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Preparing quantum states across many qubits is necessary to unlock the full potential of quantum comput-
ers. However, a key challenge is to realize efficient preparation protocols which are stable to noise and gate
imperfections. Here, using a measurement-based protocol on a 127 superconducting qubit device, we study the
generation of the simplest long-range order—Ising order, familiar from Greenberger-Horne-Zeilinger (GHZ)
states and the repetition code—on 54 system qubits. Our efficient implementation of the constant-depth proto-
col and classical decoder shows higher fidelities for GHZ states compared to size-dependent, unitary protocols.
By experimentally tuning coherent and incoherent error rates, we demonstrate stability of this decoded long-
range order in two spatial dimensions, up to a critical point which corresponds to a transition belonging to the
unusual Nishimori universality class. Although in classical systems Nishimori physics requires fine-tuning mul-
tiple parameters, here it arises as a direct result of the Born rule for measurement probabilities—locking the
effective temperature and disorder driving this transition. Our study exemplifies how measurement-based state
preparation can be meaningfully explored on quantum processors beyond a hundred qubits.

Traditionally, measurements have been synonymous with
extracting information from physical systems. Yet in the
quantum realm, the extraordinary nature of measurements al-
lows them to actively modify and steer quantum states, forg-
ing a new route to entanglement generation. Among the more
interesting entangled states are those with long-range cor-
relations [1–7]; however, these cannot be prepared by any
constant-depth unitary circuits, making them more sensitive to
the finite coherence times of current quantum processors [8–
10]. In contrast, recent theoretical studies have shown that the
use of measurements, which are non-unitary operations, can
be used to efficiently create quantum states with long-range
order [11–23] and critical quasi-long-range order [18, 21, 24].
In essence, measurement-based approaches trade off circuit
depth for number of mid-circuit measurements and operations
[25] as compared to exclusively unitary approaches.

In this work, we study such measurement-induced long-
range order and criticality. In particular, we consider
the ‘hydrogen atom’ of long-range entangled (LRE) states,
the Greenberger-Horne-Zeilinger (GHZ) state |GHZ⟩ ∝
|00 · · · 00⟩ + |11 · · · 11⟩, which can be thought of as one rep-
resentative of a more general ‘Ising’ phase of matter. A
necessary condition for realizing GHZ is a long-range Ising
order which organizes the individual qubits into a macro-
scopic state. While recent experiments show the practical-
ity of measurement-based protocols to create such Ising-like
order in one-dimensional qubit geometries where stability is
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not guaranteed [26], theoretical works suggest that this order
should be robust against a range of imperfections when using
a two-dimensional (2D) protocol [18, 21, 27]. Here, we im-
plement this 2D protocol on a superconducting qubit proces-
sor and, by tuning particular imperfections, we experimentally
create a critical ensemble of these long-range ordered states in
agreement with theoretical predictions for their stability.

The unavoidable randomness of quantum measurements
generates a ‘glassy’ version of the sought-after long-range
Ising order, e.g. |00110⟩ + |11001⟩, requiring some form of
decoding to tame the structured randomness. This makes
it crucial to record the measurement outcomes, and then
use either post-selection, feedforward, or post-processing to
recover the long-range order. In our setup, we implement
post-processing to decode [21, 28] the hidden long-range
order and determine the decoding threshold beyond which
the order is unrecoverable. This decoding threshold is where
our quantum system exhibits a Nishimori transition, or
criticality [29], for both incoherent [27] and coherent errors
[18, 21]. We argue that the observed Nishimori criticality is,
in fact, unavoidable in our protocol and a natural consequence
of Born’s rule – a striking distinction from materials studies
in labs seeking to observe the Nishimori criticality only by
fine-tuning disorder within the material against environmental
temperatures.

Protocol and device operation. In our protocol, we divide
the qubits on our heavy-hexagonal device into system qubits
on the vertex ‘sites’, and auxiliary qubits on the ‘bonds’ of a
honeycomb lattice (Fig. 1a). We will refer to the Pauli ma-
trices on each qubit as X,Y, Z. To turn an initial product
state of system qubits in +1 X eigenstates into a GHZ-type
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FIG. 1. Circuit protocol, decoder, and phase diagram under coherent and incoherent errors. a. The heavy-hexagonal lattice of 127
qubits. For the 125 active qubits, the inset shows the building block using constant-depth entangling circuits for the three nearest neighbors
(gray circles) of each system qubit (black circles) in the presence of noise (lightning). The RZZ gates are executed in order from blue, red,
then gray bonds within three layers. The auxiliary outcomes, s, on the bonds of the lattice (gray) can be used to inform a decoder for the data
outcomes, σ, on the vertices of the lattice (black). b. The quantum device outputs a data bit-string {σ} together with an auxiliary outcome
{s}. In the presence of noise, the auxiliary outcomes become {s′} before being passed to a classical decoder to determine a classical replica
of the bit-string {σ′}. Their element-wise product, {σσ′}, serves as the decoded bit-string. A measurement error (lightning) can corrupt
the communication channel between the quantum replica and the classical replica. c. The trivial and long-range ordered phases sweep out
distinct regions depending on the strength of coherent and incoherent noise. Within a finite threshold, a stable phase (gray), of which the GHZ
is a special case (red circle), exhibits long-range entanglement in the absence of other sources of noise (e.g. without dephasing). Even in
the presence of dephasing (not shown), classical long-range ordering remains. The boundary separating the trivial and long-range phase is
described by the Nishimori criticality. Our experiments have incoherent error rates as low as ≈0.05, which is indicated by the green star. d.
Schematic phase diagram of the classical RBIM. The solid black line is the Nishimori line, which captures the entire phase diagram in c.

state, we measure the ZZ parities on all nearest neighbor sys-
tem (site) qubits, using the auxiliary qubit in between. If the
auxiliary outcome is +1, it means the two spins are perfectly
anti-ferromagnetic, in the −1 eigenstate of ZZ. A crucial
element of our protocol is that we implement a coupling to
the auxiliary qubit beyond a simple Clifford CNOT gate by
an RZZ(2tA) = e−itAZZ rotation with a control parameter
2tA, for the A sublattice (Fig. 1a). By varying tA away from
π/4 (the Clifford limit), we can perform tunable weak mea-
surements or, equivalently, control the level of coherent errors.
Due to the degree-3 connectivity of the system qubits, we need
to repeat the above coupling only three times before simul-
taneously measuring all the auxiliary qubits – resulting in a
constant-depth circuit independent of the number of qubits.

The measurement outcomes of the auxiliary qubits in the
X basis, denoted by sij = ±1 for each bond ⟨ij⟩, are
then fed as syndromes to the decoder, operated on a classi-
cal computer. The decoder produces an estimate of the quan-
tum sample based on its limited knowledge in the form of
{s′} [21, 27, 28], where {s′} is a copy of {s} corrupted by
a finite probability ps of noise that can come from either the
quantum circuit or the classical communication, as shown in
Fig. 1b. We employ a fast decoder [21] based on minimum-
weight-perfect-matching (MWPM), which outputs a bit-string
{σ′ = ±1} for each {s}. By denoting the bit-string of the
system qubits measured in Z basis as {σ = ±1}, the element-
wise product, {σσ′}, between the quantum sample and the
classic replica serves as the decoded bit-string. This is equiv-
alent to correcting the system qubits by one layer of X gates
for those sites with σ′ = −1, in a feed-forward manner.

We performed experiments on ibm sherbrooke, which is

one of the IBM Quantum Eagle processors with 127 qubits;
entangling gates generated by Echoed Cross-Resonance inter-
actions [30–33] had typical error rates of 0.0077 and square
root of Pauli-X gates with error rates of 0.0002 ([34]). The
typical device measurement error rates of 0.010, which were
sufficiently below the decoding threshold needed for the
preparation of the long-range ordered state.

RESULTS

Conceptual understanding of protocol. In previous theo-
retical work by some of the present authors [18], it was shown
that deviations from the Clifford limit by coherent errors in-
duced by tA < π/4 are tolerable up to a finite threshold. Here
we expand this perspective by also treating incoherent errors
(corrupting the syndromes) in an analytically exact manner
and show that the presence of both types of errors leads to a
threshold line as shown in Fig. 1c, which in its entirety is cap-
tured by the Nishimori criticality. To see this, let us consider
measuring the auxiliary qubits, which collapses the system’s
wave function into

|ψ(sij)⟩ = e−
β
2

∑
⟨ij⟩ sijZiZj |+⟩⊗N , (1)

where β = 2 tanh−1 tan(tA) [18], and N denotes the num-
ber of system qubits. The probability of such a measurement
outcome follows from Born’s rule

P (sij) = ∥ψ(sij)∥2 ∝
∑

σ

e−β
∑

⟨ij⟩ sijσiσj , (2)
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FIG. 2. Decoded fidelity estimation by randomly sampling GHZ
stabilizers. a. Because our decoder was implemented as Pauli cor-
rections on the system qubits, the characterization of random stabi-
lizers, which is measured in basis rotated by single-qubit rotations
(small gray boxes), needed to be done in conjunction with the imple-
mented decoder (symbolized by the monitor). See Methods for de-
tails. b. Estimated fidelities relative to GHZ states for measurement-
based (filled blue circles) and unitary-based (red X-marks) prepara-
tion of long-range Ising ordered states on two-dimensions. The error
bars represent the standard deviation of the fidelities estimated from
bootstrap resampling random sets of stabilizers (See Methods for
more details).The theoretically predicted fidelities for measurement-
based protocol (dashed gray line) were based on an inferred noise
model with auxiliary and site readout errors with a range of parame-
ters giving rise to a 25th-75th percentile confidence interval in shaded
gray [35]. The inset shows the ratio of the experimentally evaluated
measurement- to unitary-based fidelities increasing for system size
up to 54 sites.

which resembles the partition function of the random bond
Ising model (RBIM) [18]. Concretely, by Eq. (2) we analyt-
ically map our protocol onto a RBIM precisely tracking the
Nishimori line [35] with an effective disorder probability

p̃ =
1− (1− 2ps) sin(2tA)

2
, (3)

as a joint action of both coherent and incoherent errors that
drives the phase transitions across the blue line in Fig. 1c.
In particular, this implies that every point in the extended
transition line shares the same Nishimori criticality. This
scenario for the quantum protocol is quite distinct from the
classical RBIM, whose schematic phase diagram is shown in
Fig. 1d, where the Nishimori line only occurs at the fine-tuned
solid line – demonstrating an unprecedented robustness of
Nishimori criticality in the quantum case.

GHZ fidelity in Clifford limit. For a baseline character-
ization of the measurement-based protocol, we estimated the
fidelity of the prepared states in the Clifford limit (tA = π/4)
relative to the GHZ state. Because the final state in this limit
is a stabilizer state, it was sufficient for a desired accuracy to
consider only a constant number of randomly sampled mea-
surements of the system qubits [36, 37]. For the specific case
of the GHZ state, half the sampled stabilizers contain only

Pauli Z operators, while the other half are combinations of
Pauli-X and Pauli-Y operators (See Methods for more de-
tails). To assess the relative performance of our protocol, we
also implemented a standard unitary protocol for construct-
ing GHZ states [9]. In Fig. 2, we see that the fidelities of the
measurement-based protocol outperformed the unitary prepa-
ration. This can be rationalized by the latter experiencing
more errors due to the long idle times of deep circuit with
size-dependent depth between O(N) and O(log(N)).

For a system of 10 qubits, the measurement-based protocol
resulted in a GHZ fidelity above 50%, but with increasing
system size the fidelity was found to decrease exponentially
(Fig. 2b). We note, however, that this does not imply the
absence of long-range order or entanglement for these larger
systems. In fact, we expect exponentially decaying GHZ
fidelities versus system sizes in the presence of noise for
virtually all states in the same phase of matter. We emphasize
that no form of error mitigation, for measurement or unitary
gates, was used estimating these fidelities. To explain the
experimentally measured fidelities, we compared our results
against the predicted fidelities based on a noise model with
≈ 5% incoherent auxiliary errors and ≈ 3% data readout
errors – values inferred in the next section. This places
us in the long-range ordered phase in Fig. 1c (green star),
which in the absence of any additional errors, has long-range
GHZ-type entanglement, whilst its predicted GHZ fidelity
shown in gray in Fig. 2 decays exponentially with the number
of system qubits. We see that the experimentally obtained
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FIG. 3. Experimentally measured local observables used to gen-
erate the state. a. For two observables, we plot the ideally expected
outcomes (dashed lines), the unprocessed experimental data (dots),
and a one parameter fit (solid line) for each observable for sweep-
ing tA from 0 (trivial) to π/4 (long-range ordered). The average 3-
qubit-bond (red) observable reached as high as 0.8 across the 72 total
bonds, while the average 6-qubit-plaquette (blue) observable reached
0.5 across the 18 plaquettes. Although in a noiseless setting both
were expected to reach unity, the measured values agree well with
the fit by ps = 5.6%, and pσ = 2.3%, which are approximately con-
sistent with the known errors on the device [35]. The experimental
data exhibits an absence of a singularity in these observables, con-
sistent with expectations for both local shallow quantum circuit, and
the internal energy of Nishimori line. b. 125 of the 127 qubits used
on ibm sherbrooke where each bond (⟨ZXZ⟩) and plaquette (⟨W ⟩)
observable values are shaded according to the measured value. The
numbers inside plaquettes show ⟨W ⟩ with parenthesis showing stan-
dard error.
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noise model. b. The sum of two-point correlation function f signals the growth of long-range correlation when increasing tA and system sizes.
Beyond a critical threshold for tA ≥ tcA ≈ 0.20π ∼ 0.21π (dark gray), the state exhibits long-range order (light gray). The estimated tcA
varied depending on the system size studied. The inset shows the size scaling of experimentally measured f (X marks) at the peak location of g
agreeing well with the theoretically predicted noiseless values (square markers) scaling with ∝ L1.9

y . c. The peak locations of g converge to the
finite threshold that separates the long-range ordered phase (light gray) from short-range correlated phases. The dark gray shading illustrates
the theoretically predicted critical point (tcA), according to the previously inferred two noise parameters, that spans a finite width because of
the variation of noise probabilities. In the inset, the experimental (X marks) values agree well with the theoretically predicted values scaling
as ∝ L1.8

y . The noiseless envelopes for all solid curves can be found in the Supplemental Materials.

values are slightly suppressed with respect to the gray curve,
which is likely due to dephasing. This raises the question
whether we retain robust long-range order in the presence of
such dephasing.

Noise analysis. To determine where in the phase diagram
our experimental protocol accessed the GHZ state relative to
the criticality threshold – implicitly bounding the amount of
other sources of errors that were present in our experiments –
we tuned one type of coherent error, via Eq. (1), uniformly
across the device; in this sweep, we monitored and fit the
experimental observables [18] associated with every bond to
⟨ZXZ⟩ = (1 − 2pσ)

2(1 − 2ps) sin(2tA), and experimental
observable of every plaquette to ⟨W ⟩ = (1−2ps)

6 sin(2tA)
6,

as shown in Fig. 3a (Sec. IC in Ref. 35). Here pσ accounts
for the readout error of system qubits while ps captures both
readout error on the auxiliary qubits and some of the noise
during the entangling process. For tA = π/4, the bond and
plaquette observables should ideally approach unity (dashed
lines) because they capture, partially, the quality of the
constituent cluster states [11] – a precursor state for the GHZ
state – with experimental data shown in Fig. 3b. For tA below
π/4, the implemented circuits become non-Clifford and thus
cannot, in general, be efficiently characterized. Nonetheless
our modeling of coherent and incoherent noise sources
turns out to be sufficiently comprehensive to quantitatively
explain the observed experimental data, even for experiments
involving up to 125 qubits. This allows us to infer the amount
of noise afflicting the auxiliary (ps) and system (pσ) qubits
when sweeping tA. This led to an estimate for the amount
of incoherent errors present in the experiment to be in the
range of ps ≈ 4.2%− 5.6% and pσ ≈ 1.2%− 2.3% – values
consistent with our expectation based on standard calibration
benchmarks of the device [35].

Nishimori transition for tunable coherent errors. Hav-
ing established the incoherent noise level of our device, we
can now proceed to validate the existence of a stable, long-
range, Ising ordered phase when experimentally sweeping the
level of coherent errors in our protocol. To reveal the hidden
order, we applied a MWPM decoder [21, 27, 38] to process
every classical snapshot for the auxiliary qubits in the X basis
and the system qubits in the Z basis. The basic idea is to per-
form a correction based solely on the auxiliary readout [18].
This correction factor approximates the ground state config-
uration of the RBIM as a classical estimate, {σ′}, of the bit-
string from quantum device (Fig. 1b).

The distribution of the decoded bitstrings in the computa-
tional basis is shown, for tA = π/4, in Fig. 4a, where we
sum over the Z expectation values of the individual qubit to
obtain a total decoded ‘magnetization’ M =

∑N
j=1 Zj . Any

bias of this distribution (e.g. towards positive values) may be
explained by an Ising asymmetric error originating from phys-
ical mechanisms such as amplitude damping or relaxation.
Such errors would reduce the amount of classical correlations,
and the small value ⟨M⟩ ≈ 0.02(2)N suggests that the global
Ising symmetry is largely preserved. Moreover, the decoded,
bi-modal experimental distribution (Fig. 4a) agrees well with
the theoretical prediction (solid lines) lending confidence to
the two-parameter noise model we used.

To more rigorously characterize the long-range order, we
examined, for tA ≤ π/4, the decoded system qubit bitstrings
and the average two-point, classical correlations

f :=
1

N

(
⟨M2⟩ − ⟨M⟩2

)
, (4)

which is a sum of the correlations ⟨ZiZj⟩ for all the system
qubits that compose the quantum state. The decoded exper-
imental data is shown in Fig. 4b, where the solid line shows
the theoretical benchmark with the noise parameters inferred
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from Fig. 3a. We observe a hallmark of the long-range ordered
phase in the diverging f for increasing system sizes; such di-
vergent behavior for f is expected throughout the ensemble of
long-range ordered states, or phase, even away from tA = π/4
up to a finite threshold, tcA. In fact, we have confirmed that in
our two-parameter theory model, f indeed grows unbounded
above tcA ≈ 0.20π ∼ 0.21π. In contrast, for small tA far be-
low the threshold, f is apparently bounded and does not grow
with increasing size. This divergent behavior for our 2D pro-
tocol should be contrasted to results in 1D geometries [35],
where we found f to stop growing for larger system sizes in
line with theoretical expectations that f is bounded by a finite
correlation length in the presence of infinitesimal weak errors.

To determine the threshold, or critical point, a practical way
is to use of the normalized variance of M2/N :

g :=
1

N3

(
⟨M4⟩ − ⟨M2⟩2

)
, (5)

which quantifies the amount of fluctuations in the squared
magnetization [35]. In the presence of 5% incoherent aux-
iliary errors, the peak location is expected to converge to a
critical value of tcA ≈ 0.205π, by translating the Nishimori
critical point p̃c ≈ 6.75% [18, 39] with Eq. (3), which is in
very close agreement with the experimental data where the
peak locations approach this predicted critical point (Fig. 4c).
Moreover, at this transition, we also observe that f exhibits
steep increases as one would expect for a critical system. The
three experimental values for f for increasing system sizes
agree well with noisy classic simulations exhibiting a ∝ L1.9

y

scaling behavior of the peak height (Fig. 4b inset), where
Ly = 2, 3, 4 is the number of columns of qubits in a brickwall
lattice; this experimentally observed scaling is in close agree-
ment with the scaling exponent calculated value of 1.8(1) for
the RBIM at the Nishimori point [39]. While the critical-
ity is exposed in the decoded correlations only, the observ-
able ⟨ZXZ⟩ of Fig. 3a is another, direct probe of Nishimori
physics – it corresponds to the internal energy of the classi-
cal RBIM along the Nishimori line, which we experimentally
confirm to be free of any singularity at the phase transition and
in agreement with theoretical predictions.

Decoding transition by tuning incoherent errors. As we
have shown, the long-range ordered phase created by our 2D
protocol is unveiled only after using a decoder, whose per-
formance critically depends on the quality of the auxiliary
measurements. While the auxiliary error is lower-bounded
by the quantum device, we can inject additional errors, in
post-processing, before applying the decoder (see Fig. 1b) and
thereby chart out a broader phase diagram including varying
rates of incoherent errors. By again monitoring the degree of
fluctuations, g, now as a function of an increasing level of in-
coherent errors and system size (Fig. 5), we observe that the
Nishimori critical point tcA shifts towards π/4 and vanishes
completely at ps ≈ 6.75% [39], the decoding threshold [35].
The origin of this limit can be readily understood as being
equivalent to the decoding transition of a repetition code on a
honeycomb lattice with bit-flip errors [27]. Our experiments
thus not only demonstrate the stability of the long-range or-
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FIG. 5. Decoding transition out of the long-range ordered phase
by increasing auxiliary errors before decoding. a. For the largest
system size (N = 54), we experimentally mapped the 2D phase
diagram for various coherent (tA) and incoherent (ps) errors where
the color is proportional to the amount of variance in the magneti-
zation squared, g. The analytically derived contour (dashed gray)
shows close agreement for incoherent, auxiliary errors starting from
approximately 0.05. b. For the lowest amount of injected coherent
error (tA = π/4), the experimentally estimated variance g (circles)
is maximized at the theoretically expected (solid lines) decoder tran-
sition of approximately 6.75% (vertical dashed gray) for all three
system sizes (10: black, 28: red, 54: blue).

dered phase separated from a trivial one via a Nishimori tran-
sition, but also quantify when it would fail for more noisy
devices. It also significantly distinguishes a 2D from 1D pro-
tocol where the peak quickly converges to tA = π/4 without
a finite threshold [40]. Thus we claim that our experimen-
tally implemented 2D protocol exhibits long-range order with
intrinsic robustness.

DISCUSSION

The Nishimori multicritical point arises from a delicate bal-
ance between disorder and temperature – a condition that is
largely inaccessible in experiments on real, physical materi-
als modeled by a RBIM [41]. This should be contrasted to
our experiments using a shallow circuit protocol on a quan-
tum system, where the Nishimori transition shows remarkable
robustness even in a noisy device of significant size. We ar-
gue that this can in fact be traced back to Born’s rule, which
naturally enforces the delicate balance of Nishimori physics:
the auxiliary qubits play the role of quenched disorder by be-
ing measured, whose probability is exactly the wave function
squared amplitude of the system qubits.

Our systematic study and generation of long-range ordered
states using measurements shows that such protocols can be
robust against certain errors, and even outperform unitary
approaches on existing quantum hardware. Improvements
in coherence and measurement fidelity should further im-
prove the performance of our measurement-based protocol.
Our work emphasizes the importance of spatial geometry in
measurement-based protocols – by tuning errors across an er-
ror threshold we observed a stable phase that persists in 2D
but is absent in 1D. While the experimentally accessible order
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parameters, f and g, were observed to be below the theoreti-
cally predicted noiseless values due to the presence of noise,
we expect to still be able to determine the universal critical
exponents using equivalently noisy but larger devices, up to
system sizes of 180, where finite-sized effects play less of a
role.

It would be interesting to similarly explore the (in)stability
of measurement-induced long-range entanglement upon tun-
ing coherent and incoherent errors for other proposals in the
literature [11–24]. This is especially timely since measure-
ments have recently been used to deterministically create ex-
otic long-range entanglement including topological order [42–
44]. In such general contexts, stability might inquire addi-
tional ingredients, such as using the time-domain [27, 45] or
higher—or even fractional—dimensions, opening up a rich
territory for exploration.
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METHODS

127 superconducting qubit device

We performed all experiments on ibm sherbrooke, a 127-
qubit Eagle r3 processor. The entangling gate has a native
ZX interactions and is known as a Echoed Cross-Resonance
(ECR) gate with a median error of 0.0077, with a 50% con-
fidence interval of [0.006, 0.008]. The two-qubit gate times
across the device were uniformly set to 533.3 nanoseconds,
similar to the method described in [46]. The median square
root of Pauli-X error rate was 0.0002 [0.0002, 0.0004]. The
readout error was 0.010 [0.007, 0.021] with typical measure-
ment times of ≈ 1244.4 nanoseconds. The qubits under study
had a median T1 ≈ 293 µs and T2 ≈ 173 µs. Circuits were
executed on the device at a clock rate of 1kHz [33].
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FIG. 6. Typical error rates, in cumulative format, for Echoed
Cross Resonance (ECR, blue), square-root of Pauli-X (SX, red), and
measurement (Meas, black) gates. Dashed lines represent medians
of distributions.

Decomposition of ZZ gates

For fidelity comparisons in Fig. 2, we compiled theZZ(t =
π/4) gate into a single ECR gate, which is the native basis
gate on the device, and single-qubit rotations. For Fig. 1, the
ZZ(t) gates were all decomposed into two ECR gates with a
virtual-Rz(t) gate in between - resulting in a depth-6 unitary
circuit followed by a layer of measurements. We note that fur-
ther improvements could be accessed by shortening theZZ(t)
gate time with fractional ZX rotations [47, 48] that are ac-
cessible on the device. Hadamard gates, decomposed into two
square root of Pauli-X gates and virtual-Rz(t) gates, were also
used for the preparation and readout of qubits.

Quantum Circuit transpilation

For both unitary and measurement-based experiments,
dynamical-decoupling (DD) was used in the same fashion. All
single- and two-qubit gates were scheduled as late as possible
after initialization in the ground state, and all idle periods after
the first operations were replaced with aX+π−X−π sequence
in which the total idling period was divided proportionally ac-
cording to a 1 : 2 : 1 ratio surrounding the X gates. Conse-
quently, the unitary-based protocols benefited more from ap-
plying DD than for measurement-based circuits.

Furthermore, we identified at least 12 different ways to
schedule entangling gates for the measurement-based, and
found some schedules to significantly outperform others [35].
This is consistent with our expectation that certain gates, when
executed in parallel, can induce frequency collisions on the
device that reduce the fidelity of the entangling gates.

Monte Carlo Sampling
of GHZ Stabilizer Observables

For size-N GHZ states generated at the fixed point of the
Nishimori line, we randomly sampled up to 100 different non-
Z stabilizers (e.g. weight-N observables containing only X
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and Y Paulis). We also included measurements of the system
qubits in the all-Z basis, which allows us to reconstruct any
of the 2N−1 possible Z-only stabilizers of the GHZ state. In
practice, however, we perform a binomial re-sampling of Z-
only and non-Z stabilizers with equal probability to emulate
the proposed Monte Carlo sampling method for fidelity state
estimation [36, 37]. By sampling k random instances from 2N

F =
1

k

k∑

i=1

⟨Oi⟩ . (6)

In all expectation values above, we randomly appliedX-gates
before readout of the system qubits and, after applying the
correcting spin flip to sites on which Z and Y Paulis were
supported, calculated the expectation values of the random
stabilizers. Although readout was “twirled”, the model-free
readout correction was not actually applied [35, 49].

Fits to noise model

Two most basic linear observables are analytically known in
the noiseless limit: ⟨W ⟩ = sin(2tA)

6, ⟨ZXZ⟩ = sin(2tA).
Let us consider two phenomenological errors: readout errors
on the the auxiliary qubit measured in X basis, with proba-
bility ps; and that on the system qubit measured in Z basis,
with probability pσ . Note that they also include the conse-

quence of some of the mid-circuit bit-flip or phase-flip er-
rors that propagate to yield the same effect in the end, such
as the bit-flip (phase-flip) for system (auxiliary) qubits at
the moment after the Rzz gates. These two error rates turn
the expectation values of the above observables into ⟨W ⟩ =

(1−2ps)
6 sin(2tA)

6, ⟨ZXZ⟩ = (1−2ps)(1−2pσ)
2 sin(2tA).

We can perform a linear fit to extract such phenomenological
error rates per bond and plaquette, which are then averaged
over the lattice for mean values and standard deviations. The
averaged effective errors per qubit weakly grows with the total
number of qubits in our three experimental implementations,
as seen in Table. I.

System
size
(N)

Ly
ps

(auxiliary)
pσ

(system)

10 2 0.042 0.012
28 3 0.051 0.018
54 4 0.056 0.023

TABLE I. Two-parameter noise model. Fits to experimental data
gives ps which captures errors at the auxiliary qubits, and pσ at the
system qubits.

For the one-dimensional protocol where we do not have the
Wilson loop ⟨W ⟩, we can use two Wilson lines of different
lengths, e.g. ⟨ZXZ⟩ and ⟨ZXIXZ⟩ to extract the two pa-
rameters for auxiliary and system qubits, respectively.
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[30] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti, B. R.
Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Roth-
well, M. B. Ketchen, and M. Steffen, Simple All-Microwave
Entangling Gate for Fixed-Frequency Superconducting Qubits,
Phys. Rev. Lett. 107, 080502 (2011).

[31] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta,
Procedure for systematically tuning up cross-talk in the cross-
resonance gate, Phys. Rev. A 93, 060302 (2016).

[32] M. Malekakhlagh, E. Magesan, and D. C. McKay, First-
principles analysis of cross-resonance gate operation, Phys.
Rev. A 102, 042605 (2020).

[33] N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic,
and J. M. Gambetta, Reducing unitary and spectator errors in
cross resonance with optimized rotary echoes, PRX Quantum
1, 020318 (2020).

[34] IBM Quantum. https://quantum-computing.ibm.com/, 2021.
(Downloaded August 6, 2023).

[35] See Supplemental Material.
[36] S. T. Flammia and Y.-K. Liu, Direct fidelity estimation from

few pauli measurements, Phys. Rev. Lett. 106, 230501 (2011).
[37] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Practical

characterization of quantum devices without tomography, Phys.
Rev. Lett. 107, 210404 (2011).

[38] O. Higgott, PyMatching: A Python package for decod-
ing quantum codes with minimum-weight perfect matching,
arXiv:2105.13082.

[39] S. L. A. de Queiroz, Multicritical point of Ising spin glasses
on triangular and honeycomb lattices, Phys. Rev. B 73, 064410
(2006).

[40] See Extended Data Fig. 7.
[41] K. Binder and A. P. Young, Spin glasses: Experimental facts,

theoretical concepts, and open questions, Rev. Mod. Phys. 58,
801 (1986).

[42] M. Iqbal, N. Tantivasadakarn, T. M. Gatterman, J. A. Ger-
ber, K. Gilmore, D. Gresh, A. Hankin, N. Hewitt, C. V.
Horst, M. Matheny, T. Mengle, B. Neyenhuis, A. Vishwanath,
M. Foss-Feig, R. Verresen, and H. Dreyer, Topological Order
from Measurements and Feed-Forward on a Trapped Ion Quan-
tum Computer (2023), arXiv:2302.01917.

[43] M. Foss-Feig, A. Tikku, T.-C. Lu, K. Mayer, M. Iqbal, T. M.
Gatterman, J. A. Gerber, K. Gilmore, D. Gresh, A. Hankin,
N. Hewitt, C. V. Horst, M. Matheny, T. Mengle, B. Neyenhuis,
H. Dreyer, D. Hayes, T. H. Hsieh, and I. H. Kim, Experimen-
tal demonstration of the advantage of adaptive quantum circuits
(2023), arXiv:2302.03029.

[44] M. Iqbal, N. Tantivasadakarn, R. Verresen, S. L. Campbell,
J. M. Dreiling, C. Figgatt, J. P. Gaebler, J. Johansen, M. Mills,
S. A. Moses, J. M. Pino, A. Ransford, M. Rowe, P. Siegfried,
R. P. Stutz, M. Foss-Feig, A. Vishwanath, and H. Dreyer,
Creation of Non-Abelian Topological Order and Anyons on a
Trapped-Ion Processor (2023), arXiv:2305.03766.

[45] M. B. Hastings and J. Haah, Dynamically Generated Logical
Qubits, Quantum 5, 564 (2021).

[46] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg,
S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, et al.,
Evidence for the utility of quantum computing before fault tol-
erance, Nature 618, 500 (2023).

[47] N. Earnest, C. Tornow, and D. J. Egger, Pulse-efficient cir-
cuit transpilation for quantum applications on cross-resonance-
based hardware, Phys. Rev. Res. 3, 043088 (2021).

[48] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta,
K. Temme, and A. Kandala, Scalable error mitigation for noisy
quantum circuits produces competitive expectation values, Na-
ture Physics 19, 752 (2023).

[49] E. van den Berg, Z. K. Minev, and K. Temme, Model-free
readout-error mitigation for quantum expectation values, Phys.
Rev. A 105, 032620 (2022).



9

EXTENDED DATA

As discussed in the main text, the 2D protocol exhibited ro-
bustness over the 1D protocol; the key signature being based
on the scaling of the average of two-point correlations, f , as

a function of system size (Fig. 7). Whereas in 2D (Fig. 9),
we not only observed the expected f ∝ L1.9

y behavior in the
long-range ordered state, but also that the criticality occurs
below the GHZ point (tcA < π/4). The 1D behavior (Fig. 8),
in contrast, exhibited no growth in f with system size from 28
to 54, and had peak variances at the GHZ value of tA = π/4.
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FIG. 7. Absence of finite threshold in one-dimensional protocol, for comparison with Fig. 4. (a) f grows with increasing system size but
converges to finite value that depends on tA. (b) The peak of g converges to tA = π/4 indicative of absence of finite threshold for coherent
error.
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FIG. 8. Magnetization of 1D experiments with and without decoding at different tA values (a) Two-point correlations in 1D experiments
for sweeps of tA. The histograms at values of tA where variances were maximized for undecoded (b) and decoded (c). Although the bimodal
distribution persisted up to a system size of 28, at 54 the distribution became uniform. And as expected, both the undecoded (d) and decoded
(e) exhibited a binomial distribution in the trivial state (tA = 0).
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I. THEORY

A. Threshold for incoherent error

tA (π)

ps

f

FIG. 1. Theoretical phase diagram with contours for f . The blue
line illustrates the Nishimori critical line. Eq. (1) indicates that all
parameter points on the same contour shares the same decoded bit-
string ensemble. Decoded f is computed from noiseless classical
calculations at ps = 0 for 4× 7 brickwall lattice with 54 sites.

Here, we prove that the protocol under both coherent error
tA and incoherent bit flip error upon auxiliary qubits is still
mapped to the random bond Ising model and has its threshold
determined by the Nishimori critical point.

Let us denote the event of an error flip for the auxiliary
qubit by s′ = +1, and absence of flip as s′ = −1, under prob-
ability e−β′s′/(2 coshβ′). The decoded LRE order parameter
is the element-wise product between the quantum replica and
the classical decoder replica. The classical decoder serves as
an estimate of the observable ⟨σ⟩s;β in the quantum replica.
However, based on the distorted and thus imprecise knowl-
edge of the auxiliary read out i.e. s · s′, it provides ⟨σ⟩ss′;βd

instead, where βd is the temperature parameter that can be
freely tuned in the classical decoder, to optimize its perfor-
mance. Under incoherent error, the decoded order parameter
as quantum-classic-replica-correlation can be represented and
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simplified as

q =
∑

s,s′

P (s) · ⟨σ⟩s;β · P (s′) · ⟨σ′⟩ss′;βd

∝
∑

s,s′,σ

e−βsσσσ · e−β′s′ · ⟨σ′⟩ss′;βd

∝
∑

s,s′

e−βs · e−β′s′ · ⟨σσ′⟩ss′;βd

∝
∑

s

e−β̃s⟨σ⟩s;βd
.

(1)

Here, for simplicity we abbreviate the summation notation
over bonds; from the first to the second line we make use of
the property that P (s) is the wave function amplitude, which
cancels out the denominator for ⟨σ⟩s;β ; from the second to the
third line we apply a gauge transformation s→ sσσ which is
crucial to yielding the analytic Nishimori properties; from the
third to the fourth line we combine s and s′ as the effective
disorder, with probability

p̃ =
1

1 + e2β̃
=

1− tanhβ tanhβ′

2
=

1− sin(2tA)(1− 2ps)

2
.

(2)
This effective disorder, p̃, is a joint action of both the coherent
gate error that results in β and the incoherent auxiliary error β′

(Fig. 1). Note that their contributions are symmetric: β ↔ β′

leaves it invariant.
Now let us discuss the optimal decoder. As is rigorously

proved by Nishimori [1], for a fixed disorder probability p̃,
the optimal magnetization is reached only at the Nishimori
temperature i.e. βd → β̃. Thus we prove that for arbitrary
coherent gate and incoherent bit flip error rates (β, β′), the
optimal threshold is uniquely pinned by the Nishimori criti-
cal point at p̃ = pc ≈ 6.75(5)% on honeycomb lattices [2]
(smaller than ≈ 10(1)% on square lattices [3]).

For simplicity the derivation above only shows the mapping
for the correlation of a single qubit between two replicas being
mapped to RBIM Nishimori line. It mutatis mutandis carries
over to arbitrary-point correlations, and thus any polynomial
functions f({σ}). This includes the fidelity with the GHZ
state, when dephasing is absent i.e.

∏
j Xj = +1:

F = | ⟨GHZ|ψ⟩ |2 = ⟨
∏

⟨ij⟩

1 + σiσj
2

⟩ . (3)

B. Using MWPM decoder

An estimate [4] of ⟨σ⟩{s} based on the random bond config-
uration {s} is to use the minimum-weight-perfect-matching
(MWPM) [5], which finds the shortest path to pair up the
syndromes. This is equivalent to finding a classical ground
state of the Ising spins, where the shortest path costs minimal
domain-wall energy (Fig. 2). The decoded observables from
classical calculations is shown in Fig. 3. By using Eq. 1 to
map this noiseless data to the noisy scenario, we obtain the
benchmark data for our experimental data in Fig. 4 and Fig. 5
of the main text.

X

X X

X X

X X

X

X

XX X

FIG. 2. Using MWPM decoder. The black dashed (solid) bond de-
notes positive (negative) measurement outcome. The red stars show
the syndromes, a plaquette surrounded by an odd number of black
dashed bonds. The shortest path that pairs up the syndromes (found
by MWPM) goes across the red dashed bond. By cutting the dashed
bonds, the sites are grouped into domains, where the qubits inside
the domain shall align but the adjacent domains shall have opposite
⟨σ⟩. We generate such configuration by fixing the top-left site, and
applying X flip operations to every other domains as shown by the
yellow squares and the shaded regions.

C. Benchmark data for two-dimensional experiments

The inferred auxiliary (incoherent) error rates, ps, allow us
to estimate the expected critical transition, tCA. In this manner,
we were able to generate a range of critical threshold values
in Table. I.

System
size
(N)

ps
(auxiliary)

tCA
(asymptotic)

10 0.042 0.20
28 0.051 0.21
54 0.056 0.21

TABLE I. Inferred asymptotical critical transitions, tCA, from
auxiliary errors (ps) for different system sizes. The critical point is
deduced from Eqn.1 in the main text i.e. sin

(
2tCA

)
= (1− 2p̃)/(1−

2ps), by inputting the disorder probability of Nishimori critical point
p̃ ≈ 6.75% [2].

And finally, the experimentally measured values of f and
g, extracted at the values of tA where g was maximized, were
compared against the theoretically predicted, noiseless values
(Fig. 3) in Table. II. These exact values were used in the inset
for Figures 4b and 4c in the main text.

D. Analytic solution for one-dimensional protocol

First, the decoded two-point correlation in 1D is equivalent
to the gauge invariant string correlation [6], which in the pres-
ence of errors can be derived as

⟨σis · · · sσj⟩ = (1− 2pσ)
2((1− 2ps) sin(2tA))

|j−i| . (4)

Here i, j denotes only the sites of system qubits σ, and s de-
notes the measurement outcomes on the bonds between them.
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FIG. 3. Noiseless classical calculations as benchmark for quan-
tum experiment, where the brickwall lattice is chosen to fit the IBM
processors from Falcon to Osprey generations (with Ly columns and
2Ly − 1 rows of system qubits). (a)(c) Decoded observables by
sweeping tA for increasing system sizes. Dashed line illustrates the
peak location of g that indicates the critical point tcA ≈ 0.1675π
(which is translated to critical disorder probability 6.568%, slightly
smaller than the critical probability 6.75(5)% in Ref. [2] due to our
use of MWPM decoder). (b)(d) Scaling of f and g at critical point.
The red lines indicate the power-law fitting, where the first two sys-
tem sizes are discarded. We find f ∼ L1.9; g ∼ L1.8.

System
size
(N)

Ly
fC

(data)
fC

(theory)
gC

(data)
gC

(theory)
tmaxg
A (π)
(data)

10 2 5.1 7.3 1.4 1.2 0.1625
28 3 13.7 17.9 3.0 3.3 0.1875
54 4 25.6 31.9 4.7 5.8 0.2000
88 5 - 48.9 - 8.9 -
130 6 - 69.7 - 12.3 -
180 7 - 93.8 - 16.3 -

TABLE II. Comparison of f and g values from experimentally
measured data at the peak locations of g, against noiseless theo-
retical values at critical point. System size (N ) describes the total
number of particles in the RBIM, and Ly the linear dimension of
the 2D system. The subscripts C denote the values of f and g at
the critical values. For the experimental data, the values for f and g
were taken at discrete values indicated by tmaxg

A . The theoretical val-
ues were taken at tA = 0.1675 for all system sizes - in other words,
these are the points shown in Supplemental Fig. 3b and 3d.

Note that the 1D protocol yields the same result as the 2D
protocol if and only if tA = π/4 and ps = 0. The pres-
ence of infinitesimal coherent (tA < π/4) or incoherent error
(ps > 0) would contribute to an exponential decaying fac-
tor. Thus the correlation is bounded by a finite correlation
length ξ ∼ −1/ ln((1− 2ps) sin(2tA)). This makes it qual-
itatively different from the 2D protocol. Using Eq. (4) one
can fit pσ and ps from the experimental data of every 5 qubits

e.g. ⟨Z1X2I3X4Z5⟩ = (1 − 2pσ)
2(1 − 2ps)

2 sin(2tA)
2 and

⟨Z1X2Z3⟩⟨Z3X4Z5⟩ = (1− 2pσ)
4(1− 2ps)

2 sin(2tA)
2.

Secondly, by summing over the string correlation, we ob-
tain the decoded squared magnetization:

f = ⟨M2⟩/N = 1 +
1

N

∑

i̸=j

⟨σis · · · sσj⟩

= 1 + 2(1− 2pσ)
2
N−1∑

d=1

N − d

N
((1− 2ps) sin(2tA))

d
.

(5)

Using the fit noise terms in Table III, we plotted Eqn. 5 in
Fig. 7a of the main text.

System
size
(N)

ps
(auxiliary)

pσ
(data)

10 0.018 0.020
28 0.020 0.023
54 0.028 0.034

TABLE III. Two-parameter noise model for the one-dimensional
results in Fig. 7 of the main text. Fits to experimental data gives
ps which captures errors at the auxiliary qubits, and pσ at the data
qubits.

II. EXPERIMENT

A. Comparing circuit depths

To further emphasize the improvement in circuit efficiency
of measurement-based schemes over unitary-based schemes,
we plot the number of layers needed to prepare the state as a
function of system size in Fig. 4. As an illustration, the exact
depth-10 circuit used for the largest system size characterized
in Fig. 2 of the main text is shown in Fig. 5.

B. Circuit scheduling for 2D measurement protocol

C. Sampling of Stabilizers in quantum device

F = Tr (ρ |GHZ⟩ ⟨GHZ|)

= ⟨
1 +

∏
j Xj

2

∏

⟨ij⟩

1 + ZiZj

2
⟩

=
1

2


⟨

∏

⟨ij⟩

1 + ZiZj

2
⟩+ ⟨

∏

⟨ij⟩

1 + ZiZj

2

∏

j

Xj⟩




=

2N∑

n=1

⟨Pn⟩,

(6)
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FIG. 4. Number of layers needed for measurement-based (solid) ver-
sus unitary-based (dashed) protocols for preparing entanglement of
sizes up to 180 qubits. The number of layers for the unitary protocol
decreases from 1D (blue) to 2D (red) protocols, but remains much
less efficient than measurement-based protocols which only require
constant-depth circuits irrespective of the system size.

1 2 3 4 5

6 7 8 9 10

FIG. 5. Unitary protocol used to prepare entangle a system size of
54 with a circuit of depth 10.

where Pn specifies a Pauli string in the stabilizer group, as
arbitrary product of the generators ZiZj and

∏
j Xj . The ex-

ponential sum can be approximated by a Monte Carlo direct
sampling with guaranteed precision given the sample size [7].
We corroborated their results with a simulation, using a depo-
larizing model, of increasing GHZ system sizes with a fixed
number of randomly sampled stabilizers and observed fideli-
ties agree to within 1% (See Fig. 8).

D. Fidelity and parity oscillation

The stabilizers in Eq. (6) can be divided into two sets, the
diagonal ones generated by only ZiZj bilinears, and the off-
diagonal ones that involve

∏
j Xj . The average of the for-

mer set yields the GHZ population i.e. the probability of the
two-dimensional logical subspace spanned by |000 · · ·⟩ and

NorthEast

South

ANorthWest

SouthEast

North

BSouthWest

NorthEast

South

ANorthWest

SouthEast

North

BSouthWest

ba

FIG. 6. a. The site qubits on the heavy-hexagonal lattice can be cat-
egorized into ‘A‘ and ‘B‘ sub-lattices. b. For each site type, there
are three directions in which entangling gates can be performed. We
label each direction uniquely for each site to identify all possible
schedules for the depth-3 circuit such that there no overlapping en-
tangling gates.

Schedule_0ba

FIG. 7. a. The three concentric circles represent all the possible
circuit schedules. Each layer represents a circuit layer, each of which
consists of A-type and B-type entangling gates. The outer-most ring
contains 12 total leaves, indicating that there are exactly 12 ways to
schedule the finite depth circuit such that no overlapping gates occur.
b. An example circuit schedule based on one path of traced out in
(a).

|111 · · ·⟩:

⟨
∏

⟨ij⟩

1 + ZiZj

2
⟩ = ∥⟨000 · · ·|ψ⟩∥2 + ∥⟨111 · · ·|ψ⟩∥2 . (7)

The average of the latter set yields the many-body coherence
which is the expectation value of

∏
j Xj supported only in the

logical subspace. By noting that the diagonal projector can be
Fourier expanded in the phase space:

∏

⟨ij⟩

1 + ZiZj

2
=

1

N

2π∑

ϕ=2π/N

eiϕ
∑

j Zj , (8)
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FIG. 8. Estimated fidelity (F ) using 100 random stabilizers with
100 shots for all GHZ system sizes (n). The points (mean) indicate
the mean of the fidelity, and error bars (shading) the 95% bootstrap
confidence interval. As expected the fidelity decays with system size
for a fixed depolarizing rate of 1% per two-qubit gates.

we can expand the coherence term as

⟨
∏

⟨ij⟩

1 + ZiZj

2

∏

j

Xj⟩

=
1

N

2π∑

ϕ=2π/N

⟨eiϕ
2

∑
j Zj

∏

j

Xje
−iϕ

2

∑
j Zj ⟩

=
1

N

2π∑

ϕ=2π/N

⟨
∏

j

σϕ
j ⟩ ,

(9)

which is the average of the expectation value of product of
Pauli operators lying in the XY plane in an angle ϕ with
respect to X axis. In other words, the off-diagonal quan-
tity characterizes the sensitiveness of the state in response to
a phase rotation, manifesting in the parity oscillation period.
The phase rotation can be implemented by a single-body gate
rotation before the final measurement of the data qubits. Ex-
perimental result is shown in Fig. 9 for a 1-D chain of qubits.

0.0 0.2 0.4 0.6 0.8 1.0
φ(π)

−0.4

−0.2

0.0

0.2

0.4

1 N

∑
2
π
φ

=
2
π
/N
〈∏

j
σ
φ j
〉

|R|=0

|R|=1

|R|=2

|R|=3

|R|=4

|R|=5

|R|=6

|R|=7

|R|=8

|R|=9

FIG. 9. Example of observed parity oscillations measured on a 1-D
chain of 19 qubits for a system size of N = 10 (9 auxiliary qubits).
While the system qubits were measured in a basis determined by ϕ
(See Eqn. 9), the Pauli-X corrections were done in post-processing
based on the Hamming weight of the auxiliary outcomes (|R|). The
protocol results in a binomial distribution of |R|, and thus becomes
exponentially unlikely to result in the extremal values of |R| = 0, N .
Nonetheless, the fidelity of the entangled state is approximately the
average of the amplitudes – in this case around 30%.
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