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Linked cluster series expansions for two-particle bound states
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We develop strong-coupling series expansion methods to study two-particle spectra of quantum lattice
models. At the heart of the method lies the calculation of an effective Hamiltonian in the two-particle subspace.
We explicitly consider an orthogonality transformation to generate this block diagonalization, and find that
maintaining orthogonality is crucial for systems where the ground state and the two-particle subspace are
characterized by identical quantum numbers. We discuss the solution of the two-particle Schro¨dinger equation
by using a finite lattice approach in coordinate space or by an integral equation in momentum space. These
methods allow us to precisely determine the low-lying excitation spectra of the models at hand, including all
two-particle bound/antibound states. Further, we discuss how to generate series expansions for the dispersions
of the bound/antibound states. These allow us to employ series extrapolation techniques, whereby binding
energies can be determined even when the expansion parameters are not small. We apply the method to the
~111!-dimensional transverse Ising model and the two-leg spin-1

2 Heisenberg ladder. For the latter model, we
also calculate the coherence lengths and determine the critical properties where bound states merge with the
two-particle continuum.
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I. INTRODUCTION

The study of bound states and multiparticle excitatio
remains a challenging problem in many-body physics. E
perimentally, there are several probes for low-dimensio
magnetic or strongly correlated electronic systems wh
show spectral features associated with multiparticle c
tinuum and bound states. These include two-magnon Ra
spectra, optical absorption, photoemission, and neutron s
tering spectra. The multiparticle features often remain poo
understood. On the theoretical side, one example of the
triguing issues that may arise is the role that the increas
number of bound states play in the confineme
deconfinement transition in spin-Peierls systems. At the tr
sition the spectrum switches from a soliton-antisoliton co
tinuum to elementary triplet excitations, their bound sta
and continuum.1

A controlled numerical framework for the calculation
multiparticle spectral properties, which can also account
various singularities as the coupling constants are varied
currently missing. In one dimension, a variety of numeri
methods including Lanczos, exact diagonalization and m
notably density matrix renormalization group~DMRG! ~Ref.
2! hold promise for such calculations. However, unli
ground state and single-particle properties, the calculatio
full dynamical properties like spectral functions still nee
more conceptual advances. In higher than one dimension
of these methods are restricted to small system sizes, w
makes it difficult to study the thermodynamic limit.

On the other hand in the limits of weak or strong co
plings, perturbation theory can be used to calculate all pr
0163-1829/2001/63~14!/144410~13!/$20.00 63 1444
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erties of the multiparticle spectra directly in the thermod
namic limit. If these calculations can be done to high orde
one can calculate multiparticle spectra in a systematic m
ner using extrapolation techniques even in cases where
perturbations are not weak. In principle, one can see tha
the couplings are increased the number of bound states
change and states can come off or merge into the continu
The resulting singularities should be amenable to series
pansion methods.

In this paper, we show how to calculate multipartic
spectral properties from high-order perturbation expansio
using a linked cluster method. A brief outline and summa
of the work was given in a recent paper.3 Our method is quite
distinct from the flow equation approach of Wegner,4 which
has also been used recently by Uhrig and collaborators5,6 for
the study of multiparticle spectral properties in one and t
dimensions.

The linked cluster method is one of the most efficie
ways to generate perturbation series expansions for quan
Hamiltonian lattice models. For the ground state energy
related properties, a linked cluster approach was first
cussed in unpublished work by Nickel,7 followed by work of
Marland,8 Irving and Hamer,9 and others, as reviewed by H
et al.10 The approach was later rediscovered and applied
whole new range of problems in condensed matter phy
by Singh, Huse, and Gelfand.11,12

For the energies of excited states, it is more difficult
formulate a true linked cluster expansion, although rela
methods have been known for some time.7,13 It was only in
1996 that the key to a true linked cluster expansion for o
particle excited states was discovered by Gelfand.14 Since
©2001 The American Physical Society10-1



ad
an
tt

on
u
o
a

te
he
ct

e
ig
e

fc
to

o
te
ew

o
te
um
h
te
ap
e
e
c

ing
in
rm
-

er
e
is
-
it
ad

th

-
na
n

o
ta
ic
d

of
-
be

ree

to

it-
o-

le’’
n,
the

il-
be

clus-

nd
an-
spe-
m
ore
e-

or-
n
o-

ur-

ry.

ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144410
then, many applications of this technique have been m
calculating single-particle energies, dispersion relations,
spectral functions in models of interest in condensed ma
physics. For a recent review, see Gelfand and Singh.15

The cluster expansion method allows that the calculati
can be carried out systematically and efficiently by fully a
tomated computer programs. Furthermore, these meth
work by breaking up the thermodynamic problem into
purely combinatorial problem and a number of finite-clus
problems. Thus, while they are technically harder in hig
than one dimension, the difficulty is not fundamental. In fa
over the years, a number of workers15–19have independently
developed efficient computer programs to generate th
clusters automatically, and the cluster data up to quite h
number of vertices for most two-dimensional and thre
dimensional lattices including the simple-cubic, bcc, and
lattices have been generated:16,17 these data can be applied
a wide range of models.

At the heart of our new approach is a generalization
Gelfand’s linked cluster expansion for single-particle exci
states to two-particle states. From a technical point of vi
our most notable achievement is the development of an
thogonality transformation which leads to a linked clus
theorem for multi-particle states even when their quant
numbers are identical with the ground state. This approac
similar to the flow equation method developped by Knet
and Uhrig5,6 using continuous unitary transformations to m
the original Hamiltonian onto a block diagonal effectiv
Hamiltonian. We show how to calculate energies and disp
sion relations for two-particle excitations, and coheren
lengths for the bound states. The further generalization
higher number of particle is then obvious in principle.

As a first check to ensure that the method is work
correctly, we apply it to the case of the transverse Is
model in one dimension, which can be solved exactly in te
of free fermions.20 We show that the series for the two
particle state agree with the exact results up to 12th ord

Finally, we apply the method to a nontrivial model, th
two-leg spin-12 Heisenberg ladder, which has been much d
cussed recently21–28 as a prime example of a one
dimensional antiferromagnetic system with a gapped exc
tion spectrum. The two-particle bound states have alre
been studied by Uhrig and Normand,29 Damle and
Sachdev,25 and Sushkov and Kotov.27,28 We perform a de-
tailed study of these bound states, exhibiting in particular
characteristic features as each bound state emerges from
continuum. In a companion paper,30 we apply the same tech
niques to a still more interesting case, the frustrated alter
ing Heisenberg chain, which displays the confineme
deconfinement transition discussed by Affleck.1

The organization of the paper is as follows. Section II
the paper lays out the formalism and methods used to ob
the two-particle spectra. Section III discusses the appl
tions to the transverse Ising chain and the Heisenberg lad
Section IV summarizes our conclusions.

II. FORMALISM

We consider a Hamiltonian

H5H01lH1 , ~1!
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where the unperturbed HamiltonianH0 is exactly solvable
andl is the perturbation parameter. In the lattice models
interest here,H0 will typically consist of single-site opera
tors, while interaction terms between different sites will
included in the perturbation operatorH1. The aim is to cal-
culate perturbation series inl for the eigenvalues ofH and
other quantities of interest. The calculation proceeds in th
stages.

A. Block diagonalization

On any finite lattice or cluster of sites, the first step is
‘‘block diagonalize’’ the Hamiltonian to form an ‘‘effective
Hamiltonian,’’ where the ground state sits in a block by
self, the one-particle states form another block, the tw
particle states another block, and so on. Here a ‘‘partic
may refer to a lattice fermion, a spin-flip, or other excitatio
depending on the model at hand. We assume that all
unperturbed states in each block are degenerate underH0.
There is no unique way to block diagonalize the Ham
tonian, but the eigenvalues and final results should
unique, independent of the method used, as long as the
ter expansion works correctly. Gelfand14 used a similarity
transform for this purpose:

Heff5O21HO. ~2!

This works correctly for most one-particle problems, a
also for those two-particle states which have different qu
tum numbers to the ground state. However in general, e
cially for the excited states which have identical quantu
numbers to the ground state, we need to be a little m
careful than this, in order to preserve all the proper symm
tries of the Hamiltonian. We must ensure that the transf
mation isunitary. Here we will only consider the case whe
the Hamiltonian is real symmetric, and can be block diag
nalized by anorthogonaltransformation

Heff5OTHO ~3!

or more conveniently

OHeff5HO, ~4!

where

OT5O21. ~5!

The orthogonality of O can be ensured by writing

O5eS, ~6!

where S is real, antisymmetric

ST52S. ~7!

This transformation is constructed order-by-order in pert
bation theory. The matrix elements ofHeff between different
blocks are zero, up to the given order in perturbation theo
Each matrix is expanded in powers ofl:

O5 (
n50

`

lnO(n), ~8!
0-2
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S5 (
n50

`

lnS(n), ~9!

Heff5 (
n50

`

lnHeff
(n) , ~10!

where at zeroth order we set

S(0)50, O(0)5I , Heff
(0)5H0 , ~11!

where I is an unit matrix,H0 is a diagonal matrix, with
diagonal matrix elementsEi

0 .
At higher ordersnÞ0, we have

O(n)5S(n)1
1

2 (
m,l 51

n

S(m)S( l )dm1 l ,n

1
1

3! (
m,l ,k51

n

S(m)S( l )S(k)dm1 l 1k,n1¯ ~12!

and

(
m,l 50

n

O(m)Heff
( l )dm1 l ,n5H0O(n)1H1O(n21) ~13!

and it is convenient to define

R(n)5O(n)2S(n). ~14!

If we demand that at any given order n the off-diagon
blocks of Heff in ~say! the upper right triangle vanish, the
Eqs. ~13! determine the entries in the corresponding bloc
of S(n) ~Fig. 1!. The transposed blocks in the lower left tr
angle are then determined by the antisymmetry condition~7!;
and only the diagonal blocks ofS remain to be determined
The simplest choice is to set the diagonal blocks to ze
ThusS(n) is completely determined:

Si j
(n)52Ri j

(n)1
1

~Ej
02Ei

0!

3H H1O(n21)2 (
m,l 51

n21

O(m)Heff
( l )dm1 l ,nJ

i j

~15!

or

FIG. 1. Block structure of the matricesHeff
(n) andS(n). Setting the

upper right blocks ofHeff
(n) to zero determines the correspondin

~shaded! blocks ofS(n); the diagonal blocks ofS(n) are set to zero.
14441
l
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Oi j
(n)5

1

~Ej
02Ei

0!
H H1O(n21)2 (

m,l 51

n21

O(m)Heff
( l )dm1 l ,nJ

i j

~16!

for elementsi j in the off-diagonal~shaded! blocks. Then

~Heff
(n)! i j 5H H1O(n21)2 (

m,l 51

n21

O(m)Heff
( l )dm1 l ,nJ

i j

~17!

for elements in the diagonal blocks. The right-hand sides
Eqs.~15!–~17! can all be computed from the results at ord
(n21).

The key differences here from the similarity transform
tion are as follows. In the similarity transformation, the d
agonal blocks ofO(n) are undetermined, and so are chosen
be zero, while the off-diagonal blocks ofO(n) are antisym-
metric and can be determined by demanding the off-diago
blocks ofHeff

(n) to be zero. In the orthogonal transformatio
on the other hand, the diagonal blocks ofO(n) cannot be
chosen to be zero. Instead the diagonal blocks ofS(n) are
chosen to be zero, while the diagonal blocks ofO(n) are
required to be nonzero by orthogonality, and are determi
by Eq. ~12!.

At the end of this process, the effective Hamiltonian h
been block diagonalized, up to a given order in perturbat
theory. The orthogonal transformation will transform the u
perturbed two-particle states into ‘‘dressed’’ states conta
ing admixtures of different particle numbers; and in partic
lar, there will be no annihilation process for these ‘‘dresse
states. The states will still be labeled by the positions of
original unperturbed particles; but now they will contain a
mixtures of other particle states at nearby locations.

At any finite order in perturbation theory, we may assum
that the effective Hamiltonian will remain ‘‘local’’~that is,
interactions between states will not extend beyond a fin
range!; and will have the same bulk symmetries as the ori
nal Hamiltonian, such as translation symmetry. These pr
erties are sufficient to admit a linked cluster approach to
calculation of eigenvalues.

We note that the solution of the equations above is
nearly as efficient as the similarity transformation of G
fand: in particular, the solution of Eq.~12! is expensive in
CPU time and memory. In the Appendix, we discuss an
ternative ‘‘two-block’’ scheme which has the same ef
ciency as Gelfand’s; but which does not always allow a s
cessful cluster expansion.

B. Linked cluster expansions

Let us briefly summarize the linked cluster approach
various sectors.

1. Ground-state energy

The ground-state energyE0 is a simple extensive quan
tity, and obeys the ‘‘cluster addition property’’:9,12 if C is a
cluster ~or set of sites and bonds on the lattice! which is
composed of two disconnected subclustersA andB, then
0-3



or
tr

r
nd

in
e

ub

d
rie

e

-
-

ch

n
rt

-

ub-
di-

ns
r
-
1.

ard

r
rgy
o-

e
za-

to
el-
the

nt

ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144410
E0
C5E0

A1E0
B . ~18!

Hence one finds7–12 that the ground-state energy per site f
the bulk lattice can be expressed purely in terms of con
butions from connected subclustersa:

e05(
a

l aea , ~19!

where l a is the ‘‘lattice constant,’’ or number of ways pe
site that clustera can be embedded in the bulk lattice, a
ea is the ‘‘proper energy’’ or ‘‘cumulant energy’’ for the
clustera. In the language of Feynman diagrams,ea can be
thought of31 as the sum of all connected diagrams spann
the clustera. A similar formula holds for the ground-stat
energy of any connected clustera with open boundaries

E0
a5(

b
Cb

aeb , ~20!

whereCb
a is the embedding constant of the connected s

clusterb within clustera.
Equations~19! and ~20! form the basis for a simple an

efficient recursive algorithm to generate a perturbation se
for e0. The steps are as follows.

~i! Generate a list of clustersa, with their lattice constants
l a and embedding constantsCb

a , appropriate to the problem
at hand.16–18

~ii ! For each clustera, the diagonal entry in the 0-particl
sector ofHeff gives a perturbation series for the energyE0

a .
~iii ! Now invert Eqs.~20! to solve for the cumulant ener

giesea , and substitute in Eq.~19! to obtain the desired per
turbation series fore0.

2. One-particle excited states

Gelfand14 discovered how to generalize the approa
above to one-particle excited states. Let

E1~ i,j !5^ j uHeffu i& ~21!

be the matrix element ofHeff between initial one-particle
stateu i& and final one-particle stateu j &, labeled according to
their positions on the lattice. The excited state energy is
extensive, and does not obey the cluster addition prope
but there is a related quantity which does. If clusterC is
made up of disconnected subclustersA andB, and statesu i&
and u j & reside~say! on clusterA, then

E1
C~ i,j !5E1

A~ i,j !1E0
B . ~22!

But if we define the ‘‘irreducible’’ one-particle matrix ele
ment ~Fig. 2!

D1~ i,j !5E1~ i,j !2E0d i,j , ~23!

then

D1
C~ i,j !5D1

A~ i,j !, ~24!

whereas ifu i& and u j & reside on cluster B, then

D1
C~ i,j !5D1

B~ i,j ! ~25!
14441
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or in general

D1
C~ i,j !5D1

A~ i,j !1D1
B~ i,j !, ~26!

whereD1( i,j ) vanishesfor any cluster not containingi andj .
Note that a one-particle state cannot annihilate from one s
cluster and reappear on the other, after the initial block
agonalization.

From the cluster addition property~26! it follows that the
elementsD1( i,j ) can be expanded in terms of contributio
from connectedclusters alone, which are also ‘‘rooted,’’ o
connected to the positionsi and j . Hence they can be calcu
lated efficiently by an algorithm similar to that of Sec. II B

3. Two-particle states

The generalization to two-particle states is now not h
to find. Let

E2~ i,j ;k,l!5^k,luHeffu i,j & ~27!

be the matrix element between initial two-particle stateu i,j &
and final stateuk,l&. To obtain a quantity obeying the cluste
addition property, we must subtract the ground-state ene
and one-particle contributions, to form the irreducible tw
particle matrix element~Fig. 3!:

D2~ i,j ;k,l!5E2~ i,j ;k,l!2E0~d i,kd j ,l1d i,ld j ,k!2D1~ i,k!d j ,l

2D1~ i,l!d j ,k2D1~ j ,k!d i,l2D1~ j ,l!d i,k . ~28!

This quantity is easily found to bezerofor any cluster unless
i, j , k, and l are all included in that cluster, and it obeys th
cluster addition property. Once again, the block diagonali

FIG. 2. Decomposition of a one-particle matrix element in
irreducible components. The round box denotes the full matrix
ement, the square boxes the irreducible matrix elements, and
single line denotes a delta function.

FIG. 3. Decomposition of two identical particle matrix eleme
into irreducible components. Notation as in Fig. 2.
0-4
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tion ensures that two particles cannot ‘‘annihilate’’ from o
cluster and ‘‘reappear’’ on another disconnected one. T
the matrix elements ofD2 can be expanded in terms of co
nected clusters alone, which are rooted or connected to
four positionsi,j ,k,l. An analogous equation for the irredu
ible two-particle interaction has been found in the recen
formulated flow equation approach for two-triplet excitatio
in the Shastry-Sutherland model.6

C. Calculation of eigenvalues

For the ground state energy, a perturbation series for
eigenvalue was already obtained at the end of Sec. II B
For the excited state sectors, some further work is requi

1. One-particle states

A perturbation series for the dispersion relation of t
one-particle states can be calculated by a Fourier transfo
Translation invariance implies that

D1~ i,j ![D1~d !, ~29!

whered is the difference between positionsi and j ; and that
the one-particle states are eigenstates of momentum

uK &5
1

AN
(

j
exp~ iK• j !u j & ~30!

~whereN is the number of sites in the lattice!, with energy
gap

v1~K !5(
d

D1~d !cos~K•d !. ~31!

Here we have assumed thatD1(d ) is inversion symmetric,
so that

D1~2d !5D1~d !. ~32!

2. Two-particle states

The calculation of the eigenvalues in this case is a li
more involved than in the one-particle case. We follow t
procedure of Mattis.32

Consider an unsymmetrized state of nonidentical p
ticles, typesa and b. Then there areN(N21) states on an
N-site lattice, labeled by positionsu i,j &, wherei,j refer to the
positions of particlesa andb, respectively. We have assume
here that two particles may not reside at the same pos
~the results are easily amended if this is not the case!. Then
the irreducible two-particle matrix element is

D2
ab~ i,j ;k,l!5E2

ab~ i,j ;k,l!2E0d i,kd j ,l2D1
a~ i,k!d j ,l

2D1
b~ j ,l!d i,k . ~33!

Let the two-particle eigenstate be

uc&5(
i,j

f ij u i,j &, ~ iÞ j !, ~34!

substitute in the Schro¨dinger equation
14441
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Heffuc&5Euc& ~35!

and take the overlap witĥi,j u, then one obtains

~E2E0! f ij 2(
kÞ j

D1
a~k,i! f kj 2(

kÞ i
D1

b~k,j ! f ik

5(
k,l

D2
ab~k,l; i,j ! f kl ~ iÞ j !. ~36!

Completing the sums on the left-hand side, one obtains

~E2E0! f ij 2(
k

@D1
a~k,i! f kj 1D1

b~k,j ! f ik#

5(
k,l

D2
a,b~k,l; i,j ! f kl2D1

a~ j ,i! f jj 2D1
b~ i,j ! f ii ,

~37!

The fictitious amplitudesf ii are introduced to simplify the
calculations, and are taken to bedefinedby these equations.32

Now define a center-of-mass position coordinate

R5
1

4
~ i1 j1k1 l!, ~38!

and relative coordinates

r5
1

2
~ i1 j2k2 l!, ~39!

d15 i2 j , ~40!

d 25k2 l. ~41!

Translation invariance then implies that

D2~ i,j ;k,l![D2~r ,d1 ,d 2!. ~42!

Next, perform a Fourier transformation

f ~K ,q!5
1

N (
i,j

ei (k1• i1k2• j ) f ij , ~43!

whereK ,q are the center-of-mass and relative momenta

K5~k11k2!, ~44!

q5
1

2
~k12k2!, ~45!

then Eq.~37! leads to
0-5
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FE2E02(
d

@D1
a~d !cos~K•d/21q•d !

1D1
b~d !cos~K•d/22q•d !# f ~K ,q!

5
1

N (
q8

f ~K ,q8!F (
r ,d1 ,d 2

D2
ab~r ,d1 ,d 2!

3cos~K•r1q•d12q8•d 2!2(
d

D1
a~d !

3cos~K•d/21q•d !1D1
b~d !cos~K•d/22q•d !G G ,

~46!

where we have again assumed inversion symmetry

D1
a,b~d !5D1

a,b~2d !, ~47!

D2
ab~r ,d1 ,d 2!5D2

ab~2r ,2d1 ,2d 2!. ~48!

Finally, look for solutions with definiteexchange symmetry.
Symmetric states:

f i j 51 f j i ~49!

therefore

f ~K ,q!51 f ~K ,2q!. ~50!

‘‘Averaging’’ over f (K ,6q) ~i.e., taking 1
2 @ f (K ,q)1 f (K ,

2q)#), we get

H E2E02(
d

@D1
a~d !1D1

b~d !#

3cos~K•d/2!cos~q•d !J f ~K ,q!

5
1

N (
q8

f ~K ,q8!F (
r ,d1 ,d 2

D2
ab~r ,d1 ,d 2!

3cos~K•r !cos~q•d1!cos~q8•d2!

2(
d

@D1
a~d !1D1

b~d !#cos~K•d/2!cos~q•d !G .
~51!

Antisymmetric states:

f i j 52 f j i ~52!

therefore

f ~K ,q!52 f ~K ,2q!. ~53!

‘‘Averaging’’ over f (K ,6q) ~i.e., taking 1
2 @ f (K ,q)2 f (K ,

2q)#), we get
14441
H E2E02(
d

@D1
a~d !1D1

b~d !#

3cos~K•d/2!cos~q•d !J f ~K ,q!

5
1

N (
q8

f ~K ,q8! (
r ,d1 ,d 2

D2
ab~r ,d1 ,d 2!

3cos~K•r !sin~q•d1!sin~q8•d 2!. ~54!

Identical particles:If the particlesa and b are identical,
the solution is the same as for symmetric states except
labelsa and b must now be dropped, and to avoid doub
counting it turns out that theD2 term must be multiplied by
an extra factor of 1/2:

FE2E022(
d

D1~d !cos~K•d/2!cos~q•d !G f ~K ,q!

5
1

N (
q8

f ~K ,q8!F1

2 (
r ,d1 ,d 2

D2~r ,d1 ,d 2!

3cos~K•r !cos~q•d1!cos~q8•d 2!

22(
d

D1~d !cos~K•d/2!cos~q•d !G . ~55!

The above integral equations can be solved, for a gi
value ofK , using standard discretization techniques. Inste
of using continous momentumq, one can useN discretized
and equally spaced values of momentum, so that instea
solving the complicated integral equation, one only need
compute the eigenvalue and eigenvector of anN3N matrix
for the discretized system. Notice that the matrix is nonsy
metric due to the unphysicalf i i term we have introduced in
Eq. ~37!, but even so the eigenvalues obtained from t
matrix are real. The solutions we obtain also include an
physical one with eigenvalue equal to 0~this is also due to
the unphysicalf i i term!. The results obtained from the ca
culation with discretized momenta will converge to tho
with continous momentum asN→`. Actually for those
bound states with finite coherence length, the calculation
normally be well converged for quite small values ofN, but
for unbound states, we have an infinite coherence length
one may need to do finiteN extrapolations to get results a
N5`.

There are two methods to compute the eigenvalues of
matrix for the discretized system. Obviously one can get
merical results for the eigenvalues, for a given value of c
pling l and momentumK , via standard numerical tech
niques where we just perform a naive sum for the series
D1 andD2. The results presented in a preceding paper3 are
based on this method; but then one cannot carry out a se
extrapolation, and so one may not be able to reach a re
of critical coupling. A better technique is to compute th
series inl for the eigenvalues through degenerate pertur
tion theory: that is, by explicit diagonalization of the matr
within the degenerate subspace, order by order in pertu
0-6
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LINKED CLUSTER SERIES EXPANSIONS FOR TWO- . . . PHYSICAL REVIEW B 63 144410
tion theory, and then one can perform a series extrapola
The problem with this method is that the series does
always exist, for example for those bound states appearin
some nonzero value ofl.

The two particle continuum is delimited by the maximu
~minimum! energy of two single particle excitations who
combined momentum is the center of mass moment
Apart from the unphysical eigenvalue, there may be multi
solutions above or below the two-particle continuum. Tho
solutions with energy below the bottom edge of the co
tinuum are the bound states, while the solutions with ene
higher than the upper edge of the continuum are the a
bound states. The binding energy is defined as the en
difference between the lower edge of the continuum and
energy of the bound state, while the antibinding energy
defined as the energy difference between the upper edg
continuum and the energy of an antibound state.

Note that the series forD2 may depend on the transfo
mation used to block diagonalize the Hamiltonian. If w
computeD2 ~and alsoD1) to ordern, the resulting series fo
the two-particle energy obtained from the above integ
equation will have two parts: the part up to ordern is inde-
pendent of the transformation, while the higher order ter
are incomplete, and may depend on the transformation.
numerical solution of the integral equation may also dep
partly on the transformation, since it contains the higher
der term. Also note that the series forD2 need not have any
singularities. The singularities, if they exist, arise in the s
lution of the Schro¨dinger equation, so our method should
able to explore new bound states arising as we vary the
mentum K . If we get a numerical solution, rather than
series solution, to the Schro¨dinger equation, we should als
be able to explore new bound states arising as we increal
as long as the naive sum to the series converges.

D. Finite lattice approach

Once the cluster expansions for the irreducible matrix
ementsD1 and D2 have been developed, the Schro¨dinger
equation in the two-particle subspace can be solved by
alternative method that works in coordinate space rather
momentum space. By restricting to a finite but large syst
with periodic boundary conditions, the two-particle Schr¨-
dinger equation becomes a finite-dimensional matrix
equations. The cluster expansion results provide the ma
elements of the effective Hamiltonian as a power series
the expansion parameter. The center-of-mass momentum
conserved quantity, thus, for a given value of the center
mass momentum, one is left with a Schro¨dinger equation in
the separation variable. One can truncate the perturba
theory at a given order and solve the Schro¨dinger equation
numerically. One can then vary the size of the system, wh
only increases the dimension of matrix to be diagonaliz
linearly, to study convergence. We have frequently used
method to compare with and check the momentum-sp
discretization solutions.

This ‘‘finite lattice approach’’ also allows us to obtai
power series expansions for bound state energies, by a
degenerate perturbation theory, provided the bound state
14441
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ists ‘‘localized’’ in the limit l→0. For those ‘‘extended’’
bound states in the limitl→0,30 one still needs to do de
generate perturbation theory, just as in the case of
momentum-space discretization solutions. Another adv
tage of this method over the the momentum-space disc
zation technique is that the matrix one deals with is alwa
symmetric.

Furthermore, it gives us explicit real-space wave fun
tions, from which the coherence length and other proper
can be deduced. The coherence lengthL is defined by

L5
( rur u f r

2

( r f r
2

, ~56!

where f r is the amplitude~the eigenvector! for two single-
particle excitations separated by distancer .

III. RESULTS

We apply the new method to the~111!-dimensional
transverse Ising model and a two-leg spin-1

2 Heisenberg lad-
der.

A. Transverse Ising model

In order to verify that our new technique is giving th
correct results, we firstly apply it to a simple model, theS
5 1

2 transverse Ising model in~111! dimensions, which is
exactly solvable in terms of free fermions. The Hamiltoni
for it reads

H5(
i

~12s i
z!2l(

i
s i

xs i 11
x . ~57!

Here we take the first term as the unperturbed Hamilton
H0, and the second term as the perturbationH1. The ground
state ofH0 is the unique state with all spins pointing up. Th
lowest excited states~one-particle excitations! for H0 flip
one of the spins from spin up to spin down. The exa
result20 for the one-particle dispersion relation is

E1~q!52A11l222l cosq. ~58!

For the two-particle excitations, the unperturbed sta
have two spins down. Since this model can be mapped
free fermions, there are no two-particle bound states, and
two-particle excitation energy is simply the sum of two on
particle dispersions, that is

E2~q1 ,q2!52A11l222l cosq112A11l222l cosq2,

~59!

whereq1 andq2 are the momenta of each particle. Note th
this is a nontrivial example for our method as the similar
transformation does not even lead to a cluster expansion

We have implemented the algorithm described above
this model. For the one-particle excitation, we can eas
reproduce the exact results through the different block dia
nalization schemes mentioned before. For the two-part
excitations, although there are no bound states, the termD2
0-7
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TABLE I. Series coefficients forD2(r ,d1 ,d2)5(kD2
k(r ,d1 ,d2)xk in the ~111!-dimensional transverse Ising model, obtained by

two-block method. Nonzero coefficientsD2
k(r ,d1 ,d2) up to orderk56 are listed.

(k,2r ,d1 ,d2) D2
k(r ,d1 ,d2)/4 (k,2r ,d1 ,d2) D2

k(r ,d1 ,d2)/4 (k,2r ,d1 ,d2) D2
k(r ,d1 ,d2)/4 (k,2r ,d1 ,d2) D2

k(r ,d1 ,d2)/4

~ 2,-2, 1, 1! 5.00000031021 ~ 4, 4, 2, 2! 1.56250031021 ~ 5,-5, 3, 2! 1.09375031021 ~ 6, 4, 3, 1! 25.46875031022

~ 2, 2, 1, 1! 5.00000031021 ~ 4,-4, 3, 1! 1.56250031021 ~ 5, 5, 3, 2! 1.09375031021 ~ 6,-6, 1, 5! 8.20312531022

~ 3,-3, 1, 2! 2.50000031021 ~ 4, 4, 3, 1! 1.56250031021 ~ 5,-5, 4, 1! 1.09375031021 ~ 6, 6, 1, 5! 8.20312531022

~ 3, 3, 1, 2! 2.50000031021 ~ 5,-3, 1, 2! 27.81250031022 ~ 5, 5, 4, 1! 1.09375031021 ~ 6,-6, 2, 4! 8.20312531022

~ 3,-3, 2, 1! 2.50000031021 ~ 5, 3, 1, 2! 27.81250031022 ~ 6,-2, 1, 1! 21.95312531022 ~ 6, 6, 2, 4! 8.20312531022

~ 3, 3, 2, 1! 2.50000031021 ~ 5,-3, 2, 1! 27.81250031022 ~ 6, 2, 1, 1! 21.95312531022 ~ 6,-6, 3, 3! 8.20312531022

~ 4,-2, 1, 1! 21.25000031021 ~ 5, 3, 2, 1! 27.81250031022 ~ 6,-4, 1, 3! 25.46875031022 ~ 6, 6, 3, 3! 8.20312531022

~ 4, 2, 1, 1! 21.25000031021 ~ 5,-5, 1, 4! 1.09375031021 ~ 6, 4, 1, 3! 25.46875031022 ~ 6,-6, 4, 2! 8.20312531022

~ 4,-4, 1, 3! 1.56250031021 ~ 5, 5, 1, 4! 1.09375031021 ~ 6,-4, 2, 2! 25.46875031022 ~ 6, 6, 4, 2! 8.20312531022

~ 4, 4, 1, 3! 1.56250031021 ~ 5,-5, 2, 3! 1.09375031021 ~ 6, 4, 2, 2! 25.46875031022 ~ 6,-6, 5, 1! 8.20312531022

~ 4,-4, 2, 2! 1.56250031021 ~ 5, 5, 2, 3! 1.09375031021 ~ 6,-4, 3, 1! 25.46875031022 ~ 6, 6, 5, 1! 8.20312531022
s

is
in

d

ha

e

leg

ins
t-
in-

d a

nal

etic
or-

le
s to
y.
ct
he
ne
ly,

or-
er

del
ng
s-

the
are not zero. That is because we are using the spin repre
tation; in a fermion representation, theD2 would be expected
to vanish. We have computed them to orderl12 by using the
two-block method. The series coefficients up to orderl6 are
given33 in Table I. With these series, one can solve the d
cretized version of the integral equation to get the bind
and antibinding energy for any given value of momentumk
and couplingl. Our results show that for allk and l, the
binding/antibinding energy scales as 1/N2, and approaches to
zero asN→`: this is consistent with the absence of boun
antibound states in this model. The results forl50.5 and
k50,p/2,p are shown in Fig. 4. We have also checked t
the resulting series forE2 agrees with Eq.~59! for the lowest
and highest energy of two-particle states up to 12th ord
and the coherence length is infinity, as expected.

FIG. 4. The binding energy~full points! and antibinding energy
~open points! Eb versus 1/N2 (N is the size of the matrix! for the
transverse Ising model with couplingl50.5 and momentumk50
~dotted lines!, p/2 ~dashed lines!, p ~solid lines!.
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B. Heisenberg ladder

The second model we have investigated is the two-
spin-12 Heisenberg ladder, where the Hamiltonian is

H5(
i

$J'Si•Si81J@Si•Si 111Si8•Si 118 #%, ~60!

whereSi (Si8) denotes the spin at sitei of the first ~second!
chain. J is the interaction between nearest-neighbor sp
along the chain, andJ' is the interaction between neares
neighbor spins along the rungs. In the present paper the
trachain coupling is taken to be antiferromagnetic~that is,
J'.0) whereas the interchain couplingJ can be either anti-
ferromagnetic or ferromagnetic.

The antiferromagnetic Heisenberg ladder has attracte
good deal of attention recently.21–29 It is of experimental
interest in that there are a number of quasi-one-dimensio
compounds which may be described by the model.21 It is
also a prime example of a one-dimensional antiferromagn
system with a gapped excitation spectrum. Uhrig and N
mand, Damle and Sachdev,25 as well as Sushkov and
Kotov27 have shown that the system exhibits two-partic
bound states, one singlet and one triplet. Our aim here i
explore the properties of these bound states more closel

In the dimer limitJ/J'50, the ground state is the produ
state with the spins on each rung forming a spin singlet. T
first excited state consists of a spin triplet excitation on o
of the rungs. AsJ/J' increases, this state evolves smooth
and the system has a gapped excitation spectrum.22–24 The
dimer expansions have been computed previously up to
der (J/J')23 for the ground-state energy and up to ord
(J/J')13 for the one-particle triplet excitation spectrum.23

The occurrence of two-particle bound states in this mo
has been shown by low order strong-coupli
expansions34,29,25,26as well as a leading order calculation u
ing the analytic Brueckner approach.27,28

Here we have calculated series for the dispersions of
two-particle bound states up to order (J/J')7 for the singlet
bound state (S), and to order (J/J')12 for the triplet bound
0-8
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TABLE II. Series coefficients for the dispersionE(k)/J'5(k,nak,nxk cos(nk) for the singlet bound state of the Heisenberg ladd
Nonzero coefficientsak,n up to orderk57 are listed. Note that the series are valid only fork>kc .

(k,n) ak,n (k,n) ak,n (k,n) ak,n (k,n) ak,n

~ 0, 0! 2.0000000 ~ 2, 1! 1.250000031021 ~ 5, 2! 23.9255371 ~ 5, 4! 21.5305176
~ 1, 0! 21.5000000 ~ 3, 1! 23.984375031021 ~ 6, 2! 21.04208533101 ~ 6, 4! 25.0236816
~ 2, 0! 1.1875000 ~ 4, 1! 21.9453125 ~ 7, 2! 22.86979903101 ~ 7, 4! 21.53351123101

~ 3, 0! 2.812500031021 ~ 5, 1! 25.2039795 ~ 3, 3! 22.890625031021 ~ 5, 5! 23.891601631021

~ 4, 0! 21.2919922 ~ 6, 1! 21.28288883101 ~ 4, 3! 21.0078125 ~ 6, 5! 22.3588257
~ 5, 0! 23.4462891 ~ 7, 1! 23.30505703101 ~ 5, 3! 22.7506104 ~ 7, 5! 29.1123085
~ 6, 0! 27.1851196 ~ 2, 2! 23.125000031021 ~ 6, 3! 27.5901184 ~ 6, 6! 25.046234131021

~ 7, 0! 21.67901973101 ~ 3, 2! 26.562500031021 ~ 7, 3! 22.21070233101 ~ 7, 6! 23.6886940
~ 1, 1! 25.000000031021 ~ 4, 2! 21.5449219 ~ 4, 4! 23.193359431021 ~ 7, 7! 26.829490731021
m
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state ~T! and the quintet antibound state (Q). The reason
why the singlet series is computed to only 7th order co
pared to 12th order for the triplet and quintet states is that
singlet has the same quantum numbers as the ground s
Thus a much more elaborate orthogonalization method
required to implement the cluster expansion for the sing
For the triplet and quintet bound states, we can use the s
larity transformation or the two-block orthogonal transfo
mation to implement the cluster expansion. Up to ord
(J/J')3, the dispersion for the singlet bound state (ES /J'),
triplet bound state (ET /J'), quintet antibound state (EQ /J')
are

ES /J'522
3x

2
1

19x2

16
1

9x3

32
1S 2

x

2
1

x2

8
2

51x3

128D cos~k!

1S 2
5x2

16
2

21x3

32 D cos~2k!2
37x3 cos~3k!

128

1O~x4!, ~61a!

s

14441
-
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ET /J'522
3x

2
1

11x2

8
1

17x3

16
1S 2x2

x2

4
1

9x3

16 D cos~k!

1S 2
x2

2
2

x3

2 D cos~2k!2
5x3 cos~3k!

16
1O~x4!,

~61b!

EQ /J'521
3x

2
1

11x2

8
2

3x3

16
1S x2

x2

4
2

27x3

16 D cos~k!

1S 2
x2

2
2

3x3

8 D cos~2k!1
7x3 cos~3k!

16
1O~x4!,

~61c!

where x[J/J' . The full dispersion series for the single
state, and the series for the energy gap atk5p for singlet,
triplet, and quintet bound/antibound states and the low
edge and upper edge of continuum are listed in Tables II
III; the other series are available upon request.33 Figures 5
and 6 show the dispersion and the binding/antibinding
ergy atJ/J'50.2 for the two-particle continuum as well a
nd

tinuum
TABLE III. Series coefficients for dimer expansions of the energy gapE/J' of singlet bound state, triplet bound state, quintet antibou
state, and the lower and upper edge of the continuum atk5p for the the Heisenberg ladder. Coefficients of (J/J')n up to ordern512 are
listed.

n Singlet bound state Triplet bound state Quintet antibound state Lower edge of continuum Upper edge of con

0 2.000000000 2.000000000 2.000000000 2.000000000 2.000000000
1 21.000000000 20.500000000 0.500000000 0.000000000 0.000000000
2 0.750000000 1.125000000 1.125000000 1.000000000 2.000000000
3 0.312500000 0.312500000 0.687500000 0.250000000 1.250000000
4 20.203125000 20.476562500 0.148437500 20.625000000 20.500000000
5 20.558593750 20.742187500 20.242187500 21.031250000 21.843750000
6 20.356445313 20.399414063 20.198242188 20.595703125 21.119140625
7 0.440856934 0.444519043 0.219665527 0.648925781 1.613769531
8 1.282394409 0.294692993 1.615997314 3.436676025
9 0.964994431 20.865842819 1.012023926 1.011138916

10 21.139695843 23.052285552 21.200890859 24.719360987
11 23.099767812 23.914894695 22.788565993 26.971628388
12 21.480682586 0.070329791 20.814231584 0.478638977
0-9
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ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144410
the the two-particle bound/antibound states. Here we can
there is a singlet (S50) and a triplet (S51) bound state of
two elementary triplets below the two-particle continuu
and a quintet (S52) antibound state above the continuum

From these graphs, we can also see that these bo
antibound states exist only when the momentumk is larger
than some ‘‘critical momentum’’kc : the series in Eq.~61!
and Table II are valid only fork>kc . It is interesting to
explore the behavior of the binding energies near this crit
momentum. From the series for the one-particle and tw
particle dispersions, one can get leading order results fokc
as

kc5H A10x1O~x!, S50,

2p/325x/~2A3!2109x2/~48A3!1O~x3!, S51,

2p/315x/~2A3!147x2/~48A3!1O~x3!, S52

~62!

and in the limitk→kc , the behavior of the binding energy

FIG. 5. The excitation spectrum for the Heisenberg spin lad
at J/J'50.2. In addition to the two-particle continuum~gray
shaded!, there are three massive quasiparticles: a singlet bound
(S), a triplet bound state~T! below the continuum, and a quinte
antibound state~Q! above the continuum.
14441
ee

,

nd/

l
-

Eb /J5~k2kc!
2@5x/81975x2/1281O~x3!#1~k2kc!

3

3@121115x1O~x2!#A10x/1921O@~k2kc!
4#

~63!

for the singlet bound state, and

Eb /J5~k2kc!
2@3/82x/3210.45313x21O~x3!#

1~k2kc!
3@A3/16253x/~64A3!

10.19245x21O~x3!#1O@~k2kc!
4# ~64!

for the triplet bound state. For the quintet antibound state,
antibinding energy is

Eb /J5~k2kc!
2@3/81x/3220.40625x21O~x3!#

1~k2kc!
3@A3/16153x/~64A3!

11.00886x21O~x3!#1O@~k2kc!
4#. ~65!

Here one can see that for all bound/antibound states
‘‘critical index’’ is 2, independent of the order of expansio
so one expects that this isexact.

FIG. 6. The binding/antibinding energyEb /J' ~upper window!
and the rescaled binding/antibinding energyEb /J'(k2kc)

2 ~lower
window! for the Heisenberg spin ladder atJ/J'50.2.

r

te
e
TABLE IV. The critical point ~pole! and critical index~residue! obtained from@n/m# Dlog Pade´ approximants to the series for th
binding energy atk53p/5 for the triplet bound state of the Heisenberg ladder. An asterisk denotes a defective approximant.

n @(n22)/n# @(n21)/n# @n/n# @(n11)/n# @(n12)/n#

pole ~residue! pole ~residue! pole ~residue! pole ~residue! pole ~residue!

n52 0.13342~2.100484! 0.13067(1.917138)* 0.13163~1.993828! 0.13173~2.002998!
n53 0.13169~1.999149! 0.13172~2.001628! 0.13170~2.000083! 0.13170~2.000146! 0.13170~1.999905!
n54 0.13171~2.000658! 0.13170~2.000143! 0.13170~2.000097! 0.13170~1.999987! 0.13170~1.999999!
n55 0.13170(1.999826)* 0.13170~1.999969! 0.13170~1.999997!
n56 0.13170~2.000016!
0-10
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LINKED CLUSTER SERIES EXPANSIONS FOR TWO- . . . PHYSICAL REVIEW B 63 144410
A better way to locate the critical line in the (J/J')-k
plane is to calculate the Dlog Pade´ approximants to the serie
for the binding/antibinding energy at a fixed momentumk.
For those critical points lying atxc,0.2, the resulting criti-
cal point and critical index are very accurate, correct up
five digits, and again one finds the critical index is exactly
The results for the triplet bound state atk53p/5 are given in
Table IV. The results for the critical points are given in F
7, together with the results from Eq.~62!. From this figure,

FIG. 8. The binding/antibinding energyEb at k5p versusJ/J'

for singlet (S), triplet (T), and quintet~Q! bound/antibound state
of the Heisenberg ladder. Several different integrated differen
approximants to the series are shown.

FIG. 7. The critical (J/J')c versusk for singlet (S), triplet (T),
and quintet~Q! bound/antibound states of the Heisenberg ladd
The solid lines with errorbars are the results obtained fromD ln
Padéapproximants to the series for binding/antibinding energyEb

for given k, while the dotted lines are the results of Eq.~62!.
14441
o
.

one can see that asJ/J'→`, kc for the singlet and triplet
bound states approaches the same value, about 0.4p, while
kc for the quintet antibound state approachesp. To demon-
strate thatEb is proportional to (k2kc)

2 nearkc , we also
plot in Fig. 5 the results forEb /J'(k2kc)

2 at J/J'50.2.
The binding/antibinding energy atk5p for bound/

antibound states versusJ/J' is plotted in Fig. 8. In the limit
J/J'→0, Eb /J' is proportional toJ/J' , so in the figure we
plot Eb /J versusJ/J' . We can see that asJ/J' increases,
Eb /J for the singlet bound state first increases, pas
through a maximum at aboutJ/J'50.4, then decreases
while Eb /J for the triplet bound state and the quintet an
bound state decreases monotonically. AtJ/J'51/2, we find
the binding/antibinding energies atk5p for the singlet, trip-
let, and quintet bound/antibound states areEb /J51.03(3),
0.385~1!, and 0.0855~5!, respectively. The binding energ
for the singlet bound state is substantially larger than
value 0.70 obtained in Ref. 28.

We have also computed the coherence lengthL for these
bound/antibound states. The results forJ/J'50.2 are shown
in Fig. 9, where we find thatL diverges as 1/(k2kc) as k
approacheskc . This is to be expected, as the state becom
unbound at that point. The coherence length atk5p versus
J/J' is shown in Fig. 10, where we can see that atJ50,
L51. This is as expected, as the formation of these bo
states is due to the attraction of two triplets on neighbor
sites. AsJ/J' increases, the coherence lengthL increases
slowly. L for the quintet antibound state is larger than th
for the triplet bound state, which is larger than for the sing
bound state.

IV. CONCLUSIONS

In conclusion, we have developed strong-coupling exp
sion methods to study two-particle spectra of quantum lat

al

r. FIG. 9. The coherence lengthL versus momentumk for singlet
(S), triplet (T), and quintet~Q! bound/antibound states of th
Heisenberg ladder atJ/J'50.2.
0-11
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ZHENG, HAMER, SINGH, TREBST, AND MONIEN PHYSICAL REVIEW B63 144410
models. We described in full detail the block diagonalizati
of the Hamiltonian, order by order in perturbation theory,
construct an effective Hamiltonian in the two-particle su
space. This work is closely related to Gelfand’s prior wo
on using similarity transformations to obtain an effecti
Hamiltonian for the single-particle subspace.14 We found
that one needs to define a two-particle irreducible ma
element, for a cluster expansion to exist. Furthermore,
needs to maintain explicit orthogonality in the transform
tions in order to study the two-particle subspace charac
ized by identical quantum numbers to the ground state.
example of the latter is the two-particle singlet excitati
sector in dimerized spin models.

We have discussed the solution of the integral equa
one obtains by a Fourier transformation of the two-parti
Schrödinger equation and by a ‘‘finite-lattice approach
These allow us to precisely determine the low-lying exci
tion spectra of the models at hand, including all two-parti
bound/antibound states. Furthermore, we have shown
one can generate series expansions directly for the dis
sions of the bound/antibound states, provided these bo
states exist in the limitl→0. These allow us to apply serie
extrapolation techniques such as Dlog Pade´s and differential
approximants to study binding energies even when the
turbation parameter is not small.

We applied the method to the~111!-dimensional trans-
verse Ising model and the two-leg spin-1

2 Heisenberg ladder
While the first model does not include any bound states,
find a singlet and a triplet bound state in the latter mode
well as a quintet antibound state. We generated explicit
pressions for the dispersions of these states as series i
exchange couplings. Further, we have determined the cri
momentakc , where these additional massive quasipartic
merge with the two-particle continuum, which are non-ze
for all three states. The explicit expressions of the bind

FIG. 10. The coherence lengthL versusJ/J' at k5p for singlet
(S), triplet (T), and quintet~Q! bound/antibound states of th
Heisenberg ladder.
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energies at the respective critical momenta are found to c
tribute first in order (k2kc)

2, independent of the order of th
strong coupling expansion. We computed the cohere
length for these states and find that the coherence le
diverges as one approaches the critical momentum wh
these states become unbound.

There are several possible direction for future resea
along these lines. Of course there are many different mo
to which these methods might be applied. In particular
remains to show that the linked cluster expansion works s
essfully for two or higher-dimensional models. One wou
also like to know how to calculate other quantities associa
with multipartcle excitations, such as spectral weights, li
times, and scatteringS matrices. The latter would provide
handle on some important dynamical properties of the s
tem.
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APPENDIX: TWO-BLOCK APPROACH

There is an alternative way to perform the block diag
nalization of Sec. II A, which is almost as efficient as Ge
fand’s similarity transformation. The idea is to separate
effective Hamiltonian into onlytwo blocks, one containing
the states in the sector of interest~e.g., the one-particle state
or the two-particle states!, and the other containing all othe
states. One can prove in this two-block approach thatO(n)

determined in this way is antisymmetric with respect to t
off-diagonal blocks, andsymmetricwith respect to the diag-
onal blocks. Rather than use the complicated equation~12!,
one can then determine the diagonal blocks ofO(n) in a
much more efficient way by the orthogonality condition~5!
which can be rewritten in the following form:

$O(n)1O(n)T % i j 52 (
m51

n21

$O(m)O(n2m)T % i j ~A1!

for elements in the diagonal blocks. Thus one can dispe
with the matrixS, and work withO only.

Unfortunately, although it is more efficient, this approa
does not always seem to allow a successful cluster exp
sion. The reason for this is not understood at the pres
time.
0-12
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