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Strong-Coupling Expansions for Multiparticle Excitations: Continuum and Bound States
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We present a new linked cluster expansion for calculating properties of multiparticle excitation spectra
to high orders. We use it to obtain the two-particle spectra for systems of coupled spin-half dimers. We
find that even for weakly coupled dimers the spectrum is very rich, consisting of many bound states. The
number of bound states depends on both geometry of coupling and frustration. Many of the bound states
can only be seen by going to sufficiently high orders in the perturbation theory, showing the extended
character of the pair attraction.

PACS numbers: 75.40.Gb, 75.10.Jm, 75.50.Ee
The study of bound states, lifetimes, and spectral weights
for multiparticle excitations remains a challenging prob-
lem in many-body physics. From an experimental point
of view, a variety of probes on several low-dimensional
magnetic and strongly correlated electronic systems shows
spectral features associated with multiparticle continuum
and bound states. These features in two-magnon Raman
spectra, optical absorption spectra, photoemission, and
even in neutron scattering spectra remain poorly under-
stood. From a theoretical point of view, one of the most
intriguing issues is the role the growing number of bound
states play in the confinement-deconfinement transition in
spin-Peierls systems as the spectrum completely changes
from soliton-antisoliton continuum to triplets, their bound
states, and continuum [1]. Existing computational ap-
proaches to these problems are not adequate.

In this Letter, we present significant advances in cal-
culating multiparticle spectral properties from high-order
strong-coupling expansions. At the heart of our method
is a generalization of Gelfand’s linked cluster expansion
for single-particle excited states [2] to multiparticle states.
From a technical point of view, our most notable achieve-
ment is the development of an orthogonality transformation
which leads to a linked cluster theorem for multiparticle
states even with quantum numbers identical to the ground
state. Our method is quite distinct from the flow equation
method of Wegner [3], which has been used recently by
Knetter et al. [4] for also studying multiparticle spectral
properties, but for a more restricted class of models with
equispaced unperturbed eigenvalues.

We apply our method to systems of coupled spin-half
dimers in various one- and two-dimensional geometries.
The calculations greatly simplify when we deal with mod-
els where the ground state is known exactly to be a prod-
uct of dimers, such as the Shastry-Sutherland models in
one and two dimensions [5]. Here, we focus attention on
the one-dimensional systems. Results are presented for a
spin-ladder system, the alternating spin-chain model, and
the Shastry-Sutherland model.
0031-9007�00�85(20)�4373(4)$15.00 ©
Except for the spin-ladder model, the high-order calcu-
lations produce qualitatively unexpected results. There are
multiple bound states with S � 0, 1, and 2 even in the
weakly coupled dimer limit. The number of bound states
varies with frustration and many of them show up only
when the expansions are done to sufficiently high order.
This presumably is due to the extended range of the attrac-
tive interaction needed to see the multiple bound states.
The interval of k values where the bound states exist also
changes with the coupling of the dimers.

We begin describing our method with a Hamiltonian

H � H0 1 lH1 , (1)

where the unperturbed part H0 is exactly solvable, and l is
the perturbation parameter. The aim is to calculate pertur-
bation series in l for the eigenvalues of H and other quan-
tities of interest. As is well known [6,7], the ground-state
energy and correlation functions have a “cluster addition
property” and hence can be calculated by linked cluster
expansion.

We wish to consider the excited-state many-particle sec-
tors of the Hilbert space, where a “particle” may refer to a
lattice fermion, a spin flip, or other excitation, depending
on the model at hand. The key step is to “block diagonal-
ize” the Hamiltonian on any finite cluster to form an effec-
tive Hamiltonian, via an orthogonal transformation (here
we will consider only real Hamiltonians):

Heff � OT HO , (2)

where O � eS and S is real, antisymmetric. This transfor-
mation is constructed order by order in perturbation theory,
so that the ground state sits in a block by itself, the one-
particle states (which form a degenerate manifold under
H0, in general) form another block, the two-particle states
another block, and so on. The off-diagonal blocks of S are
determined by the requirement that the off-diagonal blocks
of Heff vanish, and we choose the diagonal blocks of S to
be zero.
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Let the matrix element of Heff between initial one-
particle state ji� and final one-particle state jj�, labeled
according to their positions on the lattice, be

E1�i, j� � �jjHeffji� . (3)

This excited-state energy is not extensive, and does not
obey the cluster addition property. However, as shown by
Gelfand [2], the “irreducible” one-particle matrix element

D1�i, j� � E1�i, j� 2 E0di,j (4)

does have the cluster addition property. Furthermore, for a
translationally invariant system, the one-particle states are
eigenstates of momentum:

jK� �
1

p
N

X
j

exp�iK ? j� jj� (5)

(where N is the number of sites in the lattice), with energy
above the ground state of

v1�K� �
X
d

D1�d� cos�K ? d� . (6)

To generalize to two-particle states, let

E2�i, j; k, l� � �k, ljHeffji, j� (7)

be the matrix element between initial two-particle state
ji, j� and final state jk, l�. To obtain a quantity obeying
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the cluster addition property, we must subtract the ground-
state energy and one-particle contributions to form the
irreducible two-particle matrix element:

D2�i, j; k, l� � E2�i, j; k, l� 2 E0�di,kdj,l 1 di,ldj,k�

2 D1�i, k�dj,l 2 D1�i, l�dj,k

2 D1�j, k�di,l 2 D1�j, l�di,k . (8)

This quantity is easily found to be zero for any cluster un-
less i, j, k, and l are all included in that cluster, and it
obeys the cluster addition property. The block diagonal-
ization ensures that two particles cannot “annihilate” from
one cluster and “reappear” on another disconnected one.
Thus the matrix elements of D2 can be expanded in terms
of connected clusters alone, which are rooted or connected
to all four positions i, j, k, and l.

Once the effective two-particle Hamiltonian is known,
we still have to solve the Schrödinger equation. Consider
for simplicity a two-particle state of identical particles, or
one symmetric under particle exchange. Then expand the
two-particle eigenstate

jc� �
X
i.j

fijji, j�, fij � fji , (9)

and the Schrödinger equation takes the form
�E 2 E0�fij 2
X
k

�D1�k, i�fkj 1 D1�k, j�fik� �
1
2

X
k,l

D2�k, l; i, j�fkl 2 D1�j, i�fjj 2 D1�i, j�fii, all i, j. (10)

The fictitious amplitudes fii are defined by these equations [8], and are introduced to simplify the Fourier transform.
Defining the center-of-mass momentum K and the relative momentum q, this can be turned into an integral equation:∑

E 2 E0 2 2
X
d

D1�d� cos�K ? d�2� cos�q ? d�
∏
f�K, q�

�
1
N

X
q0

f�K, q0�
∑

1
2

X
r,d1,d2

D2�r, d1,d2� cos�K ? r� cos�q ? d1� 3 cos�q0 ? d2� 2 2
X
d

D1�d� cos�K ? d�2� cos�q ? d�
∏

,

(11)
which can be solved by standard numerical techniques like
discretization. The spectrum of the discretized Hamilto-
nian can be obtained by diagonalization. In this way the
spectrum and even the two-particle density of states can be
obtained. The continuum is limited by the the maximum
(minimum) of the energy of two single-particle excitations
whose combined momentum is the center-of-mass momen-
tum, which serves as an independent check.

We have used this method to investigate the low-energy
excitation spectrum of the two-leg spin- 1

2 Heisenberg
ladder

H �
X

i

�JSi ? Si11 1 JS0
i ? S0

i11 1 J�Si ? S0
i� , (12)

where the interactions along the ladder (J) and along the
rungs (J�) are assumed to be antiferromagnetic.

For J�J� , `, the ground state of this model evolves
smoothly from a product of singlet states along the rungs
of the ladder and has a gapped excitation spectrum [9–11].
The occurrence of two-particle bound states in this model
has been shown by first-order strong-coupling expansions
[12,13] as well as a leading order calculation using the
analytic Brueckner approach [14,15].

Starting from the dimerized ground state we have calcu-
lated series in J�J� for D2 up to order 7 for singlet states,
and to order 12 for triplet and quintet states [16]. Figure 1
shows the generic shape of the two-particle continuum as
well as the low-lying massive excitations. Beside the ele-
mentary triplet excitation the spectrum shows additional
singlet (S � 0) and triplet (S � 1) excitations which are
bound states of two elementary triplets. In the vicinity of
K � p there is also an S � 2 antibound state above the
continuum. At J�J� � 1�2, we find the binding energy
for the singlet bound state at K � p is Eb�J� � 0.51,
substantially larger than the value 0.35 obtained in [15].

Further, we have studied the occurrence of bound states
in the alternating Heisenberg chain,
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FIG. 1. Low-energy excitation spectrum of the Heisenberg
spin ladder for J�J� � 1�2. Beside the two-particle continuum
(gray shaded) and the elementary triplet excitation (dotted line)
there are three massive quasiparticles: a singlet bound state
(solid line), a triplet bound state (dashed line), and a quintet
antibound state (dash-dotted line).

H � J
X

i

����1 1 �21�id���Si ? Si11 1 aSi ? Si12� , (13)

where the Si are again spin- 1
2 operators at site i, a

parametrizes a next-nearest-neighbor coupling, and d is
the alternating dimerization.

The two-particle excitations have been discussed in
leading order calculations in [17–20]. With our new tech-
nique, we perform high-order series expansions in powers
of l 	 �1 2 d���1 1 d�. Here we will concentrate only
on the expansions for the following two cases:

(1) a � 0, that is, without the second neighbor interac-
tion. The series for D2 has been computed up to order 6
for singlet bound states, and to order 11 for triplet and
quintet states. Here we find two singlet, S1 and S2, and
two triplet, T1 and T2, bound states below the two-particle
continuum. The binding energy of these bound states ver-
sus momentum K is given in Fig. 2 for a rather large dimer-
ization d � 0.6. The singlet S1 exists for the whole range
of momenta, while the triplet T1 exists only in a limited
range of momenta, and the singlet S2 and triplet T2 bound
states occur for momenta in the vicinity of the band maxi-
mum at K � p�2. The existence of the second pair of
bound states has not been reported by previous calcula-
tions, most likely due to a limited precision or a general
incapability to deal with multiple bound states. The bind-
ing energy at K � p�2 versus dimerization d is plotted in
Fig. 3. In the limit l ! 0, the binding energies for S1 and
T1 are proportional to l, as expected, since the formation
of these bound states is due to the attraction of two triplets
on neighboring sites. For S2 and T2, we find their binding
energies are proportional to l2. This means that there is
a strong enough effective attraction between two triplets
separated by a singlet dimer to form those bound states.

(2) a � �1 2 d��2, that is, the expansion is along the
disorder line where the ground states are known exactly.
FIG. 2. The binding energy Eb for two singlet (S1 and S2)
and two triplet (T1 and T2) bound states versus momentum K
for the J1 2 J2 2 d chain with d � 0.6 and a � 0. The inset
enlarges the region near K � p�2.

The series for D2 has been computed up to order l19 for
two-particle singlet, triplet, and quintet states. The two-
particle excitation spectrum for d � 0.4 is shown in Fig. 4.
Here we find that there are three singlet and three triplet
bound states below the two-particle continuum, and two
quintet antibound states above the continuum. The energy
gap at K � p�2 for one of the singlet bound states, S1, is
1 1 3d exactly. In the limit l ! 0, the binding energies
for Sn and Tn (n � 1, 2) are of order ln, just as for a � 0,
but that for S3 and T3 are at most of order l4. This cal-
culation demonstrates the power of the method in bringing
out the complex character of the pair attraction in the frus-
trated model.

In conclusion, we have demonstrated a new powerful ap-
proach to calculate high-order series expansion for quan-
tum lattice models. The application to the Heisenberg

FIG. 3. The scaled binding energy fEb at K � p�2 versus
dimerization d for two singlet (S1 and S2) and two triplet (T1
and T2) states of the J1 2 J2 2 d chain with a � 0, where f
is a scale factor.
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FIG. 4. The excitation spectrum of the J1 2 J2 2 d chain for
d � 0.4 and a � �1 2 d��2. Beside the two-particle contin-
uum (gray shaded), there are three singlet bound states (S1, S2,
and S3), three triplet bound states (T1, T2, and T3), and two quin-
tet antibound states (Q1 and Q2). The inset enlarges the region
near K � p�2 so we can see S3 and T3 below the continuum.

spin ladder and the alternating Heisenberg chain yields
a precise determination of the low-lying excitation spec-
tra of these models. For the alternating Heisenberg chain
it was shown that there are multiple massive singlet and
triplet excitations below the continuum, which depend on
frustration.

This work was initiated at the Quantum Magnetism pro-
gram at the ITP at UC Santa Barbara which is supported
by U.S. National Science Foundation Grant No. PHY94-
07194. S. T. gratefully acknowledges support by the Ger-
man National Merit Foundation and Bell Labs, Lucent
Technologies. H. M. wishes to thank the Yukawa Insti-
tute for Theoretical Physics for hospitality. The work of
Z. W. and C. J. H. was supported by a grant from the Aus-
tralian Research Council: they thank the New South Wales
Centre for Parallel Computing for facilities and assistance
4376
with the calculations. R. R. P. S. is supported in part by
NSF Grant No. DMR-9986948.

*Present address: Bell Labs, Lucent Technologies, Murray
Hill, NJ 07974.

†Email address: c.hamer@unsw.edu.au
‡Email address: w.zheng@unsw.edu.au

[1] I. Affleck, in Dynamical Properties of Unconventional
Magnetic Systems, NATO ASI (Geilo, Norway, 1997).

[2] M. P. Gelfand, Solid State Commun. 98, 11 (1996).
[3] F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994); C. Knetter

and G. S. Uhrig, Eur. Phys. J. B 13, 209 (2000).
[4] C. Knetter, A. Bühler, E. Müller-Hartmann, and G. S.

Uhrig, Phys. Rev. Lett. 85, 3958 (2000).
[5] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964

(1981).
[6] H-X. He, C. J. Hamer, and J. Oitmaa, J. Phys. A 23, 1775

(1990).
[7] M. P. Gelfand, R. R. P. Singh, and D. A. Huse, J. Stat. Phys.

59, 1093 (1990).
[8] D. C. Mattis, The Theory of Magnetism I (Springer-Verlag,

New York, 1981), p. 146.
[9] S. Gopalan, T. M. Rice, and M. Sigrist, Phys. Rev. B 49,

8901 (1994).
[10] J. Oitmaa, R. R. P. Singh, and W. H. Zheng, Phys. Rev. B

54, 1009 (1996).
[11] R. Eder, Phys. Rev. B 57, 12 832 (1998).
[12] K. Damle and S. Sachdev, Phys. Rev. B 57, 8307 (1998).
[13] C. Jurecka and W. Brenig, Phys. Rev. B 61, 14 307 (2000).
[14] O. P. Sushkov and V. N. Kotov, Phys. Rev. Lett. 81, 1941

(1998).
[15] V. N. Kotov, O. P. Sushkov, and R. Eder, Phys. Rev. B 59,

6266 (1999).
[16] Explicit results for all series and the data of the figures are

available electronically at http://www.phys.unsw.edu.au/
~zwh.

[17] G. S. Uhrig and H. J. Schulz, Phys. Rev. B 54, 9624 (1996).
[18] G. Bouzerar, A. P. Kampf and G. I. Japaridze, Phys.

Rev. B 58, 3117 (1998).
[19] P. V. Shevchenko, V. N. Kotov, and O. P. Sushkov, Phys.

Rev. B 60, 3305 (1999).
[20] T. Barnes, J. Riera, and D. A. Tennant, Phys. Rev. B 59,

11 384 (1999).


