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Orbital degrees of freedom shape many of the properties of a wide class of Mott insulating, transition

metal oxides with partially filled 3d shells. Here we study orbital ordering transitions in systems where a

single electron occupies the eg orbital doublet and the spatially highly anisotropic orbital interactions can

be captured by an orbital-only model, often called the 120� model. Our analysis of both the classical and

quantum limits of this model in an extended parameter space shows that the 120� model is in close

proximity to several T ¼ 0 phase transitions and various competing ordered phases. We characterize the

orbital order of these nearby phases and their associated thermal phase transitions by extensive numerical

simulations and perturbative arguments.
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Mott insulating transition metal oxides with partially
filled 3d shells—such as the manganites—exhibit rich
phase diagrams with many competing orders, indicating a
nontrivial interplay of spin, charge, and orbital degrees of
freedom [1]. A prominent example of a material exhibiting
orbital order is the extensively studied LaMnO3 [2].
The crystal field in this perovskite material splits the five
d orbitals into three t2g orbitals occupied by three elec-

trons, and an eg doublet sharing a single electron. This

partially filled eg doublet then gives rise to an additional

orbital degree of freedom indicating which of the two
orbitals is occupied. The exchanges between these orbital
degrees of freedom—arising from Jahn-Teller distortions
or Kugel-Khomskii-type superexchange—are oftentimes
described by orbital-only models which neglect the spin
degrees of freedom. The latter is justified in situations
where the energy scales of spin and orbital interactions
are well separated; i.e., orbital interactions correspond to
temperature scales where the spins are still largely disor-
dered or in a situation where the spins are effectively
frozen out (e.g., by a magnetic field). Expressing the eg
orbital degree of freedom by a two-component pseudospin
T ¼ ðTz; TxÞ, where Tz ¼ �1 correspond to occupation of
the j3z2 � r2i and jx2 � y2i orbitals, the highly anisotropic
interactions between them are captured by the so-called
120� model [3] on a cubic lattice
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where the � sign for the ‘‘mixing’’ term enters for cou-
pling along the x and y directions, respectively [4]. If the

orbital exchange is primarily mediated through
Jahn-Teller distortions, this model is commonly considered
in its classical limit, where the pseudospins T are Oð2Þ
spins. If, on the other hand, the orbital exchange arises
primarily from a Kugel-Khomskii-type superexchange [5],
this model should be considered in its quantum limit.
In the latter case, the pseudospins T are identified with
SUð2Þ spins; i.e., their components become Pauli matrices
Tx;z ¼ 1

2�
x;z. The above 120� model has typically been

studied at equal coupling Jx ¼ Jz ¼ Jmix, for which it
exhibits an enhanced rotational symmetry where the
symmetry of the cubic lattice under permutations of the
x, y, and z axes is reflected in a threefold symmetry in
the (Tz, Tx) plane. This becomes apparent when rewriting
(1) as H120 ¼ �J

P
i;�¼x;y;zð�i � e�Þð�iþ� � e�Þ where the

e� are unit vectors in the x, y, z directions and the �i are

defined as three-component vectors �i ¼ ð½Tz
i þ
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While the presence of this enhanced rotational symme-

try for equal coupling has greatly benefitted the under-
standing of the classical model and has led to a rigorous
description of its highly degenerate ground-state manifold
[6], it has remained elusive to identify the ground states of
the quantum model solely based on symmetry arguments.
In this Letter, we will take a broader perspective and study
the above 120� model away from this symmetric point and
explore ground states and thermodynamic properties in an
extended two-dimensional parameter space (Jx=Jz,
Jmix=Jz), which in experiments should be accessible by
changing pressure or adding a small electric field. Our
approach reveals that the original 120� model is in close
proximity to several T ¼ 0 phase transitions and various
competing ordered phases. Combining extensive numeri-
cal simulations with analytical arguments we describe the
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orbital order in these phases for the classical and quantum
limits of this extended 120� model, as well as thermal
phase transitions associated with these phases and T ¼ 0
phase transitions between them.

The classical model.—For the classical 120� model with
rotational symmetry, e.g. Jx ¼ Jz ¼ Jmix, it has long been
appreciated that this model exhibits an infinite, but sub-
extensive ground-state degeneracy [6], which is split at low
temperatures by an order-by-disorder mechanism stabiliz-
ing six ordered states [6,7]. Before turning to the question
of how these characteristic features change when exploring
the model in the extended parameter space, we will
briefly recount their origin in the symmetric model. To
this end, we label a general state in the orbital subspace by
an angle j�i ¼ cosð�=2Þj3z2 � r2i þ sinð�=2Þjx2 � y2i,
which for the classical model simply describes the orien-
tation of the Oð2Þ pseudospin vector. To identify the de-
generate manifold of ground states, we first observe that
any polarized state with all pseudospins being aligned
along some angle �� is a ground state of Hamiltonian (1).
Starting from any such state, further ground states can be
found [6,7] by reflecting all orbitals in the xy plane about a
line at 0�, the xz plane about 120�, or the yz plane about
240�. Remarkably, we find that this ground-state degener-
acy remains (partially) unscathed for an extended parame-
ter regime when moving away from the symmetric model
on a line described by 0 � Jmix=Jz � 1 and Jx ¼ Jz. What
distinguishes states along this line in parameter space,
however, is their instability to thermal fluctuations and
the entropic selection of low-temperature states. To discuss
this order-by-disorder mechanism we calculate the free
energy of the low-temperature states by considering a
spin-wave approximation of (1) and expanding to second
order in small fluctuations ��i ¼ �i � �� about an orbi-
tally ordered state with �i ¼ �� at each site. The resulting
free energy Fð��Þ is plotted in Fig. 1 as a function of
Jmix=Jz. For Jmix & 0:8Jz, the ground-state manifold is
lifted and four low-temperature states are entropically
favored with their free energy being minimized at angles
�� ¼ 0�, 90�, 180�, 270�. These four states correspond to
orbitally ordered states in orbital configurations given by

j0�i ¼ j3z2 � r2i, j180�i ¼ jx2 � y2i, and ðj3z2 � r2i �
jx2 � y2iÞ= ffiffiffi

2
p

for the 90� and 270� states, respectively.
For Jmix * 0:8Jz the 90

� minima in the free-energy curves

bifurcate and in total form six minima, all of which become
exactly equal only for the symmetric model Jmix ¼ Jz,
where the minima are located precisely at angles of �� ¼
0�; 60�; 120�; . . . 300�. If we further enlarge Jmix beyond
Jz, this order-by-disorder phenomenon disappears and we
instead find that the ground and low-temperature states are
energetically selected, with the xz or yz planes ordering in
alternating orientations of �1 and �1 þ 180� where �1
continuously changes from �1 � 30� to �1 � 45� with
increasing Jmix. This transition between entropic and en-
ergetic selection occurs exactly at the symmetric point
Jx ¼ Jz ¼ Jmix of the 120

� model and is accompanied by
a first-order phase transition at zero temperature, which
becomes apparent in a level-crossing of ground-state en-
ergies shown in Fig. 3.
We now turn to a discussion of the thermodynamic

properties of the classical 120� model, in particular, the
thermal ordering transition into the low-temperature states
described above. To investigate the latter we have run
extensive Monte Carlo simulations of model (1), going
well beyond previous numerics for the (diluted) symmetric
model [8]. Concentrating on a family of models, where we
vary Jmix=Jz but keep Jx ¼ Jz fixed, we find a line of
continuous thermal phase transitions. Figure 2 shows the
specific heat CvðTÞ at the transition diverging with linear
system size L for two members in this family, the symmet-
ric model with Jmix ¼ Jz and a ‘‘truncated’’ model where
we drop the mixing terms in Hamiltonian (1), i.e., Jmix ¼ 0.
For all models in this family we can capture the transition
to the low-temperature ordered states by a single order
parameter M (independent of Jmix � Jz). Since in our
numerical simulations we do not know a priori which one
of the three possible ordering planes the system spontane-
ously selects at the ordering transition, we define the order
parameter as the maximum of the xy, xz, and yz plane
magnetizations M ¼ maxðMxy;Mxz;MyzÞ, where the mag-

netization in the xy plane is given byMxy ¼
P

zj
P

x;yTx;y;zj
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FIG. 1 (color online). Classical free energy Fð��Þ obtained
from a spin-wave analysis of (1) as a function of Jmix=Jz for
fixed Jx ¼ Jz and T=Jz ¼ 0:01.
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FIG. 2 (color online). Orbital ordering transition in the classi-
cal model: Specific heat CvðTÞ (upper panel) and order parame-
ter MðTÞ (lower panel) versus temperature for various system
sizes L.
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and Mxz, Myz are obtained by cyclic permutations of the

indices in the sums. As expected this order parameter
quickly grows at the transition temperature Tc (see the
lower panel of Fig. 2). Despite the relatively large system
sizes studied here, finite-size effects still render the identi-
fication of the universality class of these transitions some-
what ambiguous, reminiscent of studies of similar models
in two spatial dimensions [9]. Tracking the ordering tem-
perature Tc with the strength of the mixing term Jmix, as
shown in Fig. 3, we find a significant suppression for the
symmetric 120� model, for which the transition occurs
around Tc=Jz ¼ 0:677� 0:003.

The quantum model.—As an inroad into exploring
ground states and thermodynamics of the quantum 120�
model in an extended (Jx=Jz, Jmix=Jz) parameter space
around the symmetric point, we first concentrate on a
family of models for which the mixing term Jmix vanishes
but for which we can still vary Jx=Jz. This line in parameter
space stands out as it allows for a thorough analysis using
quantum Monte Carlo (QMC) simulations, while all other
regions in parameter space of nonzero Jmix are plagued by
the so-called sign problem. Along this line, we first discuss
the ‘‘truncated’’ model at equal coupling Jx ¼ Jz, for
which we have run extensive QMC simulations using an
extension of the ALPS looper code [10,11]. Our numerical
findings, summarized in Fig. 4, show that this model under-
goes a continuous thermal phase transition around Tc=Jz ¼
0:41� 0:01 into an orbitally ordered state at low tempera-
tures. In this ordered state all orbitals are found to sponta-
neously orient in either the j3z2 � r2i or jx2 � y2i orbital
configurations, corresponding to pseudospins pointing in
the �Tz directions as indicated in Fig. 4(b). This ordered
orbital state, which we call the ‘‘Tz polarized’’ state, pre-
cisely corresponds to the 0� and 180� states found as
low-temperature states in the classical truncated model,
indicating that thermal fluctuations and quantum effects
favor the same states.

As we vary Jx=Jz away from equal coupling we find
that the truncated model above exhibits another peculiar-
ity: it sits right at a first-order transition between different
quantum ground states. For Jx < Jz this is the same
�Tz polarized state found for equal coupling (at finite

temperature), while for Jx > Jz the pseudospins in any
given xy plane point along the�Tx directions correspond-

ing to ðj3z2 � r2i � jx2 � y2iÞ= ffiffiffi
2

p
orbital configurations

(illustrated in the insets of Figs. 5 and 6), but pseudospins
in different xy planes do not have to be aligned. This first-
order transition is apparent in the level crossing of energies
shown in the lower panel of Fig. 5 calculated from both
QMC simulations (at temperatures well below the thermal
transition) and 2nd order T ¼ 0 perturbation expansions
around the limits of Jx ¼ 0 and Jx ! 1. The good agree-
ment of the two approaches indicates that quantum effects
only modestly change the ground states.
Both orbitally ordered phases discussed above exhibit

gapped elementary excitations corresponding to a single
pseudospin flip, e.g., an ‘‘orbital flip’’ j3z2 � r2i $ jx2 �
y2i in the Tz polarized state. We can directly
estimate the excitation gap �ðTÞ of such an ‘‘orbiton’’

excitation in our QMC simulations [11,12] as �ðTÞ ¼
2�Tð Sð0Þ

Sð2�TÞ � 1Þ�1=2 where Sð!Þ is a Fourier transform

on an imaginary time correlation function
P

rCðr; �Þ of
the pseudospins. Our results are given in the top panel of
Fig. 6. Again we find good quantitative agreement with 3rd
order perturbative results (dashed lines) calculated around
the limits of Jx ¼ 0, 1. For both orbitally ordered phases,
the orbiton gap is suppressed as one approaches the trun-
cated model at equal coupling, where for both phases we
measure a gap of �ðJx ¼ JzÞ ¼ ð0:34� 0:04ÞJz (signifi-
cantly smaller than the estimate � � 0:47Jz from an 1=S
expansion [13]). As a consequence, the temperature of the
thermal phase transition is also significantly suppressed in
the vicinity of the truncated model (see Fig. 5).
Having established the nature of the ordered phases for

vanishing mixing term, we are now in a position to return
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FIG. 3 (color online). Transition temperature (upper panel)
and ground-state energy (lower panel) in the classical model
for varying Jmix. The 120� model corresponds to Jmix ¼ Jz.
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FIG. 4 (color online). Orbital ordering transition in the trun-
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z
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for data of different system sizes L, indicative of a continuous
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to a discussion of the 120� model in the full (Jx=Jz,
Jmix=Jz) parameter space. While a small mixing term
Jmix � 0 will not affect these gapped phases, a sufficiently
large mixing term can close the orbiton gap. For large Jmix,
a mean-field approximation indicates an ‘‘orthogonal’’
ordered orbital state where the pseudospins are aligned
within each xz (or yz) plane, but aligned approximately
perpendicular to each other between planes. Assuming that
the instability of the polarized phases indeed arises primar-
ily from orbiton condensation (and is not preempted by
some other transition), we can map out a phase boundary in
parameter space by calculating a T ¼ 0 perturbation ex-
pansion of the orbiton gap in Jmix=Jz. Our results are
shown in the lower panel of Fig. 6, where the lines indicate
the closing of the orbiton gap when considering 2nd order
corrections to the gap values for a given ratio Jx=Jz calcu-
lated either from QMC simulations (symbols) or perturba-
tion theory (dashed lines). Interestingly, these phase
boundaries intersect the Jx ¼ Jz axis at values of Jmix=Jz
just above one, the location of the symmetric 120� model.
Given that the perturbative results overestimate the critical
value of Jmix=Jz, one might be tempted to conclude that the
symmetric model is right at a multicritical point between
the three phases. In particular, this would indicate that the

quantum ground states found for the truncated model at
Jmix=Jz ¼ 0 adiabatically connect to the ground states at
the symmetric point. However, at the symmetric point the
rotational symmetry requires that if the j3z2 � r2i (jx2 �
y2i) orbital states (i.e., the �Tz polarized states) remain
ground states, then also their symmetry related j3x2 � r2i
(jy2 � z2i) and j3y2 � r2i (jz2 � x2i) orbital states must
become ground states. This leaves us with two possible
scenarios to connect the Tx polarized states of the truncated
model to the symmetric point. (i) Quantum effects for
nonzero Jmix have the same effect as thermal fluctuations
in the classical model and these states adiabatically turn
into a combination of the symmetry required states above
(with two more states coming down from higher energies).
Some support for this scenario comes from considering a
1=S expansion for varying 0 � Jmix=Jz � 1 (generalizing
previous calculations [13,14]), which in linear order gives a
zero-point energy that mimics the behavior of the free
energy obtained for the classical model in Fig. 1; i.e.,
two minima at 90� and 270� found in the vicinity of the
truncated model bifurcate with increasing Jmix=Jz. (ii) The
Tx polarized state remains unchanged and brings in four
more symmetry related states. Scenario (i) thus selects
exactly the same six ordering states at angles 0�; 60�; . . .
as in the classical symmetric model, while for scenario (ii)
we get 12 ordering states at angles 0�; 30�; 60�; . . . 330�.
We acknowledge discussions with L. Balents, A.
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FIG. 6 (color online). Phase diagram of the quantum 120�
model: The upper panel shows the orbiton gap of the orbital
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from QMC simulations at T=Jz ¼ 0:15 (symbols) and 3rd order
perturbation theory (dashed lines). The lower panel shows the
critical value of Jmix at which the orbiton gap closes. The
location of the symmetric 120� model is indicated by the arrows.
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and ground-state energy (lower panel) for the quantum model.
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