-based decoders using deep neural networks, for
which error thresholds of pML

th ≈ 0.165 are reported [22,28]
for depolarizing noise. However, our result is still
significantly below the optimal theoretical value [46] of
popt ¼ 0.189ð3Þ. Performing a similar analysis for a sce-
nario with additional syndrome measurement errors, we
come to analogous conclusions with a spread of the error
threshold between pth ¼ 0.031ð3Þ for the lazy UF decoder
and 0.044(5) obtained for ML-assisted MWPM decoding
(lower panel of Table I).
One measure to illustrate the inner workings of our

hierarchical approach is an “effective error rate,” i.e.,
the reduction of errors obtained after performing the first
ML-assisted step of our algorithm. Shown in Fig. 4, this
effective error rate reveals that preprocessing is particularly
powerful at low error rates, i.e., in the regime where few
long-range errors occur. Here, one can reduce the initial
error rate by more than 2 orders of magnitude (see the right
panel of Fig. 4), thereby significantly speeding up the

subsequent UF decoding step (as compared to a direct
application to the original syndrome).
As such one might naively expect the biggest computing

gain of our algorithm in the low-noise regime. For practical
implementations this is, however, not true as becomes
apparent when performing run-time measurements of our
decoder. Such measurements are illustrated in Fig. 5 where
the decoding time (again averaged over 106 error instances)
is plotted versus the linear system size for different error
rates. The top panel nicely demonstrates that, for large
system sizes, we find near linear scaling for both the UF
and our hierarchical UFþML decoder, independent of the
error rate. Note that our ML-assisted decoder easily scales
up to 2 × 255 × 255 ≈ 130 000 qubits where the decoding
time per instance is still a fraction of a second—this should
be contrasted to other ML-based decoders reported in the
literature, which could not be scaled beyond a hundred
qubits (see the overview in Supplemental Material [34]
Table IV).
If we look at the scaling of our algorithm for small to

moderate system sizes (highlighted in the lower panels of
Fig. 5), a breakdown of the linear scaling of the ML-
assisted decoder becomes evident. There is a considerable
“lag” in our implementation, which arises from using an
external graphics processing unit (GPU) to perform the
preprocessing step (see Supplemental Material [34] for
hardware specifications). Doing so readily implies another
inherent trade-off: initializing the neural network and
loading the syndrome data to the GPU has almost constant
overhead, which explains the plateau in our scaling plots
for small system sizes where the advantage of GPU
processing of the neural network is not compensating this
overhead (as it does for large system sizes). We have
measured this “kernel start-up” time to subtract this over-
head—which would not exist in a dedicated or in situ
device in a practical implementation of QEC in the lab—to
arrive at the “kernel adjusted” scaling of Fig. 5. The point at
which the ML-assisted decoder outperforms the bare UF
decoder comes down to code distances of L ≈ 31, but we

FIG. 3. Logical accuracy of the conventional UF decoder and
combined with lazy or ML-assisted preprocessing for depolariz-
ing noise. The inset shows the case of additional syndrome
measurement errors. The MLþ UF decoder increases the logical
accuracy, independent of system size, for all error rates shown.

FIG. 4. Effective error reduction attained by the ML prepro-
cessing step. Left: The effective error rate peff as a function of the
original error probability perr. The effective error rate is calculated
from the number of remaining syndromes peff ¼

P
Si=ðð4=3Þ×

2 × 2L2Þ. Right: The ratio of original error probability and
effective error rate.
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expect even smaller code distances to benefit from the
ML-assisted approach when going for an in situ imple-
mentation [35], using field-programmable gate arrays or
tensor processing units [36].
In summary, we have demonstrated that the combination

of machine-learning assisted preprocessing in conjunction
with conventional decoders in a newly devised hierarchical
approach results in a vastly scalable algorithm. Our
practical implementation shows that one can increase
logical accuracy and push the error threshold by resolving
correlated errors, while also reducing the actual decoding
times (to a few milliseconds in our hardware setup)
particularly in the dense error regime. As such our approach
nicely complements the lazy UF decoder [33] which excels
in the opposite regime of ultralow error rates. Taken
together, one might argue that one should always combine
the UF decoder with some sort of preprocessing step—
which one to go for depends on the expected noise level and
code distances.
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