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Two-dimensional quantum loop gases are elementary examples of topological ground states with

Abelian or non-Abelian anyonic excitations. While Abelian loop gases appear as ground states of local,

gapped Hamiltonians such as the toric code, we show that gapped non-Abelian loop gases require

nonlocal interactions (or nontrivial inner products). Perturbing a local, gapless Hamiltonian with an

anticipated ‘‘non-Abelian’’ ground-state wave function immediately drives the system into the Abelian

phase, as can be seen by measuring the Hausdorff dimension of loops. Local quantum critical behavior is

found in a loop gas in which all equal-time correlations of local operators decay exponentially.
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Non-Abelian topological phases are the focus of consid-
erable excitement as a result of their universality, their
novelty, their beautiful mathematical properties, and their
potential application to quantum computing [1]. However,
the only concrete physical system in which there is any
experimental evidence for a topological phase is the two-
dimensional electron gas at high magnetic fields, i.e., in the
quantum Hall regime. In order to find such phases else-
where—in transition metal oxides or in ultracold atomic
gases—it is important for theory to serve as a guide by
identifying conditions which a system must satisfy in order
to support a non-Abelian topological phase.

One simple class of models is associated with quantum
loop gases (QLG), in which an orthonormal basis of the
low-energy Hilbert space can be mapped onto configura-
tions of loops [2]. One remarkable feature of topological
phases is that the ground-state wave function encodes
many of the quasiparticle properties [2–4], which was
exploited as far back as Laughlin’s pioneering work on
the fractional quantum Hall effect [5]. Therefore, the
ground-state wave function plays a central role in the
theory. Many of the properties of a QLG can be deduced
by mapping the ground state to a classical statistical me-
chanical model. However, this mapping must be used with
care as we show by example in this Letter and might be an
issue for other proposed wave functions being considered
in the search for non-Abelian topological phases.

The toric code [6] is the classic example of a QLG; the
associated classical model is critical percolation. However,
the toric code Hamiltonian is in a Z2 topological phase
which is Abelian; i.e., all of its quasiparticles are Abelian
anyons. As we discuss below, non-Abelian topological
ground states should be associated with critical OðnÞ
loop models with n > 1 [2,7]. (The n ¼ 1 case is equiva-
lent to critical percolation.) However, local gapped
Hamiltonians with these ground states are not known. In
this Letter, we show that such Hamiltonians do not exist.
Hamiltonians with the desired ground states have been

constructed [7], but these models are gapless and describe
critical points, not stable phases. It was conjectured that by
perturbing such a critical model, one could drive the sys-
tem into a gapped non-Abelian topological phase. In this
Letter, we analyze instabilities of such critical models and
show that perturbations fundamentally alter the nature of
the ground state. For instance, one of the simplest relevant
perturbations drives the system into the Abelian Z2 topo-
logical phase. We give a general proof that no local per-
turbation can give rise to a gapped non-Abelian quantum
loop gas. Thus, non-Abelian topological phases require
more intricate Hamiltonians.
Loop gas wave function.—QLGs can be realized in

lattice models whose low-energy Hilbert space is spanned
by states of the form jLi, where the multiloop L is an
arbitrary collection of nonintersecting loops. Here we con-
sider the ‘‘d-isotopy’’ wave function which generalizes the
ground state (GS) of the toric code [7]:

j�ðdÞ
0 i / X

fLg
d‘ðLÞjLi: (1)

In this expression, ‘ðLÞ is the number of loops in the
multiloop L. The loops have a ‘‘fugacity’’ d. In the toric
code, d ¼ 1. This wave function has two key features
which hint at its topological nature: On nontrivial surfaces,
there is a (degenerate) space of such wave functions cor-
responding, for instance, to different winding numbers.
Second, the wave function amplitude is independent of
the lengths of the loops. However, the latter is neither
necessary nor sufficient for a gapped topological phase [7].
In a topological phase, the parameter d also determines

the topological properties of excitations, as discussed in
Ref. [2]. Excitations can be studied by considering the GS
on a surface with punctures: each puncture can be viewed
as a localized excitation which is specified by the boundary
conditions at the puncture. If loops terminate at the bound-
ary, the excitation is nontrivial (this is sufficient but not
necessary). The amplitude to create a pair of such quasi-
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particles and annihilate them later is a measure of the
number of states of such a quasiparticle called the quantum
dimension. If there are N quasiparticles with quantum
dimension D, there will be �DN degenerate states. For
D> 1 and not an integer, there will be a large degeneracy
which cannot be ascribed locally to the quasiparticles, so
they will have non-Abelian braiding statistics. The univer-
sal properties of a topological phase are independent of any
coordinate system; in particular, space and time can be
interchanged. The quantum dimension can thus be deter-
mined directly from the GS wave function. For a topologi-
cal phase with GS (1), the quantum dimension of the
fundamental quasiparticle is equivalent to the fugacity d.
A loop can be viewed as the projection onto a fixed time

slice of a pair creation and annihilation process. For d ¼ffiffiffi
2

p
, the fundamental quasiparticle has the same quantum

dimension as the �-field in the Ising topological quantum
field theory or the spin-1=2 field in SUð2Þ2. For arbitrary d,
the loop gas GS (1) has no relation to any known topologi-
cal phase.

The fugacity d also determines the correlation functions
of the associated classical statistical model, which is the
OðnÞ loop model with n ¼ d2:

ZOðnÞðxÞ �
X
�

�
x

n

�
bðLÞ

n‘ðLÞ: (2)

Here, bðLÞ is the total length of the multiloop L. For
integer n, the right-hand-side is the expansion in powers

of x of the Boltzmann weight e��H ¼ Q
hi;jið1þ xŜi � ŜjÞ

for a model of classical interacting spins with OðnÞ sym-

metry. For x ¼ n, ZOðnÞðxÞ ¼ h�ðdÞ
0 j�ðdÞ

0 i, so the equal-

time ground-state correlations contained in the QLG’s

j�ðdÞ
0 i can be obtained from the known correlations of

ZOðnÞðxÞ. For n � 2 and x � xc ¼ n=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffiffiffiffiffiffiffiffiffiffi

2� n
pp

, this

model is in its critical low-temperature phase [8]. It is

necessary for the loops to be critical in order for j�ðdÞ
0 i to

be the ground state of a topological phase. Only then will
the endpoints of a broken loop be deconfined. Therefore,

for j�ðdÞ
0 i to be in a topological phase it is required that

d � ffiffiffi
2

p
. It is equally important that correlation functions

of local operators decay exponentially in time since a
topological phase requires a gap to excited states.

Hamiltonian.—The wave function (1) is the ground state
of the following spin-1=2 Hamiltonian, where the spins
live on the edges of a honeycomb lattice:

H ðdÞ
0 ¼ J

X
v

�
1þ Y

i2eðvÞ
�z

i

�

þ K

2

X
p

�
2

1þ d2
ðd1� FpÞP0

pðd1� FpÞ

þ ð1� FpÞP1
p

�
: (3)

The dominant first term (J � K) enforces the constraint
that the low-energy Hilbert space is spanned by configura-
tions with an even number of �z ¼ 1 spins on edges eðvÞ
around all vertices v. The loops are formed by the �z ¼ 1
edges. Fp � Q

i2p�
x
i flips the six spins around a hexagonal

plaquette p and Pm
p are projectors onto configurations with

m loop segments around a given hexagon. (Here we define
P1

p so that it annihilates states with a single loop forming

the plaquette boundary as in Fig. 1(a); only configurations
of the type shown in Fig. 1(b) are not annihilated by P1

p.)

Notice that the Hamiltonian (3) includes processes shown
in Figs. 1(a) and 1(b), but not those in Figs. 1(c) and 1(d).
The most salient property of this Hamiltonian is that it is a
sum of projectors which simultaneously annihilate the
wave function (1) which is, thus, the GS. The low-energy

spectrum of the Hamiltonian (3) is gapless for d � ffiffiffi
2

p
:

quantum dynamics is inefficient at mixing states with
different loop sizes, thereby resulting in gapless modes.
For d ¼ 1 a gap to all excited states can be opened

without changing the GS j�ð1Þ
0 i by augmenting (3) with

the ‘‘loop surgery’’ terms in Figs. 1(c) and 1(d)

H TC ¼ H ðd¼1Þ
0 þ K

2

X
p

½ð1� FpÞðP2
p þ P3

pÞ�: (4)

This is the honeycomb lattice version of the toric code [6];
hence, its GS is in a Z2 topological phase. Clearly, the
existence of an energy gap depends on the Hamiltonian.
Augmenting the Hamiltonian (3) by the surgery terms of

Figs. 1(c) and 1(d) for d � 1 is not straightforward, as
these terms generically do not conserve the number of
loops and hence skew the loop amplitudes in Eq. (1). To
preserve the correct amplitudes, one may propose

H 1 ¼ H ðdÞ
0 þ K

2

X
p

½ð1� d�lFpÞðP2
p þ P3

pÞ�; (5)

where �l is the change in the number of loops when
plaquette p is flipped. Although our Monte Carlo (MC)
simulations show that this opens a gap � 	 2K, the prob-
lem is that �l is a nonlocal operator: its eigenvalue de-
pends on how loop segments are connected elsewhere.

FIG. 1 (color online). Four types of moves enacted by the
plaquette flip term Fp. Term (a) enforces the loop fugacity d,

(b) enforces isotopy invariance. Collectively they are known as
‘‘d-isotopy’’ moves. Terms (c) and (d) are the surgery terms.
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Local perturbations.—The question that we now want to

address is, Can the non-Abelian state j�ðdÞ
0 i with d � 1 be

the GS of a local, gapped Hamiltonian or is this specific to
the Abelian case d ¼ 1? One proposal is adding a
local (kþ 1)-strand surgery term (not shown) given by a
lattice version of the Jones-Wenzl projector [2,9] which

also annihilates the GS j�ðdÞ
0 i if d ¼ 2 cos�=ðkþ 2Þ.

However, most of the states in this sequence d ¼ 1;ffiffiffi
2

p
; ð1þ ffiffiffi

5
p Þ=2; . . . (k ¼ 1; 2; 3; . . . ) occur at values of d

for which the loops are not critical [8]. The case d ¼ 1
(k ¼ 1) is the surgery term discussed above, and therefore

we focus on d ¼ ffiffiffi
2

p
(k ¼ 2). It can be argued that this term

will not open a gap, because there is a vanishing probabil-
ity for three long strands to meet [10].

However, it is possible for two strands to meet, so we
consider the effect of the local 2-strand surgery term:

H 2 ¼ H ðd¼ ffiffi
2

p Þ
0 þ "

2

X
p

½ð1� FpÞðP2
p þ P3

pÞ�: (6)

The state j�ð ffiffi
2

p Þ
0 i is no longer the GS of Hamiltonian (6),

because the second term is the surgery term for d ¼ 1.
Nevertheless, one may hope that for � 
 K, a weakly-
perturbed, gapped GS will emerge which might still be in
the desired non-Abelian topological phase. We simulate
the model (6) on a torus of L� L plaquettes with tilt angle
60� using a variant of the path-integral ground-state (PIGS)
algorithm [11]. We measure ground-state expectation val-
ues h0jAj0i by sampling the continuous-time path-integral
representation of

h0jAj0i ¼ lim
�!1

h�ð ffiffi
2

p Þ
0 je��H=2Ae��H=2j�ð ffiffi

2
p Þ
0 i

h�ð ffiffi
2

p Þ
0 je��Hj�ð ffiffi

2
p Þ
0 i

(7)

using local updates. We choose the projection time � large
enough to project out all the states but the ground state. We
find that this perturbation immediately opens a gap, since

the time dependent local correlation functions Cð�Þ ¼
h0j�z

i e
��ðH�E0Þ�z

i j0i, decrease exponentially as Cð�Þ �
Að�Þ expð���Þ, where the prefactor Að�Þ ¼ ð1�
expð��ak2Þ=a� is determined by a quadratic dispersion
EðkÞ ¼ �þ ak2 above the gap �. The two-strand surgery
term is expected to be a relevant perturbation, and an
infinitesimal � should be sufficient to open a gap. Shown
in Fig. 2, a substantial gap exists already for � ¼ 0:01.

We now need to determine whether this gapped ground
state is in an Abelian or non-Abelian phase. While these
two phases can be distinguished by the fugacity of large
loops, this is hard to measure. A simpler, more direct
measurement differentiating the two phases is the
Hausdorff dimension dH of the longest loop. The
Coulomb gas solution [8] of the OðnÞ loop model allows

to calculate dH exactly [12] with dH ¼ 7=4 for j�ð1Þ
0 i and

dH ¼ 3=2 for j�
ffiffi
2

p Þ
0 i. We first measure these Hausdorff

dimensions by sampling multiloops L in a MC simulation

with weights d2‘ðLÞ. The length distributions of the longest
loops is shown in Fig. 3 for fugacities d ¼ 1 and d ¼ ffiffiffi

2
p

.
Rescaling the data for various system sizes by the expected
Hausdorff dimension LdH we find excellent data collapses.
The characteristic shape of the distributions originates
from loops with different winding numbers.
We have explicitly checked that the Hausdorff dimen-

sion is universal and constant for the full extent of a gapped
phase by sampling the loop configurations created by
domain walls of a ferromagnetic Ising model in its high
temperature phase. At infinite temperature the Ising model
on the triangular lattice is just percolation at the critical
point, and the boundaries of percolation clusters form a

loop gas j�ð1Þ
0 i. Although at any finite temperature above
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FIG. 2 (color online). The local imaginary time correlation
function Cð�Þ for the loop gas with fugacity d and surgery
term " ¼ 0:01. Data shown are for system size L ¼ 16 and
inverse temperature � ¼ 16.
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QLG with d ¼ 1, dH ¼ 7=4. (b) Non-Abelian QLG with d ¼ffiffiffi
2

p
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2
p

, dH ¼ 7=4 with
surgery term " ¼ 0:05 at inverse temperature � ¼ 16.
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the critical point, corresponding to different GS wave
functions within the same topological phase, the fugacity
for small loops is changed, we find that the Hausdorff
dimension of the longest loop stays dH ¼ 7=4.

Returning to model (6), we now analyze the Hausdorff
dimension of the ground state in the gapped phase for small
�. As shown in Fig. 3(c) the perturbation changes the
Hausdorff dimension from dH ¼ 3=2 to dH ¼ 7=4 and
the characteristic loop distribution to that of the Abelian
phase. This can be understood in a renormalization-group

sense by noting thatH ðdÞ
0 enforces the loop fugacity d only

on microscopic loops, while the perturbation (which is the
surgery term of the d ¼ 1 loop gas) acts on large loops, and
is thus a relevant perturbation, driving the system to the
Abelian d ¼ 1 fixed point.

One might still hope that a different local perturbation to
the Hamiltonian might open a gap but leave the system in
the non-Abelian phase. Wewill now show that such hope is
futile by showing that they are power-law correlation

between local operators in the GS j�ðdÞ
0 i for 1< d � ffiffiffi

2
p

.

While the correlations of most local operators are short-
ranged, those of the plaquette flip operator Fp decay alge-

braically as r�z with z 	 3 for d ¼ ffiffiffi
2

p
as shown in Fig. 4

and smaller values of z for d <
ffiffiffi
2

p
. A theorem by Hastings

[13] then proves that because of this algebraic (and not
exponential) decay of the correlation function between two
local operators, the d � 1 loop gas wave function cannot
be the GS of a gapped local Hamiltonian.

The origin of the algebraic decay is the fractal nature of
the loop gas: plaquette flips performing surgery between
two segments of the same loop are correlated, since the
change in loop number �l is not just the sum of the
changes of the individual flips. Since the flip matrix ele-
ment is d�l this results in an algebraically decaying corre-
lation function for d � 1. This argument applies not only
to the wave function (1) but to any other wave function
with long critical loops and a fugacity d � 1. Since the

surgery term requires at least two loops to pass through the
same plaquette, e.g., four loop segments emanating from
the same plaquette, the hFpðrÞFpð0Þi correlation function

should not decay faster than the OðnÞ model exponent
associated with four-line vertices which gives z � 4 [8].
We can thus prove that there exists no local, gapped

Hamiltonian whose GS wave function is a loop gas with
non-Abelian excitations. Our approach maps out a general
strategy to analyze proposed wave functions for non-
Abelian phases. To construct local Hamiltonians with
non-Abelian excitations one needs to consider more intri-
cate Hamiltonians, such as string-net models [14,15]. They
can be constructed systematically from loop gases with
modified inner products [16].
For d ¼ 1 the Hamiltonian (3) is critical, but exhibits

short-ranged equal-time correlations of all local operators.
However, by direct calculation we find that on-site opera-
tors have power-law decay in time, e.g., h�zð0Þ�zð�Þi �
1=�. This is the first microscopic model exhibiting local
quantum criticality [17] without dissipative baths.
We acknowledge insightful discussions with M.

Boninsegni, M. Freedman, and M. Hastings. Our numeri-
cal simulations were based on the ALPS libraries [18].
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