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Abstract. The efficiency of statistical sampling in broad-histogram Monte
Carlo simulations can be considerably improved by optimizing the simulated
extended ensemble for fastest equilibration. Here we describe how a recently
developed feedback algorithm can be generalized to find optimized sampling
distributions for the simulation of quantum systems in the context of the
stochastic series expansion (SSE) when defining an extended ensemble in the
expansion order. If the chosen update method is efficient, such as non-local
updates for systems undergoing a second-order phase transition, the optimized
ensemble is characterized by a flat histogram in the expansion order if a variable-
length formulation of the SSE is used. Whenever the update method suffers
from slowdown, such as at a first-order phase transition, the feedback algorithm
shifts weight towards the expansion orders in the transition region, resulting in
a non-uniform histogram.
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1. Introduction

Quantum Monte Carlo techniques are widely employed to study equilibrium properties
of quantum systems that do not suffer from the infamous negative-sign problem which
renders any efficient simulation impossible [1]. Over the last decade many technical
advances, including the adaptation of non-local update techniques [2]–[8] from their
classical counterparts [9] and the implementation of continuous-time algorithms [3, 4, 10]—
which only later have been adapted to classical systems [11]—have made quantum Monte
Carlo (QMC) simulations almost as powerful as classical simulations, despite their usually
more complex formulation and implementation.

Non-local update techniques efficiently overcome the critical slowing down at many
second-order phase transitions [12, 13], but do not help to overcome the problem of
tunneling out of metastable states at first-order phase transitions or the sampling
of rough energy landscapes. To alleviate these sampling problems for systems with
competing, but well-separated, states a number of techniques have been developed
that all aim at broadening the range of sampled reaction coordinates such as parallel
tempering/replica exchange methods [14] or alternative extended ensemble techniques
which include multicanonical sampling [15], broad-histogram sampling [16] and the
Wang–Landau algorithm [17]. Similar approaches have been formulated also for QMC
simulations [18]–[21]. While most of the extended ensemble methods sample a flat
histogram for a given reaction coordinate, it has been pointed out that flat-histogram
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sampling generally leads to suboptimal scaling behavior [22]. If applied to second-order
phase transitions this slowing down can be overcome by introducing non-local update
techniques [23]. In the more general case, it has recently been demonstrated that,
even for local update techniques, this slowing down can be overcome by optimizing the
sampled statistical ensemble [24]. The idea is to identify bottlenecks of the simulation
by measuring the local diffusivity of the random walk in a reaction coordinate and to
systematically feed back this information to shift resources (and statistical weight) towards
those regions where the local diffusivity is suppressed. The resulting histograms are non-
uniform sampling distributions which are typically tailored to the underlying problem.
The feedback algorithm has been applied to a range of classical systems with rough energy
landscapes including frustrated magnets [25], small proteins [26] and dense liquids [27],
and has recently been extended to optimize the simulated temperature set in parallel
tempering/replica exchange simulation schemes [28, 29].

In this paper, we discuss how the ensemble optimization technique can be applied
to efficiently sample quantum systems in the context of a stochastic series expansion
(SSE) formulation. Our approach extends previous ideas of adapting the Wang–Landau
algorithm to quantum systems by observing that the stochastic series expansion performs a
one-dimensional random walk in expansion orders which, similar to the classical algorithm,
can be biased using a generalized density of states (in expansion orders) [20]. It has been
demonstrated that sampling an extended ensemble can significantly improve the sampling
at first-order quantum phase transitions [19, 20]. Obtaining a QMC estimate for the
generalized density of states allows for the direct calculation of the free energy, internal
energy, entropy and specific heat for a wide range of temperatures. Here we apply the
feedback algorithm to study and further improve the sampling efficiency of such extended
ensemble quantum simulations.

For thermal second-order phase transitions where typically non-local update
algorithms are efficient we find that, using non-local updates and sampling, a flat
histogram in expansion orders is already optimal. However, we find a dependence on
the underlying representation of the operator string in the stochastic series expansion
which we discuss in detail. We show that the commonly employed fixed length vector
representation gives inferior results to a variable length list representation. It is only for
the latter that the optimal ensemble is just a flat histogram in the expansion orders.

For first-order phase transitions, both thermal and quantum, we find a significant
reweighing when applying the feedback technique resulting in model-specific histograms.
We show that these non-uniform sampling distributions further improve the simulations
when compared to the flat-histogram approach and result in an unbiased distribution of
statistical errors.

This paper is organized as follows. In section 2 we outline the stochastic series
expansion algorithm and discuss both fixed length and variable length representations
for the sampled operator string. We introduce modifications to this algorithm to sample
extended statistical ensembles in section 3 and explain the adaptive feedback algorithm
that finds the optimized broad-histogram ensemble. Finally, we discuss application of
these sampling techniques to a number of quantum spin systems in section 4 and give
systematic comparisons to flat-histogram sampling methods. We close with a summary
of our results and, in an appendix, give a detailed analysis of the variable length
representation for the operator string and the respective update algorithms.
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2. Stochastic series expansions

The fundamental problem for Monte Carlo simulations of quantum systems is that the
partition function is not a simple sum over classical configurations but an operator
expression:

Z = Tr exp(−βH), (1)

where H is the Hamiltonian operator, β = 1/T the inverse temperature (kB = 1)
and the trace Tr goes over all states in the Hilbert space. The first step of any QMC
algorithm is thus the mapping of the quantum system to an equivalent classical system,
and then sample configurations of the constructed classical systems, e.g. a system of world
lines. Over the years various methods have been developed for this mapping including
discrete time [30] and continuous time [4] path integrals or the stochastic series expansion
(SSE) [31, 32]. While our algorithms can be applied to any of these representations [33, 34],
when combined with an extended ensemble approach [18]–[20], we will concentrate on the
stochastic series expansion in the following.

Most commonly, the stochastic series expansion is formulated in terms of a high-
temperature series expansion of the partition function

Z = Tr exp(−βH) =

∞∑

n=0

βn

n!
Tr(−H)n =

∞∑

n=0

g(n)βn, (2)

where the expansion coefficients g(n) present a generalized density of states in the
expansion order n. This one-dimensional representation in expansion orders is similar
to the classical form of the partition function:

Z =
∑

E

g(E) exp(−βE) (3)

and, in fact, we can identify low expansion orders of the thermal representation (2)
with high temperature/energy physics and higher expansion orders describe low
temperature/energy physics. In any simulation the expansion has to be truncated at
some order Λ which is equivalent to setting a lower temperature bound. For canonical
simulations one typically chooses Λ > O(Nβ) such that contributions from orders n > Λ
are negligibly small, and orders n > Λ are never reached in the simulation.

We can generate a one-dimensional representation of the form in equation (2) by
direct expansion of the Hamiltonian H . To this end, we decompose the Hamiltonian into
a sum of Nb diagonal or off-diagonal non-branching bond terms H =

∑Nb

i Hbi
.4 Inserting

this decomposition along with a complete set of basis states {|α〉} to perform the trace,
the expression for the partition function becomes

Z =

∞∑

n=0

∑

{α}

∑

{Sn}

βn

n!

n∏

p=1

〈α(p)| (−Hbp) |α(p − 1)〉 , (4)

where |α(p)〉 =
∏p

i=1 Hbi
|α〉 denotes the propagated state after the action of the first

p bond operators on the initial state |α〉 (= |α(0)〉 = |α(n)〉). The operator string Sn

4 By non-branching we mean that, when applying Hbi to a basis state {|α〉}, the result Hbi{|α〉} has nonzero
overlap only with at most one basis state.
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is an ordered sequence of n bond operators Hbp , with repetitions allowed. In order
to stochastically sample the terms in the bond-operator expansion (4) by their relative
weight, we need to interpret them as probabilities which requires all bond operators to be
positive semi-definite. For diagonal operators, we can simply achieve this by adding an
energy offset to each bond while for off-diagonal operators there is no general remedy for
negative weights which is the famous sign problem for QMC calculations.

2.1. Fixed length representation

Most implementations of the SSE algorithm sample the various terms in the bond-operator
expansion (4) by updating the operator string Sn using a fixed length representation. To
this end, a vector of length Λ is created which contains n bond operators and is filled with
Λ − n identity operators Idp. To compensate for the various ways to place the identity
operators between the bond operators we have to take into account a combinatorial factor(
Λ
n

)
such that equation (4) becomes

Z =
Λ∑

n=0

∑

{α}

∑

{Sn}

βn(Λ − n)!

Λ!

Λ∏

p=1

〈α(p)|Sn(p) |α(p − 1)〉 , (5)

where Sn(p) is either a bond operator −Hbp of the Hamiltonian decomposition or an
identity operator Idp.

Sampling schemes in SSE algorithms usually consist of two distinct types of updates.
In a first step, attempts are made to change the expansion order n by converting diagonal
bond operators to identities and vice versa. For the fixed length representation, this can
be achieved by traversing the operator string Sn in ascending order and at each position
p propose the update if the operator Sn(p) is either a diagonal bond or identity operator.
The acceptance rates are

pacc

(
Idp → Hbp

)
=

Ndβ 〈α(p)|Hbp |α(p)〉
Λ − n

,

pacc

(
Hbp → Idp

)
=

Λ − n + 1

Ndβ 〈α(p)|Hbp |α(p)〉 ,
(6)

where an acceptance probability pacc > 1 is interpreted as pacc = 1 as in the usual
Metropolis scheme. In both expression n denotes the current number of non-identity
operators in the operator string before the update is accepted/rejected and Nd is the
number of diagonal bond operators in the Hamiltonian decomposition.

The second part of the update cycle then attempts to switch diagonal and off-
diagonal bond operators without changing the expansion order n. Typically, non-local
update techniques are employed for this step such as loop updates [2, 6], the operator
loop update [5] or directed loop updates [7, 8].

2.2. Variable length representation

As an alternative to the fixed length representation outlined above, we can keep the
original representation of an operator string with a variable number n of (non-identity)
bond operators. Since this list representation of the operator string turns out to be the
computationally more efficient representation in a broad-histogram simulation, we will
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Figure 1. Variable length representation of the operator string in a stochastic
series expansion: bond operators from the Hamiltonian decomposition are marked
by filled squares. Between each pair of bond operators an empty square denotes
the ‘gap’ which, in an update move, can be filled with an additional diagonal
bond operator as shown in the insert move in the top panel. In the reverse move
shown in the lower panel a diagonal bond operator is removed from the operator
string. The arrow indicates for which position of the operator string a subsequent
update will be proposed.

discuss in the following an efficient sequential update algorithm which inserts or removes
diagonal bond operators from the operator string for this representation, extending on
previous work by Handscomb [35] and Sandvik [32].

We start with an operator string as illustrated in figure 1, where non-identity bond
operators from the Hamiltonian decomposition are depicted by filled squares. These are
separated by ‘gaps’ into which additional operators can be inserted. Starting from the
gap preceding the lowest-order bond operator we traverse the operator string in ascending
order, alternatingly updating ‘gaps’ and operators:

• When updating a gap we try to insert a randomly chosen diagonal bond operator and
accept the insertion with probability

pinsert = min

[
1,

Ndβ 〈α(p)|Hbp |α(p)〉
n + 1

]
, (7)

where n denotes the size of the operator string before the update.
If the insertion succeeds we continue with attempts to insert additional operators
after the one just inserted, as illustrated in the top panel of figure 1 and continue
inserting as long as the insertions are accepted. At the first rejected insertion we stop
updating this gap and continue updating the following operator.

• When updating a bond operator we attempt to remove the current operator if it is
diagonal, with probability

premove = min

[
1,

n

Ndβ 〈α(p)|Hbp |α(p)〉

]
, (8)
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where again n denotes the size of the operator string before the update.
If the removal succeeds we next attempt removing the following bond operator and
continue removing bond operators until an attempt is rejected. We then continue
updating the following gap.

The subsequent loop update in the SSE sampling scheme which swaps diagonal and
off-diagonal bond operators without changing the expansion order remains unchanged for
the variable length representation. This algorithm fulfils detailed balance as shown in the
appendix.

Detailed balance is fulfilled not at the level of individual update steps, but only at the
level of complete sweeps. Hence measurements of physical observables have to be done
only after a full sweep of updates, i.e. a complete traversal of the operator string.

3. Optimized ensembles

The stochastic series expansion is typically performed for a canonical ensemble at a fixed
inverse temperature β. From the high-temperature expansion of the partition function
in equation (2) it is then obvious that the simulated random walk will concentrate on
a narrow energy window, or a small number of expansion orders characteristic for this
energy regime respectively:

E = 〈H〉 = − ∂

∂β
ln Z = − 1

Z

∞∑

n=0

g(n)nβn−1 = − 1

β
〈n〉. (9)

For a system with competing energy scales which are typically found in systems undergoing
a first-order transition or systems with rough energy landscapes the canonical sampling
can result in dramatic slowing downs, with the random walker stuck in one of the energy
levels and the tunneling to another energy level suppressed by some intermediate energy
barrier. To overcome this problem parallel tempering or broad-histogram algorithms aim
at broadening the sampled energy space by introducing either multiple replicas of the
system spread over some temperature range or by introducing an extended ensemble that
creates an additional bias for the random walker to tunnel through the intermediate energy
barriers. In the following we concentrate on the idea of generalizing the sampled statistical
ensemble in the context of a stochastic series expansion.

A first step in this direction has been taken by formulating the iterative algorithm
by Wang and Landau [17] to sample a broad range of expansion orders in the SSE
algorithm [20]. The goal of the algorithm is to approach a flat-histogram ensemble that
samples all expansion orders (up to some cutoff Λ) equally often. Similar to the classical
case such uniform sampling is achieved by introducing an additional statistical weight
w(n) that is inversely proportional to a generalized density of states g(n), that is

wflat(n) ∝ 1

g(n)
fixed length representation,

wflat(n) ∝ 2n + 1

g(n)
variable length representation,

(10)

where the additional factor of 2n+1 is due to the 2n+1 local steps in one sweep through
the operator string in the variable length representation (see section 2.2), in contrast to
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the fixed length representation where the effort per sweep is constant. Accordingly the
acceptance rates are multiplied by this additional weight factor and setting the inverse
temperature to β = 1. For the fixed-length representation of the operator string the
acceptance probabilities in equation (6) become

pacc

(
Idp → Hbp

)
=

w(n + 1)

w(n)

Nd 〈α(p)|Hbp |α(p)〉
Λ − n

,

pacc

(
Hbp → Idp

)
=

w(n − 1)

w(n)

Λ − n + 1

Nd 〈α(p)|Hbp |α(p)〉

(11)

and for the variable-length representation of the operator string we obtain

pacc

(
�p → Hbp

)
=

w(n + 1)

w(n)

Nd 〈α(p)|Hbp |α(p)〉
n + 1

,

pacc

(
Hbp → �p

)
=

w(n − 1)

w(n)

n

Nd 〈α(p)|Hbp |α(p)〉 .
(12)

In the following we will further expand on this idea and ask which weights w(n) are
optimal for a given physical system in the sense that the sampled statistical ensemble
gives fastest equilibration for all thermodynamic observables. For classical systems it has
been demonstrated that such optimal weights exist and generally lead to a non-uniform
histogram [24]. Typically, the histogram is reweighed and additional resources (in terms of
attempted updates) are shifted towards those values of the reaction coordinate (in which
the statistical ensemble/weights are defined) where bottlenecks of the simulation occur,
typically in the vicinity of a phase transition. The optimal weights are systematically
approached in [24] by studying a diffusive current of random walkers between the extremal
values of the reaction coordinate and feeding back measurements of the local diffusivity.

In complete analogy, we can think of the random sampling of operator string
configurations during an SSE simulation as a one-dimensional random walk in expansion
orders. To maximize equilibration we want this random walker to perform as many round
trips between the two extremal expansion orders nmin = 0 and nmax = Λ as possible.
To identify such round trips we add a label to the random walker that keeps track of
which of the two extremal orders the random walker has visited most recently, e.g. ‘+’
and ‘−’ denote that the walker has visited the lowest expansion order nmin or the highest
expansion order nmax most recently. The label is switched only once the random walker
visits the other extremal order. Using this label we can record two histograms h+(n) and
h−(n) where, after every single update of the operator string, we increment the histogram
corresponding to the current label of the walker. This allows us to measure for each
expansion order what fraction of walkers f(n) = h+(n)/(h+(n) + h−(n)) on average are
passing by a given expansion order that have visited, for instance, the lowest expansion
order last. We can then define to leading order a current that characterizes the diffusion
of the random walker from the lowest to the highest expansion order:

j = D(n)h(n)
df

dn
, (13)

where D(n) is the local diffusivity and h(n) = (h+(n) + h−(n)) is the local histogram of
visits of the random walker to the expansion order n. In order to speed up equilibration we
want to maximize this diffusive current by varying the sampled histogram h(n). Following
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the arguments in [24] the optimal histogram of visits is found to be inversely proportional
to the square root of the local diffusivity D(n):

hopt(n) ∝ 1/
√

D(n), (14)

where the local diffusivity can be estimated from the current histogram of visits by

D(n) ∝ 1

h(n)|df/dn| . (15)

For the example systems discussed in section 4 we find—similar to simulations with
classical systems—that this local diffusivity depends only weakly on the sampled
statistical ensemble. The sampled histogram, however, reflects a dramatic reweighing
of computational resources towards those expansion orders where the local diffusivity is
suppressed, typically those orders which can be identified with a thermal or quantum
phase transition as discussed in section 4.

3.1. Feedback algorithm

In order to obtain a statistical ensemble with weights wopt(n) which will produce the
optimal broad histogram in equation (14) we can apply iterations of the feedback algorithm
outlined in [24]. The algorithm starts from an arbitrary broad-histogram ensemble,
typically a flat-histogram ensemble with approximative weights obtained from a few
iterations of the quantum Wang–Landau algorithm [20]. The optimized ensemble is then
systematically approached by feeding back the local diffusivity D(n) estimated for the
current set of statistical weights. To ensure convergence in subsequent feedback iterations,
statistical measurements need to be improved, which we accomplish by increasing the
number of simulated update sweeps for each iteration. The algorithm can be outlined as
follows:

• Start with some trial weights w(n), such as w(n) ≈ 1/g(n).

• Repeat

– Reset the histograms h(n) = h+(n) = h−(n) = 0.
– Simulate the system for Nsw sweeps:

* When traversing the operator string updates are accepted according to
equations (11) and (12).

* After each step of the traversal update the labeled histograms h+(n) and
h−(n) and the walker’s label.

* Perform a series of loop updates without changing the expansion order.
* Update the global histogram H(n) at the end of the sweep.

– Calculate the fraction f(n) = (h+(n))/(h+(n) + h−(n)).
– Define new statistical weights as

w(n) ← w(n)

√
1

h+(n) + h−(n)

∣∣∣∣
df

dn

∣∣∣∣

and recalculate the acceptance probabilities.
– Increase the number of sweeps Nsw ← 2Nsw.

• Stop once the histogram h(n) has converged.
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Note that the local histograms h+(n) and h−(n) are updated after every attempted
move when traversing the operator string to update the sequence of diagonal bond
operators.

For measurements we need to additionally measure a global histogram H(n) after
each full sweep. This global histogram H(n) is, in particular, employed to estimate the
expansion coefficients g(n) from

g(n) ∝ H(n)/w(n), (16)

in terms of the final statistical weights, and normalized via g(0) = dH, the dimensionality
of the Hilbert space.

In a fixed length representation, the expectation values of the histograms (prior
to normalization) are related as h(n) = ΛH(n) and there is thus no difference after
normalization. In the variable length representation, the average number of operator
insertion/removal attempts scales with the initial expansion order as 2n + 1, so that the
number of visits h(n) ≈ (2n + 1)H(n).

Based on the values of the expansion coefficients g(n), obtained using equation (16),
we can calculate thermodynamic properties of the system. In particular, the free energy
at an inverse temperature β is obtained as

F = − 1

β
ln Z = − 1

β
ln

∑

n

g(n)βn, (17)

the energy from equation (9) as

E =
1

Z

∑

n

n g(n)βn−1, (18)

and the entropy using S = (E − F )/T . In order to obtain thermal expectation values
of an observable A (such as, for example, the magnetization), in addition one records
separately the values of the observable A at each expansion order n, taking measurements
after each full Monte Carlo step. Denoting by Ai the values of the observable A from its
measurement performed after the ith full Monte Carlo step, and by ni the value of the
expansion order of the corresponding SSE configuration, the mean values of the observable
A at expansion order n are given in terms of the global histogram H(n) as

A(n) =
1

H(n)

∑

i,ni=n

Ai, (19)

where the summation is restricted to those values of i for which ni = n. From these
mean values A(n) of the observable A for each expansion order, one obtains the thermal
expectation value at an inverse temperature β as

〈A〉 =
1

Z
Tr A exp(−βH) =

1

Z

∑

n

A(n) g(n)βn. (20)

Since only a finite number of expansion orders (up to the cutoff Λ) can be treated within
the QMC simulations, there exists a limited temperature range over which both the
thermodynamic quantities and observables can be calculated, while a pronounced runaway
has been observed beyond this temperature regime [20]. Furthermore, statistical errors are
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reliably estimated from repeating the full procedure using independent random number
sequences.

In our application of the feedback algorithm to a variety of quantum spin Hamiltonians
we have found that a few iterations, typically four, are sufficient to obtain convergence of
the sampled histograms. The initial trial weights are generated by running a few iterations
of the quantum Wang–Landau algorithm. For the purpose of the subsequent ensemble
optimization it is not necessary for the initial weights to be well converged to the flat-
histogram ensemble, e.g. w(n) = 1/g(n), but should simply allow us to sample a broad
histogram over all expansion orders such that round trips between the extremal expansion
orders occur at a sufficiently high rate such that the sampled histogram H(n) and the
derivative of the fraction f(n) needed for the feedback can be estimated.

4. Performance studies

We next present results from a systematic performance analysis of the new algorithm for
various quantum lattice models, including a comparison to flat-histogram techniques. In
the following, we label results obtained using a flat-histogram ensemble by ‘flat-fixed’ and
‘flat-var’ for the fixed and variable length operator string SSE representation, respectively.
Results obtained from the optimized ensemble are denoted as ‘opti-fixed’ and ‘opti-var’
for the fixed and variable length representation, respectively.

4.1. The spin-1/2 Heisenberg chain

We start by considering the case of a spin-1/2 Heisenberg chain. This allows us to compare
the various methods first in the absence of any phase transition. In later sections, we then
focus on the additional issues arising from the presence of first- and second-order phase
transitions.

We simulate the spin-1/2 Heisenberg model on a finite chain of N = 10 sites with
periodic boundary conditions, described by the Hamiltonian

H = J
∑

i

Si · Si+1, (21)

where J > 0, and Si denotes a spin-1/2 degree of freedom at site i. For this system, we
calculated the exact thermal expansion coefficients gexact(n) up to order n = Λ = 500,
based on a full numerical diagonalization of the Hamiltonian. We used these values in
order to perform fixed-weights simulations in a flat-histogram ensemble. For the fixed
length representation, we set the weights w(n) = 1/gexact(n); and for the variable length
representation, we use w(n) = (2n + 1)/gexact(n). In both cases we ran 16 parallel
simulations with independent random number streams in order to assess the statistical
variations due to the QMC sampling. We furthermore performed up to 4 feedback iteration
batches to obtain converged optimized ensembles, where the number of MC steps was
increased by a factor of 2 after each feedback step. Again, this procedure was repeated
with 16 independent random number sequences. In all cases, we employed the multi-
cluster SSE loop update [6, 12], flipping each cluster that results from the deterministic
operator loop construction with probability 1/2.

In figure 2, the averaged fractions f(n) are shown for the various algorithms, and
figure 3 provides the corresponding local histograms. Let us first consider the flat-fixed
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Figure 2. Average fraction f(n) of random walkers diffusing from lowest order
(high temperatures) to highest orders (low temperatures) in a stochastic series
expansion in the inverse temperature of a spin-1/2 Heisenberg chain with 10
sites. Data is shown for the optimized ensemble with fixed length operator string
(opti-fixed) and variable length operator string (opti-var), as well as data for the
flat-histogram ensemble for both operator string representations (flat-fixed and
flat-var).

method, which is based on a flat-histogram ensemble in the fixed length representation.
We find that, for this method, the fraction f(n) in figure 2 exhibits steep descents
near both ends, n = 0 and n = Λ, of the n range. As seen from equation (15), the
increased derivative df/dn indicates a suppressed diffusivity of the random walker near
both ends of the n range. This slowing down near n = 0 and n = Λ is, however, not
related to physical properties of the system under consideration. Instead, it is due to
an inefficient local bond-operator insertion/removal dynamics in the fixed length operator
string representation. This is seen from the acceptance probabilities in equations (11): for
small n � Λ the insertion process is suppressed by a large denominator, and for n close
to Λ, the removal process is suppressed by a small numerator. The ensemble optimization
tries to compensate for this technical inefficiency by shifting resources towards both ends
of the n range, as seen from the histogram shown in figure 3. However, this allocation
of resources near both ends of the n range is not efficient, as the computational effort
for performing updates scales proportionally to the expansion order n. It would thus be
desirable to overcome the slowing down of the fixed length operator string representation
by an improved bond-operator insertion/removal dynamics. This motivated us to consider
the variable length operator string SSE representation introduced in section 2.

Indeed, changing to the flat-histogram ensemble in the variable length representation,
by using the flat-var method, the slowing down is completely eliminated, as seen from
figure 2, which shows an almost linearly decreasing fraction of the flat-var method over
the whole n range. Figure 2 shows that the optimized ensemble method opti-var leads to
a very similar linear fraction f(n) = 1 − n/Λ. Indeed, both the flat-var and the opti-var
method show a flat local histogram h(n), seen in figure 3. Interestingly, we thus find that,

doi:10.1088/1742-5468/2007/12/P12005 12

http://dx.doi.org/10.1088/1742-5468/2007/12/P12005


J.S
tat.M

ech.
(2007)

P
12005

Optimized broad-histogram ensembles for the simulation of quantum systems

Figure 3. Sampled local histograms h(n) for the optimized ensemble using a
variable length operator string (opti-var) and fixed length operator string (opti-
fixed), as well as the corresponding flat-histogram methods (flat-fixed and flat-
var), in a stochastic series expansion in the inverse temperature of a spin-1/2
Heisenberg chain with 10 sites. The inset shows the flat rescaled global histogram
(2n + 1)H(n) for the optimized ensemble with variable length operator string.

for the Heisenberg chain, the flat-var method already provides an optimal ensemble, in the
sense that the opti-var method also leads to a flat local histogram h(n). This corresponds
in both cases to a uniform diffusivity of the random walker throughout the whole n range.

Using the variable length representation, the simulation of the Heisenberg chain does
not suffer anymore from any slowing down, in accordance with the absence of phase
transitions in this model. The global histogram H(n) ≈ h(n)/(2n + 1) then decreases
with n like H(n) ∝ 1/(2n + 1). This is indeed seen from the inset of figure 3. Since the
computational effort of the SSE update methods scales linearly with n, this implies that
an equal amount of resources is devoted to each expansion order within the considered n
range.

The dynamics of the simulation in sweeping through the n range can be quantified
in terms of the traversal times of the random walker. For this purpose, we measure the
averaged traversal time τup (τdown) of the random walker to travel from the lowest (highest)
to the highest (lowest) expansion order, in units of single operator insertion/removal
attempts. Furthermore, we denote by τround = τup + τdown the round-trip time of the
random walker. In table 1 the traversal times are compared for the various ensembles
and representations, averaged over the 16 independent runs in each case. For the fixed
length representation, we find that in the optimized ensemble the random walker’s round-
trip time τround is significantly reduced, as compared to the corresponding flat-histogram
ensemble. Furthermore, for the optimized ensembles, τup and τdown are similar, meaning
that the random walker spends about the same number of insertion/removal attempts in
both directions, whereas in the flat-histogram ensembles, τdown is larger than τup. For the
opti-fixed approach we obtained a larger round-trip time τround than for both the flat-var
and the opti-var method. This shows that the improved dynamics of the variable length

doi:10.1088/1742-5468/2007/12/P12005 13

http://dx.doi.org/10.1088/1742-5468/2007/12/P12005


J.S
tat.M

ech.
(2007)

P
12005

Optimized broad-histogram ensembles for the simulation of quantum systems

Table 1. Traversal times of random walkers diffusing from lowest order to highest
orders in a stochastic series expansion in the inverse temperature of a spin-1/2
Heisenberg chain with 10 sites. Data is shown for the optimized ensemble with
fixed length operator string (opti-fixed) and variable length operator string (opti-
var), and the flat-histogram ensemble for both operator string representations
(flat-fixed and flat-var) in units of 106 operator insertion/removal attempts. The
statistical error, estimated by performing 16 independent runs in each case, is
given for the least significant digit.

Method τup/106 τdown/106 τround/106 τround / τopti−var
round

Flat-fixed 1.21(1) 1.62(1) 2.83(2) 6.86(5)
Opti-fixed 0.892(3) 0.880(3) 1.772(5) 4.30(1)
Flat-var 0.202(3) 0.210(3) 0.412(3) 1
Opti-var 0.207(1) 0.205(2) 0.412(3) 1

representation provides a performance improvement that cannot even be achieved by the
optimized ensemble using the fixed length approach. That the flat-var method is already
close to optimal is reflected by the equal traversal times for the flat-var and the opti-var
method in table 1.

We next assess the extent to which the improvements in the variable length
representation reduces the statistical error of the expansion coefficients g(n), which are
estimated using equation (16) from the global histogram H(n) and the employed weights
w(n), normalized via g(0) = dH, the dimension of the Hilbert space (here, dH = 2Ns). To
quantify the error, we calculated the logarithmic deviation

δ ln[g(n)] = ln [g(n)] − ln [gex(n)] = ln [g(n)/gex(n)] (22)

to the exact expansion coefficients, after running each simulation for the same fixed CPU
time. In figure 4 the absolute deviation, averaged over 16 independent runs, 〈|δ ln[g(n)]|〉,
is shown versus n for the opti-var (corresponding in the current case to the flat-var method)
and the flat-fixed method. We obtain a significant overall improvement using the opti-var
ensemble, in particular at low values of n. The inset of figure 4, showing the averaged
deviation 〈δ ln[g(n)]〉 for the opti-var method, verifies the agreement within statistical
errors of the QMC results with the exact expansion coefficients.

We find the averaged absolute deviation to scale as 〈|δ ln[g(n)]|〉 ∝ n1/2 for the opti-var
method. This relates to the approximate H(n) ∝ 1/n scaling of the global histogram, as
expected from the standard scaling of the MC error with the number of samples: sampling
the systems at an expansion order n a number of H(n) ∝ 1/n times, the statistical error

in g(n) ∝ H(n)/w(n) is anticipated to scale proportional to 1/
√

H(n) ∝
√

n.
From the expansion coefficients one can calculate thermodynamic quantities of the

model down to temperatures Tmin that scale as Tmin ∝ 1/Λ with the cutoff Λ [20]. Here,
we consider temperatures T down to 0.03J , below which strong deviations result due to
the finite n range [20]. Based on the fixed CPU-time QMC results for g(n), we calculated
the free energy F from equation (17) and its deviation δF = F − Fex to the exact free
energy Fex, obtained from the gex(n) in equation (17) instead. Figure 5 shows the averaged
absolute values of the relative deviation 〈|δF/Fex|〉 for the opti-var method. Compared
to the flat-fixed method, the opti-var approach shows significantly reduced errors in the
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Figure 4. Averaged absolute deviation of the calculated expansion coefficients
g(n) from the exact result for a spin-1/2 Heisenberg chain with 10 sites. Data
for the flat-histogram ensemble with fixed length operator string (flat-fixed) and
the optimized ensemble with variable length operator string (opti-var) are shown,
both averaged over 16 independent runs. The inset shows the fluctuation around
the exact result (zero line) of the averaged statistical deviation for the estimate
calculated in the optimized ensemble.

free energy over the whole temperature range, in particular reducing the deviation by an
order of magnitude at high temperatures, T > J (see the inset of figure 5).

4.2. Second-order phase transition

In our analysis of the spin-1/2 Heisenberg chain, we found that the variable length
representation eliminates the technical problems with the fixed length representation.
Already the flat-var approach produces an optimal ensemble with no features in the
diffusivity, which would otherwise indicate a slowing down of the simulation dynamics
in certain regions of the n range. This behavior is expected, as the Heisenberg chain does
not exhibit any finite temperature phase transition, and the multi-cluster updates provide
an efficient sampling scheme.

We now consider a system that does exhibit a second-order thermal phase transition.
In particular we simulate the spin-1/2 Heisenberg model:

H = J
∑

〈i,j〉

Si · Sj, (23)

on a three-dimensional cubic lattice, with an antiferromagnetic nearest-neighbor coupling
J > 0 and periodic boundary conditions. Here, we focus on a cube of Ns = 83 sites.
In the thermodynamic limit, the model exhibits a second-order phase transition at a
temperature Tc ≈ 0.946 [18], which corresponds on this finite system to an expansion
order of around nc ≈ 900. Since no exact results for gex(n) are accessible for this system,
we first performed 8 Wang–Landau sampling steps starting from a uniform assignment
g(n) = 1, n = 0, . . . , Λ = 4000, in order to obtain a broad-histogram ensemble. Then,
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Figure 5. Averaged absolute values of the relative deviation of the calculated
free energy F for the optimized ensemble using a variable length operator string
(opti-var) from the exact result for a spin-1/2 Heisenberg chain with 10 sites. The
data is averaged over 16 independent runs. The inset shows the averaged relative
deviation of the estimated free energy from flat-histogram simulations using fixed
length operator strings (flat-fixed), compared to the optimized ensemble method
(opti-var).

we performed 4 feedback iteration batches, where the number of MC steps was increased
by a factor of 2 after each feedback step. Similar to the previous case, we performed
16 independent simulations for statistically averaging the final results. Using the final
estimates of the expansion coefficients g(n), we then performed simulations in the flat-
histogram ensemble for comparison to the optimized ensembles. We generally employed
multi-cluster updates, except for the opti-var method, for which also single-cluster (s.c.)
updates were considered. In each single-cluster update step, only one of the clusters
resulting from the deterministic loop construction is flipped. This was done in order to
artificially reduce the efficiency of the loop update scheme and allows us to study the
optimized ensemble when using a less efficient SSE loop update scheme with increased
autocorrelations near the critical temperature.

The resulting traversal times for the various methods are given in table 2. We find
that within the variable length representation the traversal times are significantly reduced,
as compared to the fixed length representation. Furthermore, also in the current case of
a second-order phase transition, the flat-var approach performs almost optimally, leading
to a similar round-trip time as the opti-var method, albeit with a mild difference between
τup and τdown, which becomes equal in the opti-var approach.

In the following, we concentrate on the opti-var method and compare results obtained
using either multi-cluster or single-cluster updates in the SSE loop updates. The
corresponding round-trip times in table 2 already indicate that, using single-cluster
updates, the random walker’s dynamics suffers from a slowing down in its dynamics.

In figure 6, we present the histograms for both approaches, the inset showing the
corresponding fractions. We find that, using multi-cluster updates, the opti-var method
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Figure 6. Sampled local histograms h(n) for the optimized ensemble using single-
and multi-cluster updates in a variable length representation stochastic series
expansion of the spin-1/2 Heisenberg model on a cubic lattice with Ns = 83 sites.
The inset shows the respective fractions of random walkers diffusing from lowest
to highest expansion order. For comparison, a linear decrease f(n) = 1 − n/Λ is
denoted by a dashed line.

Table 2. Traversal times of random walkers diffusing from lowest order to highest
orders in a stochastic series expansion in the inverse temperature of a spin-1/2
Heisenberg cube with 83 sites. Data is shown for the optimized ensemble with
fixed length operator string (opti-fixed) and variable length operator string (opti-
var), as well as data for the flat-histogram ensemble for both operator string
representations (flat-fixed and flat-var) in units of 107 operator insertion/removal
attempts. We employed multi-cluster updates, except for the opti-var method,
for which using only single-cluster (s.c.) updates was considered. The statistical
error, estimated by performing 16 independent runs in each case, is given for the
least significant digit.

Method τup/107 τdown/107 τround/107 τround / τopti−var
round

Flat-fixed 10(1) 7.8(5) 18(1) 7.2(5)
Opti-fixed 5.87(5) 5.72(5) 11.59(7) 4.6(1)
Flat-var 1.08(2) 1.39(3) 2.46(2) 1
Opti-var 1.252(5) 1.246(4) 2.47(6) 1
Opti-var s.c. 3.13(5) 3.12(5) 6.25(5) 2.5(1)

does not suffer any significant slowing down due to the presence of the phase transition,
as seen from the almost linear decreasing fraction f(n). There is only a mild curvature
visible; similarly, the histogram h(n) does not exhibit pronounced features for the multi-
cluster approach. Using single-cluster updates is less efficient in the critical temperature
regime and the opti-var method compensates for this inefficiency by shifting resources into
the corresponding n range. This illustrates, that the optimized ensemble method in the
variable length representation, in combination with efficient cluster update schemes, allows
for efficient simulations of a second-order phase transition: the cluster updates eliminate
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the critical slowing down, so that in the optimized ensemble a uniform diffusivity can be
achieved. Furthermore, we find that also in this case of a second-order phase transition, the
flat-histogram approach in the variable length representation performs almost optimally,
showing very similar round-trip times to the optimal ensemble method.

4.3. Thermal first-order phase transition

In this section, we apply our analysis to a system undergoing a first-order thermal phase
transition. For this purpose, we study a system of hard-core bosons on a two-dimensional
square lattice, with next-nearest-neighbor repulsion [36], described by the Hamiltonian

H = −t
∑

〈i,j〉

(a†
iaj + a†

jai) + V2

∑

〈〈i,k〉〉

nink − μ
∑

i

ni, (24)

where a†
i (ai) creates (annihilates) a hard-core boson at site i, ni is the density at this

site, t is the hopping amplitude between nearest-neighbor sites, V2 > 0 is the next-
nearest-neighbor repulsion and μ is the chemical potential. In the following, we consider
the case of t/V2 = 0.45 for a half-filled lattice at μ/V2 = 2. For this parameter value,
the model exhibits a first-order phase transition at Tc ≈ 0.4V2 from a high-temperature
normal fluid phase to a low-temperature smectic phase with stripe order [36]. In [20], the
improvement of the flat-fixed method over conventional SSE simulations was quantified
by studying the number of MC steps required to flip the directional orientation of the
stripes in the smectic phase upon crossing Tc. Here, we revisit this model in order to
analyze the behavior of the opti-var method for a system undergoing a first-order phase
transition. We consider finite systems of Ns = L× L lattice sites with periodic boundary
conditions and scale the cutoff Λ = 20L2 in order to cover in each case a temperature
range down to T ≈ 0.2V2 < Tc. Since for this system exact results for gex(n) are not
accessible, we performed a similar procedure as presented in section 4.2 in order to reach
an optimized ensemble and calculate g(n). For the non-local part of the QMC updates, we
employed the directed loop method [7], where the number of worms NW(n) constructed
at a given expansion order n was kept constant during the fixed weights simulations.
The appropriate value of NW(n) for each expansion order n was determined during the
preceding Wang–Landau part of the simulations, such that on average 2n bond operators
were visited during the non-local update part of each MC step [7].

Figure 7 shows the local histograms h(n) in the optimized ensemble method opti-
var for different system sizes. In contrast to the flat-var method, we find that the local
histograms now develop peaks at an expansion order nc ≈ 0.55Λ, indicative of the first-
order phase transition in the corresponding temperature regime. The opti-var method
shifts resources into this region of the n range, where the local diffusivity, cf equation (14),
shows a suppression that becomes more pronounced upon increasing the system size. In
contrast to the previous cases, we expect such a behavior from the first-order nature of
the phase transition in the current case: the optimized ensemble compensates for the
inefficiency of the SSE updates to tunnel between the two coexisting phases at this first-
order phase transition.

Let us thus compare the performance of the opti-var method to the flat-var approach.
Table 3 shows the corresponding round-trip times for various system sizes. We find that
the opti-var method indeed reduces the round-trip time of the random walkers as compared

doi:10.1088/1742-5468/2007/12/P12005 18

http://dx.doi.org/10.1088/1742-5468/2007/12/P12005


J.S
tat.M

ech.
(2007)

P
12005

Optimized broad-histogram ensembles for the simulation of quantum systems

Figure 7. Optimized local histograms for a stochastic series expansion in the
inverse temperature for a system of hard-core bosons with a repulsive next-
nearest-neighbor interaction on a square lattice of size L × L. With increasing
system size a peak evolves in the rescaled histogram as the system undergoes
a weak thermal first-order transition corresponding to a characteristic order
nc ≈ 0.55Λ (with a maximal expansion order of Λ = 20L2).

Table 3. Traversal times of random walkers diffusing from lowest order to
highest orders in a stochastic series expansion in the inverse temperature of
hard-core bosons with a repulsive next-nearest-neighbor interaction on a square
lattice of size L × L. Data is shown for variable length operator string in
the optimized (opti-var) and flat-histogram (flat-var) ensemble, in units of
106 operator insertion/removal attempts. The statistical error, estimated by
performing 16 independent runs in each case, is specified for the least significant
digit.

L τopti−var
round /106 τflat−var

round /106

6 0.465(2) 0.479(7)
8 1.848(7) 2.05(4)

10 5.41(2) 5.60(3)
12 12.93(5) 16.5(2)

to the flat-var method. The improvement becomes more pronounced with increasing
system size, as expected from the increasingly sharpening of the local histogram in figure 7.
Increasing the sampling inside the transition region, the opti-var method thus enhances
the overall diffusion of the random walker by pushing it towards this bottleneck.

4.4. Spin-flop transition

Thus far, we performed series expansions in the inverse temperature. Finally, we discuss
results obtained from performing a perturbation expansion in a model parameter [20]. In
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Figure 8. Magnetization versus magnetic field for the spin-1/2 XXZ model on a
square lattice with 10×10 sites at T/J = 0.1. The inset shows the magnetization
m(nδh) measured at expansion order nδh during a stochastic series expansion
simulation using the optimized ensemble in the variable length operator string
representation.

particular, we consider the spin-1/2 XXZ model

H = J
∑

〈i,j〉

[
Sx

i Sx
j + Sy

i Sy
j + ΔSz

i S
z
j

]
− h

∑

i

Sz
i , (25)

on a square lattice with Ns = L × L sites with periodic boundary conditions, in a finite
magnetic field h at an easy-axis anisotropy Δ = 1.5. The model shows a spin-flop
transition at hc ≈ 1.83J , where the magnetization m jumps from m = 0 for h < hc

to a finite value of m ≈ 0.12, cf figure 8. In the following, we analyze the behavior of
the opti-var method as applied to this strongly first-order phase transition. We fix the
temperature T = 0.1J , and perform an expansion in the magnetic field. For this purpose,
we decompose h = h0 + δh, where h0 = 1.5, and introduce separate bond operators for
the δh contribution to the magnetic field.

In the SSE we perform an expansion

Z =

Λδh∑

nδh=1

g(nδh)(δh)nδh (26)

in the parameter δh, from which the expansion coefficients g(nδh) and nδh = 1, . . . , Λδh

are estimated [20]. In addition, we also measure after each full MC update step the total

magnetization m =
∑Ns

i=1 Sz
i of the system and bin these values according to the current

expansion order nδh. This way, we obtain a magnetization histogram m(nδh). The inset of
figure 8 shows an example of a magnetization histogram m(nδh) for nδh

= 0, . . . , Λδh = 500.
The magnetization histogram is used to calculate the field-dependent magnetization from

〈m〉 =
1

Z

Λδh∑

nδh=1

m(nδh)g(nδh)(δh)nδh, (27)

such as shown in the main part of figure 8.
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Figure 9. Magnetization, optimized local histogram and diffusivity of random
walkers in a stochastic series expansion for the spin-1/2 XXZ model on a square
lattice with 4 × 4 sites. The diffusivity shows suppressions for expansion orders
where the magnetization shows a larger increase. The optimized ensemble
compensates for the respective slowing down by shifting additional resources
towards these expansion orders (see the middle panel).

Similar to the previous cases, we used a two-step procedure to obtain an optimized
ensemble. We first performed 8 Wang–Landau sampling steps starting from a uniform
assignment g(nδh) = 1, nδh

= 0, . . . , Λδh = 500, in order to obtain a broad-histogram
ensemble. Then, we performed 4 feedback iteration batches, where the number of MC
steps was increased by a factor of two after each feedback step. The magnetization
histogram is recorded only during the final step. Again, we performed 16 independent
simulations for statistical averaging over the final results.

Let us first consider the results for a small system with L = 4 in the opti-var method.
In the top panel of figure 9, the magnetization histogram for this system is shown. It
displays more structure than the magnetization histogram in figure 8 for the L = 10
system. In particular, apart from a first increase of m(nδh) near nδh ≈ 20 (indicated
by the solid arrowed vertical line), a series of additional increases in m(nδh) are found at
higher expansion orders (dashed arrowed vertical lines). While the increase near nδh ≈ 20,
followed by a mild plateau of m ≈ 0.125 corresponds to the spin-flop transition, the
features at larger nδh relate to the discrete magnetization steps on a finite lattice, which
for L = 4 amount to Δm = 1/L2 = 0.0625. Indeed, for T = 0 the magnetization process
is a series of steps, with jumps of the magnetization by Δm. At T = 0.1J , these steps are
less pronounced but still visible in figure 9. In the plot of the diffusivity D(nδh) for the
optimized ensemble, the reduced efficiency of the SSE algorithm close to magnetization
jumps [7] is clearly visible (see bottom panel of figure 9). As seen from the optimized
histogram, shown in the middle panel of figure 9, the optimized ensemble shifts resources
into these regions. For the magnetization increase near nδh ≈ 20, related to the spin-
flop transition, these features in D(nδh) and H(nδh) are also visible, but less dominant.
However, upon increasing the system size, this slowing down of the simulation near the
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Figure 10. Sampled local histograms for the optimized ensemble in a stochastic
series expansion for the spin-1/2 XXZ model on a square lattice with L × L
sites. The perturbative expansion at temperature T = 0.1J is carried out in
terms of the magnetic field δh. A pronounced peak in the histogram evolves at a
characteristic order of the spin-flop transition which scales linearly with the linear
system size L. The inset shows the system size dependence of the round-trip time
in a linear-log plot.

spin-flop transition becomes more pronounced and dominates the dynamics of the random
walker.

Figure 10 shows the histogram for the optimized ensemble for larger systems. A
pronounced peak develops around an expansion order, characteristic of the spin-flop
transition for each system size. This feature dominates the optimized histogram and
the additional magnetization steps at larger expansion orders become less relevant, as the
magnetization increases smoothly for h > hc. Both the position and the height of the
spin-flop peak scale linearly with the linear system size L. The width of the peak does not
change significantly upon increasing L, indicating that the spin-flop transition becomes
increasingly sharp in h, as L increases.

In table 4, we compare the traversal times of the opti-var algorithm to the flat-
histogram methods flat-fixed and flat-var for the L = 6 system. In the fixed length flat-
fixed method, strong differences in τdown ≈ 7τup are found, while in both variable length
approaches (flat-var and opti-var) the random walker moves are balanced (τdown ≈ τup).
Moreover, in both variable length methods, the round-trip time is significantly reduced
as compared to the flat-fixed method, with the optimal ensemble resulting in the largest
overall speedup. This improved simulation dynamics leads to an equivalent reduction of
the statistical errors in the expansion coefficients g(nδh). We performed in each case 16
fixed CPU time simulations in order to assess the standard statistical error in the g(nδh).
The results for the L = 6 system are shown in figure 11. While the flat-fixed method
suffers from a strong increase of the statistical error over the n range that relates to the
spin-flop transition, the optimized ensemble method performs more uniformly over the
whole n range. We find a uniform reduction of the statistical error in the higher n range;
the size of this reduction fits well to the square root of the round-trip time fraction shown
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Figure 11. Averaged statistical errors of the expansion coefficients g(nδh)
calculated in a stochastic series expansion for the spin-1/2 XXZ model on a square
lattice with 6 × 6 sites. The statistical errors are averaged over 16 independent
simulations for a fixed CPU time. Results are shown for the flat-histogram
ensemble with fixed length operator string (flat-fixed), variable length operator
string (flat-var) and the optimized ensemble with variable length operator string
(opti-var). The characteristic expansion order, corresponding to the spin-flop
transition, is indicated by the arrow.

Table 4. Traversal times of random walkers diffusing from lowest order to highest
orders in a stochastic series expansion in the magnetic field close to the spin-flop
transition on a 6 × 6 lattice. Data is shown for the flat-histogram ensemble
with fixed length operator string (flat-fixed) and variable length operator string
(flat-var) and the optimized ensemble for the variable length operator string
representation (opti-var), in units of 106 operator insertion/removal attempts.
The statistical error, estimated by performing 16 independent runs in each case,
is specified for the least significant digit.

Method τup/106 τdown/106 τround/106

Flat-fixed 3.81(3) 21.7(3) 25.5(3)
Flat-var 2.31(5) 2.30(3) 4.62(3)
Opti-var 1.95(2) 1.92(2) 3.87(2)

in table 4. This relation between the statistical error and the inverse square root of the
round-trip time was observed also in classical systems [24].

Finally, we assess, how the optimal ensemble method scales upon increasing the
system size. In the inset of figure 10, the round-trip time τround is shown versus the
linear system size L for the opti-var method. The observed dependence fits well to an
exponential increase of τround with L, indicative of the strong first-order nature of the spin-
flop transition. While the optimized ensemble does thus still suffer from an exponential
performance reduction, it provides a performance improvement over the flat-histogram
method, also in this case.
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5. Conclusions

We presented an application of the optimized broad-histogram ensemble method to
the simulation of quantum systems, in order to increase the performance of previously
introduced extended ensemble methods. We found that, within the stochastic series
expansion approach, the fixed length operator string representation suffers from an
insufficient local simulation dynamics at the end of the range for small and large expansion
orders n, which can be overcome by formulating the algorithm using a variable length
operator string. We derived the appropriate update probabilities for this scheme. We
then adapted a recently developed feedback algorithm to the quantum case and provided
a performance analysis of the resulting algorithm.

The analysis of the optimized ensemble approach in the variable length representation
for the Heisenberg chain and the second-order thermal phase transition in the Heisenberg
model on a cubic lattice suggests that, for quantum models showing no, or second-order
thermal phase transitions, the optimal ensemble is characterized by a flat histogram h(n)
if a variable length formulation of the SSE is used. This flat-histogram h(n) counting
local updates corresponds to a histogram H(n) ∝ 1/(2n + 1) at the level of full sweeps.
In such computationally ‘easy’ cases it is thus feasible to directly incorporate the optimal
ensemble weights of equation (10) in the quantum Wang–Landau approach, using the
variable length representation equation (12).

In our analysis of the first-order thermal transition of interacting hard-core bosons
and the spin-flop transition, we found that the optimized ensemble approach shifts
the distribution of resources towards the transition region, thus allowing for a faster
equilibration as compared to flat-histogram methods, although the scaling with system
size remains exponential for strongly first-order transitions. This suggests that broad-
histogram ensemble optimization in a single reaction coordinate might not provide a
general remedy of such exponential slowing down.
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Appendix. Proof of detailed balance for the variable length operator string
representation

In the following, we prove detailed balance for the variable length operator string
representation update scheme of section 2.2, thereby extending previous work by
Handscomb [35] and Sandvik [32].

In order to obtain the correct equilibrium distribution of configurations, it is sufficient
to prove that the transition probabilities from one state to the next satisfy detailed
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Figure A.1. Illustration of the transition C → C ′ by inserting an operator at
position i. In our choice of indexing the operators, after a successful insertion
all remaining operators shift indices by 2, i.e. Hbk

in C is identical to Hbk+2
in

C ′ for all k > i + 1. The arrows illustrated the positions of the pointers k for
intermediate configurations. All rejected update probabilities cancel except for
the insertion/removal probabilities of the new operator (marked grey).

balance:

w(C)p(C → C ′) = w(C ′)p(C ′ → C), (A.1)

with w(C) the weight of a configuration C and p(C → C ′) the transition probability
from C to C ′. Here we prove detailed balance for the variable length operator string
representation per sweep. The main idea of the proof is that for each sequence of operator
insertions and removals in a sweep we can construct an inverse sequence, and these satisfy
detailed balance. A configuration C with n operators is defined as a sequence of length
2n + 1 consisting of n operators and n + 1 gaps, including one at the beginning and one
at the end of the string. Configurations during a sweep contain an additional ‘pointer’
k, 1 ≤ k ≤ 2n + 1, that labels the position at which we currently perform insertion and
removal operations. While the number of operators of the intermediate configurations
between a sweep may grow and shrink, the pointer k increases by zero (removal) or two
(insertion) with each step. We label such intermediate configurations as Cn(k).

For the sake of simplicity we first look at the insertion of only one operator at
position k during a sweep, as illustrated in figure A.1. This is equivalent to the formalism
established by Handscomb [35]. Our configuration C containing n operators and n + 1
gaps is thus changed into a configuration C ′ containing n + 1 operators and n + 2 gaps,
consecutively labeled by an index i, 1 ≤ i ≤ 2n + 1. We label the probability of inserting
any operator into a gap of an operator string of length n as pn

ins. Note that this probability
is independent of the position of pointer k and depends only on n. With pn

ins(Hb) the
probability of inserting operator Hb and pn

rem(k) the one for removing the operator at
position k (even) we obtain

p(C → C ′) = (1 − pn
ins)

(i−1)/2

(i−1)/2∏

j=1

(1 − pn
rem(2j))

×
[

1

Nd
pn

ins(Hb1)

] (
1 − pn+1

ins

)(2(n+1)+1−i)/2
2(n+1)/2∏

j=(i+3)/2

(1 − pn+1
rem (2j)). (A.2)

Nd denotes the total number of bond operators. For computing the probability of
an operator removal we take configuration C ′ and traverse it in reverse order. This
corresponds to reordering the operator string back to front, but since our algorithm
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Figure A.2. The transition from C to C ′′ via an intermediate visit to C ′. The
two newly inserted operators are marked grey and the arrows denote some of the
intermediate configurations encountered in the process in forward (filled arrows)
and backward (empty arrows) direction.

constructs only diagonal (thus commuting) operators, this reordering is legal. The
transition probability

p(C ′ → C) =

2(n+1)/2∏

j=(i+3)/2

(1 − pn+1
rem (2j))

(
1 − pn+1

ins

)(2(n+1)+1−i)/2

× pn+1
rem (Hb1) (1 − pn

ins)
(i−1)/2

(i−1)/2∏

j=1

(1 − pn
rem(2j)) (A.3)

shows that for only one operator insertion per sweep all the rejected insertion and removal
attempts cancel and detailed balance is fulfilled for our choice of operator insertion and
removal probabilities, see equations (7) and (8):

p(C → C ′)

p(C ′ → C)
=

(1/Nd) min
[
1,

Ndβ〈α(p)|Hb1
|α(p−1)〉

n+1

]

min
[
1, n+1

Ndβ〈α(p)|Hb1
|α(p−1)〉

] =
w(C ′)

w(C)
. (A.4)

The removal of one operator works analogously.
In a next step we extend this formalism and consider a sweep with two insertion

updates, see figure A.2. Again, we start with a configuration C with n operators. We
add an operator at position i as before, resulting in a configuration C ′

n+1(i + 2) of n + 1
operators and a pointer at gap i + 2. We then proceed to a position j, i + 2 ≤ j ≤ 2n + 1,
where we try another insertion. Once accepted we arrive at a configuration C ′′

n+2(j + 2).
Since the transition probabilities between intermediate configurations depend on the

direction of traversal, we denote them by arrows −→p for the forward or ←−p for the backward
direction. We need to prove p(C → C ′′)/p(C ′′ → C) = w(C ′′)/w(C). As we have to visit
the intermediate states C ′

n+1(i + 2) and C ′′
n+2(j + 2) in order to arrive at the final state

C ′′, we can split up the transition probabilities:

p(C → C ′′) = −→p (C → C ′
n+1(i + 2))−→p (C ′

n+1(i + 2) → C ′′), (A.5)

p(C ′′ → C) = ←−p (C ′′ → C ′
n+1(i + 1))←−p (C ′

n+1(i + 1) → C). (A.6)
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As before, probabilities cancel when traversing operators and gaps in reverse order:
−→p (C ′′

n+2(j + 2) → C ′′) = ←−p (C ′′ → C ′′
n+2(j + 1)). (A.7)

In order to establish detailed balance, let us perform one insertion, then visit state C ′ with
one more operator as before at the right boundary and bounce back to where we were
(this move cancels), and proceed with the insertion. This will be balanced by a removal
move, a move to the right and back, and another removal move:

p(C → C ′′)

p(C ′′ → C)
=

p(C → C ′)

p(C ′ → C)

←−p (C ′ → C ′
n+1(i + 1))

−→p (C ′
n+1(i + 2) → C ′)

−→p (C ′
n+1(i + 2) → C ′′)

←−p (C ′′ → C ′
n+1(i + 1))

=
w(C ′)

w(C)

−→p (C ′
n+1(i + 2) → C ′′)

←−p (C ′′ → C ′
n+1(i + 1))

=
w(C ′)

w(C)

p(C ′ → C ′′)

p(C ′′ → C ′)

←−p (C ′
n+1(i + 1) → C ′)

−→p (C ′ → C ′
n+1(i + 2))

=
w(C ′)

w(C)

w(C ′′)

w(C ′)
=

w(C ′′)

w(C)
. (A.8)

Again, the removal operation is exactly the same.
For our algorithm, we have to consider the most general case of arbitrary many

insertion/removal updates per sweep. This is, in fact, the main difference with
Handscomb’s original approach which only includes one single insertion/removal update
per sweep. For this we need to take into account that there may be more than one sequence
of intermediate insertion and removal operations Sj = {Cj1, . . . , Cjp} that change an initial
configuration C via intermediate configurations in Sj into a final configuration C ′. We
proceed by constructing a reverse sequence S ′ for each S and show that most probabilities

cancel. The detailed balance condition p(C
Sj→ C ′)/p(C ′ S′

j→ C) = w(C ′)/w(C) for each
one of these sequences is established in the same manner as above, with a ‘visit to the
right boundary’ after each successful insertion or removal move.

Again, we start with a configuration C with n operators. We add or remove the
first operator to arrive at the first intermediate state of Sj , C1j at position i1j as before.
We then transverse to the right of that operator string by increasing i, inserting and
removing operators according to Sj and finally arriving at a configuration C ′′ in one
sweep. The reverse sequence S ′

j is defined by the intermediate states of Sj in reverse
order. Analogously to (A.5) we obtain

p(C
Sj→ C ′)/p(C ′ S′

j→ C) =
w(C ′)

w(C)
, (A.9)

and therefore

p(C → C ′)

p(C ′ → C)
=

∑
j p(C

Sj→ C ′)

∑
j p(C ′

S′
j→ C)

=

∑
j w(C ′)/w(C)p(C ′ Sj→ C)

∑
j p(C ′

S′
j→ C)

=
w(C ′)

w(C)
. (A.10)

This framework of traversing the operator string to the end and back for each operator
is only required for the proof. During the calculation we just keep a variable length
operator string and a pointer k that marks the position at which the next insertion or
removal operation is performed according to the probabilities in equations (7) and (8).

Note added. After submission of our work, Harada and Kuge presented in [38] a similar approach to optimizing
the statistical ensemble in the continuous-time world-line quantum Monte Carlo representation.
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