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We present an adaptive algorithm which optimizes the statistical-mechanical ensemble in a generalized
broad-histogram Monte Carlo simulation to maximize the system’s rate of round trips in total energy. The
scaling of the mean round-trip time from the ground state to the maximum entropy state for this local-update
method is found to beOsfN ln Ng2d for both the ferromagnetic and the fully frustrated two-dimensional Ising
model with N spins. Our algorithm thereby substantially outperforms flat-histogram methods such as the
Wang-Landau algorithm.
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I. INTRODUCTION

At first-order phase transitions and in systems with many
local minima of the free energy such as frustrated magnets or
spin glasses, conventional Monte Carlo methods simulating
canonical ensembles have very long equilibration times. Sev-
eral simulation methods have been developed to speed up
such systems, including the multicanonical method[1],
broad histograms[2], parallel tempering[3], the Wang-
Landau algorithm[4], and variations thereof[5]. Most of
these methods simulate a flat-histogram ensemble. Instead of
sampling a configuration of energyE with Boltzmann weight
wsEd~exps−bEd, they use weightswsEd~1/gsEd, where
gsEd is the density of states. The probability distribution of
the energy,nsEd=wsEdgsEd, then becomes constant, produc-
ing a flat energy histogram. Naively, one might assume that
sampling all energies equally often produces an unbiased
random walk in energy. However, it was recently shown[6]
that the growth with the number of spinsN of the “tunneling
times” between low and high energy in any local-update flat-
histogram method is stronger than the naiveN2 of an unbi-
ased random walk in energy for various two-dimensional
(2D) Ising models: as,N2.4 for the ferromagnetic and,N2.9

for the fully frustrated models. For the 2D ±J spin glass,
exponential growth was observed[6].

In view of these results for flat-histogram simulations[6]
we have asked how this type of simulation can be improved,
in terms of both computer time and statistical errors. The
general type of application we have in mind is to the equi-
librium behavior of a system that is very slow to equilibrate
in a conventional simulation, such as domain walls in or-
dered phases, low-energy configurations of frustrated sys-
tems or a spin-glass ordered phase. Our algorithm instead
simulates a broad-histogram ensemble, where the system
can, at “equilibrium” in this ensemble, wander to part of its
phase diagram where equilibration is rapid. We look specifi-
cally at histograms that are broad in energy, but in general
another variable other than the energy could be used. To
minimize the statistical errors of measurements in the energy
range of interest, one maximizes the number ofstatistically
independentvisits. For a glassy phase, the system will relax

very little as long as it remains in that phase, so to get a new
statistically independent visit to the phase the system has to
leave it and equilibrate elsewhere(usually at high energies).
Thus the quantity we want our simulation to maximize is the
number of round trips—between low and high energy—per
unit computer time. This should minimize both the simula-
tion’s equilibration time and the statistical errors in the low-
energy regime of interest.

In this paper, we present an algorithm that systematically
optimizes the ensemble simulated to maximize the rate of
round trips in energy. We use a feedback loop that reweights
the ensemble based on preceding measurements of the local
diffusivity of the total energy. This detects the “bottlenecks”
in the simulation as minima in the diffusivity(at critical
points in the cases we study), and reallocates resources to
those energies in order to minimize the slowdown. We find
that the resulting statistical errors in the density of states as
estimated by this algorithm are nearly uniform in energy, in
strong contrast to flat-histogram simulations where the errors
are much larger at low energy than at high energy. While our
algorithm is rather general and should be widely applicable
to study complex systems, we have developed and tested it
on ferromagnetic(FMI) and fully frustrated(FFI) square-
lattice Ising models.

II. FEEDBACK OF LOCAL DIFFUSIVITY

In our simulations, the system’s energy does a random
walk in the energy range between two extremal energies,
E−øEøE+ where we take the lowest energyE− to be the
system’s ground state, although this is not necessary for our
approach. Consider a general ensemble, with weightswsEd,
which define the acceptance probabilities for moves based on
the Metropolis scheme

psE → E8d = minS1,
wsE8d
wsEd

D . s1d

Our algorithm iteratively collects data from batch runs which
simulate with a fixed ensemble. During a simulation detailed
balance is strictly satisfied at all times. For a reasonably large
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number of sweeps we can thus measure the equilibrium dis-
tribution of the energy in this ensemble which isnwsEd
~wsEdgsEd. The simulated system does a biased and Mar-
kovian random walk in configuration space. Since we bias
this walk based only on total energy, the projection of this
random walk onto that variable is what we will discuss. This
projection, which ignores all properties of the state other
than its total energy, results in a random walker that is non-
Markovian, with its memory stored in the system’s configu-
ration. Thus the simulation may be viewed as a biased non-
Markovian random walker moving along the allowed energy
range between the two extremal energies.

To measure the round trips we add alabel to the walker
that says which of the two extremal energies it has visited
most recently. The two extrema act as “reflecting” and ab-
sorbing boundaries for the labeled walker: e.g., if the label is
plus, a visit toE+ does not change the label, so this is a
“reflecting” boundary. However, a visit toE− does change
the label, so the plus walker is absorbed at that boundary.
The steady-state distributions of the labeled walkers satisfy
n−sEd+n+sEd=nwsEd. It is important to note that the behavior
of the labeled walker isnot affected by its label except when
it visits one of the extrema and the label changes. When the
unlabeled walker is at equilibrium, the labeled walker is in a
nonequilibrium steady state. LetfsEd=n+sEd /nwsEd be the
fraction of the walkers atE that have label plus, so they have
most recently visitedE+. The above-discussed boundary con-
ditions dictatefsE−d=0 and fsE+d=1.

To calculate the rate of round trips, we note that in steady
state the currentj of the labeled walkers is independent ofE.
The plus and minus walkers drift in opposite directions and
the equilibriumunlabeledwalker has no net current. We first
examine the case of a continuous energyE. The steady-state
current fromE+ to E− to first order in the derivative is

j = DsEdnwsEd
df

dE
, s2d

whereDsEd is the walker’s diffusivity at energyE. There is
no current if f is constant, since this is equilibrium; this is
why the current is to leading order proportional todf /dE. If
one rearranges the above equation and integrates on both
sides, noting thatj is a constant andf runs from 0 to 1, one
obtains

1

j
=E

E−

E+ dE

DsEdnwsEd
. s3d

In the following we separately discuss how we can maximize
the rate of round trips for Metropolis andN-fold way dynam-
ics based on this estimate of the current.

A. Metropolis dynamics

For Metropolis dynamics the rate of round trips is simply
proportional to the current. To maximize the round-trip rate,
the above integral Eq.(3) must be minimized. However,
there is a constraint:nwsEd is a probability distribution and
must remain normalized. We do this by adding a Lagrange
multiplier:

E
E−

E+

dES 1

DsEdnwsEd
+ lnwsEdD . s4d

To minimize this integrand, the ensemble, that is, the weights
wsEd and thusnwsEd, is varied. At this point we assume that
the dependence ofDsEd on the weights can be neglected.
This is justified by noting that the rates of transitions be-
tween configurations depend only on theratios of weights,
so the diffusivityDsEd is unchanged when the weights are
multiplied by an energy-independent constant. By ignoring
the variation ofDsEd with the weights, we are assuming that
the adjustments to the weights are slowly varying in energy,
which is true for most systems, particularly for large systems
where the energy range being studied is large. With this as-
sumption, the optimal weighting which minimizes the above
integrand is

nw
soptd =

1
ÎDsEdl

=
dfsoptd

dE
. s5d

Thus for the optimal ensemble with Metropolis dynamics,
the probability distribution is simply inversely proportional
to the square root of the local diffusivity.

B. N-fold way dynamics

Since Metropolis dynamics can be slowed down by high
rejection rates of singular moves, e.g., in the vicinity of the
fully polarized ground state of the FMI model, or the occur-
rence of multiple, generally accepted zero-energy moves, it
can be advantageous to introduce rejection-free single-spin
flip updates such as theN-fold way [7]. N-fold way dynam-
ics involve two time scales, the walker’s time and the com-
puter time. At a given energy level the two time scales differ
by the (energy-dependent) lifetime of a given spin configu-
ration. The random walk withN-fold way dynamics is an
equilibrium process when measured in walker’s time, that is,
the equilibrium distributionnwsEd is proportional to the
amount ofwalker’s time the walker spends atE. However,
for the ensemble optimization withN-fold way dynamics we
want to speed up the random walk measured incomputer
time. This setup with two clocks requires a slightly different
reweighting procedure than is presented above for Metropo-
lis dynamics.

As for the Metropolis dynamics the amount of walker’s
time it takes to make a round trip is proportional to 1/j given
in Eq. (3). However, we are interested in minimizing the
amount of computer time spent, so we need to multiply this
by the ratio of computer time to walker’s time atE which we
denote astsEd. Let us assume the distributionnwsEd is nor-
malized to integrate to 1. Then for one unit of walker’s time,
the fraction spent atE in dE is nwsEddE. The amount of
computer time used per unit walker’s time is thus

T =E
E−

E+

nwsEdtsEddE. s6d

To find the weights that minimize the round-trip time as mea-
sured in computer time, the full quantity we want to mini-
mize is thus
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E
E−

E+ dE

DsEdnwsEdEE−

E+

tsE8dnwsE8ddE8. s7d

Since the probability distributionnwsEd occurs in both the
numerator and denominator of the integrand there is no need
to enforce its normalization by a Lagrange multiplier. To
extremize the integrand, we will again vary the weights
wsEd, which gives the following condition for the optimum:

T

DsEdnw
2sEd

=
tsEd

j
, s8d

so the weights should be chosen to give the optimal distri-
bution

nw
soptdsEd =Î jT

DsEdtsEd
. s9d

For the optimal ensemble withN-fold way dynamics, the
probability distribution is thus larger at the points with
smallertsEd (since they do not cost a lot of computer time)
and smaller diffusivityDsEd.

C. Feedback iteration

To feed back we simulate with some trial weightswsEd,
get steady-state data fornwsEd and fsEd, and thus obtain
estimates for the diffusivity via

DsEd =
j

nwsEddf/dE
. s10d

For Metropolis dynamics chose new weightsw8sEd so that

nw8sEd = AÎnwsEd
df

dE
, s11d

where A is a normalization constant whose value is not
needed to run the next “batch” of the simulation with the
new weights w8sEd. For N-fold way dynamics the new
weightsw8sEd are chosen to be

nw8sEd =ÎnwsEd
df

dE

T

tsEd
. s12d

In practice we work with the logarithms of the weights, so
the reweighting becomes

ln w8sEd = ln wsEd + 1
2SlnH df

dE
J − ln nwsEd − ln tsEdD ,

s13d

where all energy-independent terms have been dropped as
they introduce a constant shift only. For Metropolis updates
the last term lntsEd can also be dropped. Each subsequent
batch should be run significantly longer than the previous
one—in our implementation we double the number of
sweeps—in order to get better statistics, and feed back to
improve the estimates of the optimal weights.

III. IMPLEMENTATION AND APPLICATIONS

We implemented this algorithm for 2D Ising models with
single-spin-flip Metropolis andN-fold way dynamics, found

the optimal ensembles for the FMI and FFI models, obtained
the scaling of round-trip times, and calculated the density of
states and its statistical errors for both models. In both cases
we used the ground stateE−=E0 and zero energyE+=0 as
the energy limits.

In the initial batch mode step we simulated a flat-
histogram ensemble for small system sizes using either the
exact density of states[8] or a rough estimate thereof calcu-
lated with the Wang-Landau algorithm[4]. For larger sys-
tems sN.64364d where the round-trip times for the flat-
histogram ensemble are more than a magnitude larger than
for the optimized ensemble, we produced an initial estimate
of the optimal weights by extrapolating the optimized
weights of smaller systems. For all batch mode steps the
fraction of labeled walkers,fsEd, was determined by record-
ing two histograms, one for the equilibrium(unlabeled)
walker and one for the labeled walker that most recently
visited E−. The derivativedf /dE was then estimated by a
linear regression of several neighboring points at each energy
level. The number of points used for the regression can be
reduced for subsequent batch mode steps as the estimate of
fsEd becomes increasingly accurate due to better statistics. In
the final batch mode steps of our calculations the regression
was performed using a minimum of three points. In general,
there is a trade-off between the accuracy in the measurement
of the local diffusivity and the number of feedback steps. For
the Ising models we study we found rapid convergence to the
optimal ensemble. For small systems,Nø32332, an initial
batch mode step with some 105 to 106 sweeps was sufficient
to find the optimal weights after the first feedback step. Since
the possible energy levels are discrete for the Ising model,
special care is taken when applying the reweighting derived
for the continuum limit, particularly at the boundaries of the
energy intervalfE−,E+g. However, we did not encounter any
subtlety for either model.

A. Fully frustated Ising model

We first present our results for the fully frustated model,
which has a critical point at its ground state, and shows
rather simple scaling of our algorithm’s behavior with energy
and system size. For the optimized ensemble of the FFI
model the histogram of the equilibrium random walker is no
longer flat, but exhibits a power-law divergence at its ground
state, as shown in Fig. 1. This divergence reflects the behav-
ior DsEd,fsE−E0d /Ng2 of the diffusivity, as is seen in the
inset of Fig. 1. These power-law behaviors extend from the
first few points,E−E0=Os1d, up nearly to zero energy,E
−E0=OsNd. If we accept that the critical exponent for
the diffusivity is indeed 2, then the optimal distribution
scales asnw,1/fsE−E0dln Ng, and the round-trip time as
t,sN ln Nd2, consistent with our results shown in Figs. 1
and 2.

Noting that for our optimized ensemble the system spends
a large fraction of its time near the ground state where many
Metropolis moves are rejected, we applied a version of our
algorithm that instead uses single-spin-flip rejection-free
N-fold way updates. We find theN-fold way updates do give
a significant speedup compared to Metropolis dynamics, but
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do not change thet,sN ln Nd2 scaling of the round-trip
time. In comparison to the performance of flat-histogram
sampling we find a substantial speedup up to a factor of
around 50 for the largest simulated system withN=128
3128 spins(see Fig. 2).

B. Ferromagnetic Ising model

We now turn to the results for the ferromagnetic Ising
model which exhibits a finite-temperature second order
phase transition. After applying the feedback, we find a peak
in the histogram near the critical energy, as shown in Fig. 3.
For Metropolis updates a second divergence close to the
fully polarized ground state appears which is eliminated by

changing the dynamics to rejection-freeN-fold way moves.
However, the minimum in the diffusivity at the critical point
remains withN-fold way dynamics and the resulting peak in
the histogram is not suppressed. With increasing system size
this power-law divergence moves toward the critical energy
of the infinite system,Ec/2N>−0.71, as illustrated in the
inset of Fig. 4. For both types of single-spin-flip moves we
find that the rate of round trips between the magnetically
ordered and disordered phases of the ferromagnet appear to
scale ast,sN ln Nd2 as for the FFI model(see Fig. 4).

FIG. 1. Histograms of the optimal ensemble for the 2D fully
frustrated Ising model with Metropolis dynamics. For various sys-
tem sizes and a broad energy range the rescaled data points collapse
onto a power-law divergencefsE−E0d /N lnNg−1 (bold line). The
inset shows the diffusivityDsEd for the same model which is pro-
portional tofsE−E0d /Ng2 (bold line).

FIG. 2. Scaling of round-trip times in the energy interval
f−N,0g for the flat histogram(open symbols) and optimized en-
semble(filled symbols) of the 2D fully frustrated Ising model with
Metropolis (circles) andN-fold way (squares) dynamics. The solid
lines correspond to a logarithmic(power-law) fit for the optimized
(flat-histogram) ensemble. The inset illustrates the frustrated cou-
plings of the fully frustrated model.

FIG. 3. Histograms for the 2D ferromagnetic Ising model ob-
tained after feedback: for the optimal ensemble a peak evolves
around the critical energy in the histograms. The additional peak
near the fully polarized ground state found for Metropolis updates
(thin line) can be eliminated by changing the dynamics toN-fold
way updates(bold line). The inset shows the fractionfsEd of walk-
ers which have most recently visitedE+=0 for flat-histogram(mul-
ticanonical) sampling and the optimal ensembles for Metropolis and
N-fold way dynamics.

FIG. 4. Scaling of round-trip times in the energy interval
f−2N,0g for the flat-histogram ensemble(open symbols) and the
optimal ensemble(filled symbols) of the 2D ferromagnetic Ising
model with Metropolis (circles) and N-fold way dynamics
(squares). The solid (dashed) lines correspond to a logarithmic
(power-law) fit for the optimized(flat-histogram) ensemble. The
inset shows the scaling of histograms for the optimal ensemble for
N-fold way updates.
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IV. STATISTICAL ERRORS

Finally we address the statistical errors of measurements
performed during the simulation. Standard tools can be used
for the error analysis as the simulated random walk in con-
figuration space is a conventional Markov chain Monte Carlo
simulation. Only the projection of this random walk onto
energy space becomes non-Markovian which is irrelevant for
the measurements.

For each batch mode step simulating a fixed statistical
ensemblewsEd we can measure the density of states,
ln gsEd=ln nwsEd−ln wsEd, from the recorded equilibrium
distributionnwsEd. Comparing our results with the exact den-
sity of states we find perfect agreement within the statistical
errors as illustrated for the FMI model in the inset of Fig. 5.

The observed distribution of statistical errors is nearly flat in
energy, which is a further improvement compared to flat-
histogram simulations where the errors can be orders of
magnitude larger at low energy than at high energy[4].
The statistical error is found to scale asD ln gsEd
,1/sround tripsd1/2 with the number of round trips in energy
which is shown in the main panel of Fig. 5. For different
system sizes we find the statistical errors to collapse onto a
single 1/sround tripsd1/2 dependence whicha posteriorivali-
dates our goal of maximizing the rate of round trips.

V. CONCLUSIONS

The presented algorithm should be widely applicable to
study the equilibrium behavior of complex systems, such as
glasses, dense fluids, or polymers. To speed up the system’s
equilibration the rate of round trips in energy is maximized
by systematically optimizing the statistical ensemble based
on measurements of the local diffusivity. We find that the
relative statistical error in the density of states as calculated
with our method scales asO(1/sround tripsd1/2). For the 2D
ferromagnetic and fully frustrated Ising models the round-
trip time from the ground state to the maximum entropy state
scales likeOsfN ln Ng2d which is a significant speedup com-
pared to the power law behaviorOsN2+zd of flat-histogram
algorithms.

The idea of performing round-trips in energy is similar to
the parallel tempering algorithm[3] which simulates replicas
of the system at various temperatures. The swapping of rep-
licas at neighboring temperatures can be viewed as a random
walk of the replicas along the temperature. In order to maxi-
mize the round-trips in temperature one can use our algo-
rithm to systematically optimize the simulated temperature
set which we will discuss in a forthcoming publication[11].
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FIG. 5. Average statistical errorkD ln gsEdlE of the computed
density of states of the FFI model versus the number of round trips
in the energy intervalf−N,0g. The statistical errors were obtained
for 16 independent runs and averaged over all energies forN=36
(open symbols). Data points for larger system sizes are superim-
posed(solid symbols), with the system size increasing from right to
left. The statistical error reduces like 1/sround tripsd1/2 (solid line)
for all system sizes. The inset shows the deviationdsEd=ln gsEd
−ln gexactsEd, from the exact result for the 24324 FMI model ob-
tained for 16 independent runs with 3.23106 sweeps.
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