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Abstract. The numerical simulation of strongly first-order phase transitions
has remained a notoriously difficult problem even for classical systems due to
the exponentially suppressed (thermal) equilibration in the vicinity of such a
transition. In the absence of efficient update techniques, a common approach for
improving equilibration in Monte Carlo simulations is broadening the sampled
statistical ensemble beyond the bimodal distribution of the canonical ensemble.
Here we show how a recently developed feedback algorithm can systematically
optimize such broad-histogram ensembles and significantly speed up equilibration
in comparison with other extended ensemble techniques such as flat-histogram,
multicanonical and Wang–Landau sampling. We simulate, as a prototypical
example of a strong first-order transition, the two-dimensional Potts model with
up to Q = 250 different states in large systems. The optimized histogram develops
a distinct multi-peak structure, thereby resolving entropic barriers and their
associated phase transitions in the phase coexistence region—such as droplet
nucleation and annihilation, and droplet–strip transitions for systems with
periodic boundary conditions. We characterize the efficiency of the optimized
histogram sampling by measuring round-trip times τ(N,Q) across the phase
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transition for samples comprised of N spins. While we find power-law scaling
of τ versus N for small Q � 50 and N � 402, we observe a crossover to
exponential scaling for larger Q. These results demonstrate that despite the
ensemble optimization, broad-histogram simulations cannot fully eliminate the
supercritical slowing down at strongly first-order transitions.
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1. Introduction

Competing phases or interactions in many-particle systems can give rise to complex free
energy landscapes that exhibit multiple local minima and maxima, as sketched in figure 1.
Thermal equilibration in these systems slows down exceedingly due to the (exponential)
suppression of tunneling across free energy barriers. Examples of such slowly equilibrating
systems can be found in various settings ranging from spin glasses to folded proteins.

Numerical approaches to simulate these systems in thermal equilibrium suffer from
the same slowing down when based on variational techniques or conventional Monte Carlo
sampling. To overcome this bottleneck various alternative sampling approaches have
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been developed in recent years. Most of these approaches, which include multicanonical
sampling [1, 2], broad-histogram sampling [3], parallel tempering [4]–[6], multiple Gaussian
modified ensemble [7], and Wang–Landau sampling [8, 9], can be broadly grouped as
extended ensemble techniques. Their common goal is to sample a statistical ensemble that
allows to significantly broaden the range of sampled energies beyond the comparatively
narrow distribution of the canonical ensemble.

The Wang–Landau algorithm tries to bring the idea of a broad sampling to an
extreme by sampling a flat histogram in energy space. However, it was soon realized
that sampling a uniform energy distribution is not necessarily the optimal way to improve
equilibration and reduce autocorrelation times [10]–[12]. Instead it turns out that in order
to (considerably) speed up equilibration and minimize autocorrelation times one should
sample a non-uniform energy distribution that allocates more statistical weight to the
bottleneck(s) of the simulation which typically coincide with the free energy barriers [13].
These so-called optimized ensembles are tailored to a given physical system and directly
reflect the underlying free energy landscape. One can systematically obtain the optimized
statistical ensemble from an initial broad-histogram distribution by applying a feedback
algorithm [13] that reallocates statistical weight based on measurements of the (local)
diffusivity of the random walk which the system performs in energy space during the
simulation. This ensemble optimization has been applied in a broad variety of physical
systems suffering from long thermal equilibration times in the absence of efficient non-
local updates including folded proteins [14]–[17], frustrated magnetic systems [18, 19],
and dense liquids [20]. The technique has further been generalized to optimize the
grid of temperature points used in parallel tempering simulations [21], has been used
in combination with cluster updates [22] and has been adopted for the simulation of
quantum systems [23, 24].

In this manuscript, we apply and analyze the ensemble optimization technique in
the context of a strong first-order phase transition where the characteristic double-
well structure of the free energy provides a generic situation for entropically suppressed
equilibration. In particular, we consider the thermal phase transition of the Q-state Potts
model in the limit of large Q, with our calculations being performed for up to Q = 250
states. We find that the optimized ensemble aims to overcome the entropic barrier(s)
of this transition by allocating most of the statistical weight in the energy range that
corresponds to phase coexistence, e.g. the suppressed energy region of the characteristic
bimodal distribution of the canonical ensemble. Remarkably, a multi-peak structure
evolves in the optimized histogram that clearly resolves various intermediate transitions
between metastable states, such as droplet formation and droplet–strip transitions.

The remainder of the manuscript is structured as follows: we will first provide a brief
review of the ensemble optimization technique in section 2. In the subsequent section 3 we
turn to the large-Q Potts model and discuss the multiple distinct features of the optimized
broad-histogram distribution. We conclude our analysis by measuring the performance of
the optimized ensemble technique in section 4.

2. Optimized ensembles

We start our discussion of the ensemble optimization technique by first offering a broader
view on Monte Carlo sampling and statistical ensembles. We then briefly review the
derivation of the optimized ensembles and a related feedback algorithm.
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2.1. Monte Carlo sampling and statistical ensembles

Speaking in broader terms one might take the perspective that the idea underlying Monte
Carlo sampling is to map a random walk in some high-dimensional space of configurations
{ci}

c1 → c2 → · · · → ci → ci+1 → · · ·
onto a random walk in a lower-dimensional space, such as energy space (which is a one-
dimensional space)

E(c1) → E(c2) → · · · → E(ci) → E(ci+1) → · · ·
and to define a statistical ensemble in this latter low-dimensional space which then
determines the transition probabilities between configurations in the original high-
dimensional space. In particular, the statistical ensemble assigns a statistical weight w(c)
to a configuration c solely on the basis of the respective energy E(c) of that configuration

w(c) ≡ w(E(c)).

The most commonly used statistical ensemble, of course, is the canonical ensemble, where
the statistical weights are defined as

w(c) = exp (−βE(c)).

In order to simulate a reversible Markov process in configuration space one then defines
transition probabilities from configuration c to c̃ such that detailed balance is fulfilled.
Common choices for these transition probabilities are Metropolis weights

pMetropolis(c → c̃) = min

(
1,

w(c̃)

w(c)

)
≡ min

(
1,

w(E(c̃))

w(E(c))

)
,

or heat bath weights

pheat−bath(c → c̃) =
w(c̃)

w(c̃) + w(c)
≡ w(E(c̃))

w(E(c̃)) + w(E(c))
.

While these choices of transition probabilities indeed ensure that the random walk in
configuration space is Markovian, it should be noted that the projected random walk
in energy space is not Markovian. This becomes clear when considering that multiple
configurations may have the same energy E, whereas the distribution of energies that can
be reached by a single update may be completely different for each of these configurations.
Thus, there is additional information encoded in configuration space which is not captured
by E, and it is this ‘memory’ which makes the projected random walk in energy space
non-Markovian.

2.2. Non-uniform diffusivity and optimized histograms

The random walk in energy space has another distinct feature: the (local) diffusivity of
this random walk, which for a given energy level measures the ability of the random walker
to move to other energy levels, is not uniform in energy space. In fact, it is exactly this
modulation of the local diffusivity which reflects the roughness of the underlying energy
landscape. A suppressed diffusivity signals a ‘bottleneck’ of the simulation and is typically
associated with a phase transition or other entropic barrier.
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This modulation of the local diffusivity thus differentiates the various energy regimes
for a given system, and in this light it becomes clear that one shortcoming of flat-
histogram techniques is that they use a uniform distribution of statistical weight across
these inherently different energy regimes. In contrast the optimized ensemble method
allocates statistical weight based on measurements of the local diffusivity and shifts
additional statistical weight towards the bottleneck(s) of the simulation, e.g. those energy
regimes with a suppressed local diffusivity. As a result the so-optimized random walk in
energy space will sample a non-uniform histogram, spend more time in energy regimes
with low diffusivity, and thereby do its best to suppress the bottlenecks associated with
the underlying free energy landscape.

In more technical terms, we consider a random walk in some energy range [E−, E+]
between two extremal energies E− and E+. In this paper we sample the entire energy
range, so E− and E+ are, respectively, the lowest and highest energies that our model has.
The random walkers in energy space will drift between these two extremal energies and
we can think of the overall random walk as being composed of two opposite steady-state
‘currents’ between these two extremal energies. These two currents exactly compensate
one another, as the system remains in equilibrium, and are independent of energy. We
can express these currents as

j = D(E)H(E)
df

dE
, (1)

where D(E) is the local diffusivity in energy space, H(E) is the sampled energy histogram
and f(E) defines the orientation of the current by measuring for a given energy the
fraction of random walkers which have last visited one of the two extremal energies, say,
the lower extremal energy E−. This latter fraction can be measured by recording two
histograms, H+(E) and H−(E), where, for each Monte Carlo step, one increments the
histogram with label ‘+’ or ‘−’ depending on which extremal energy the random walker
has visited last. The two histograms H+(E) and H−(E) thus sum up to the total histogram
H(E) = H+(E) + H−(E). The fraction f(E) is then given by f(E) = H−(E)/H(E).

In order to speed up equilibration one wants to maximize the current (1) between the
two extremal energies. Varying the histogram H(E) this can be achieved [13] by sampling
a non-uniform distribution

Hopt(E) ∝ 1√
D(E)

(2)

that is inversely proportional to the square root of the local diffusivity D(E) and thus
reallocates statistical weight to those energy levels with suppressed diffusivity.

2.3. The feedback algorithm

In order to sample the optimized ensemble (2) we apply the feedback algorithm outlined
in [13]. We start from an initial broad-histogram ensemble with statistical weights w(E)
which we obtain from a few iterations of the Wang–Landau algorithm or by extrapolating
results from smaller system sizes. Running a (short) simulation for this initial ensemble
we record the two histograms H+(E) and H−(E) introduced above which in turn allow
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us to calculate the local diffusivity as

D(E) ∝
(

H(E)
df

dE

)−1

. (3)

We then refine the statistical weights by feeding back this local diffusivity and define new
optimized weights as

wopt(E) = w(E)

√
1

H(E)

df

dE
. (4)

Subsequent simulations are performed for this new set of statistical weights. To further
improve and eventually converge the statistical weights for the optimized ensemble we
repeat the feedback procedure several times. Note that in order to ensure convergence
the number of Monte Carlo steps between subsequent feedback iterations needs to be
increased; we typically double the number of Monte Carlo steps for consecutive runs.

2.4. Improving the first feedback step

There is a certain trade-off in performing the early feedback steps in the algorithm outlined
above: on the one hand, an early feedback after only a small number of Monte Carlo
sweeps appears advantageous as it may quickly give dramatically improved statistical
weights and thereby speed up all subsequent simulations. On the other hand, the quality
of the feedback is rather sensitive to noisy input data, especially in calculating the
numerical derivative df/dE used in the feedback. To minimize this trade-off one thus
needs a way to quickly estimate this latter derivative in the presence of (substantial)
noise. Conventional approaches such as finite-difference formulae, however, turn out
to be exquisitely sensitive to the noise in the recorded histograms H+(E) and H−(E).
In particular, the measured fraction f(E) = H−(E)/H(E) is a monotonically decaying
function only when the simulation is in equilibrium in the simulated statistical ensemble
which for a suboptimal choice, such as the flat-histogram ensemble, may require rather
long Monte Carlo runs.

We have therefore developed a scheme that allows for the estimation of the derivative
in the presence of significant noise. The idea is to analyze the measured fraction f(E) in
Fourier space, truncate the high-frequency terms which can be associated with noise, and
then determine the derivative using the low-frequency terms only. In doing so, we make
use of the fact that for a continuous Fourier transformation

f̃(ω) =
1√
2π

∫ ∞

−∞
e−iωEf(E) dE,

the derivative of the original function f(E)

∂̃Ef(E) =
1√
2π

∫ ∞

−∞
iω · eiωE f̃(ω) dω (5)

can be easily calculated in Fourier space and then transformed back.
In implementing this idea one needs to work around several obstacles. First, in

order to avoid irrelevant boundary terms, the function to be analyzed using the Fourier
transformation should be periodic. We therefore concatenate f(E) with its reflection.
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Secondly, the above relation strictly holds only for the continuous Fourier transformation.
As the energy levels of the Potts model and, in general, the energy bins of a broad-
histogram simulation are discrete, we need to work with a discrete Fourier transformation.
To overcome errors introduced by this, we make use of the following iterative scheme which
refines the calculated derivative by iteratively reducing the deviation between the integral
of the approximated derivative and the original function:

δf 1 = ∂̃Ef(E)

δf 2 = δf 1 + ∂̃E

(
f(E) −

∫
δf 1 dE

)
. . .

δf i+1 = δf i + ∂̃E

(
f(E) −

∫
δf i dE

)

Here, ∂̃E denotes the approximate derivative using the Fourier-based scheme above. The
scheme is iterated until the norm of the correction term falls below a certain threshold.

3. The large-Q Potts model

The two-dimensional Q-state Potts model is well known [25] to undergo a thermal phase
transition which turns from continuous for small Q ≤ 4 to weakly first order for Q > 4 and
eventually becomes a strong first-order transition for Q � 5. We will turn to this latter
case of a strong first-order transition in systems with up to Q = 250 different Potts states
to explore the extent to which the optimized ensemble algorithm can achieve equilibration
at such a transition.

The Hamiltonian of the Q-state Potts model is given in terms of spins σi which take
discrete values σi ∈ {1, . . . , Q} as

H = −
∑
〈i,j〉

δ (σi, σj) . (6)

Here the sum runs over all pairs of nearest neighbors on a square lattice, and the Kronecker
δ-function tests whether two Potts spins have the same values. We have run simulations for
two sample geometries: a ‘toroidal geometry’, i.e. a square lattice with periodic boundary
conditions, and a ‘cube geometry’ by forming a cube with square lattices on each of its
six faces.

We will start our discussion by briefly mentioning both exact and numerical results
for thermodynamic properties of the Potts model in this large, but finite Q limit. We
will then turn to the energy regime associated with phase coexistence at this first-order
phase transition and examine the various intermediate, metastable states such as droplets
or strips which occur in this regime. In particular, we will discuss a distinct multi-peak
structure which emerges in the optimized histogram distribution and show how these
features can be linked to transitions between the various metastable states.

3.1. Thermodynamic properties

The thermal phase transition in the Q-state Potts model from a disordered phase at high
temperatures to an ordered phase at low temperatures occurs at a transition temperature
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Figure 1. Sketch of the free energy landscape in phase space for a slowly
equilibrating system.

T ∗ which for the infinite system is found [25] to be

T ∗ =
1

ln(1 +
√

Q)
. (7)

This phase transition is accompanied by sharp features in various thermodynamic
properties such as the energy, the specific heat, the free energy and the entropy. Since the
optimized ensemble algorithm allows to directly calculate the density of states g(E), we
can readily compute all of these thermodynamic variables. Our results are summarized
in figure 2 for simulations with Q = 10, 50, 250 states, where we have rescaled the
temperature axis by the transition temperature T ∗ in the thermodynamic limit. As
expected, the features associated with the phase transition sharpen as we increase the
number of Potts states Q for a system of fixed size L. For instance, the discontinuous
jump in the energy grows with increasing Q and U(T ) approaches a step function in the
limit of Q → ∞. It is this broadening energy regime within the discontinuous jump of
the energy that is associated with phase coexistence and the occurrence of intermediate,
metastable states as we will discuss in detail below.

3.2. Phase coexistence and metastable states

The distinct characteristic of a first-order phase transition is a free energy profile that
passes through a double-well shape as one drives the transition with some external
parameter such as temperature. At the transition temperature the two minima of the
free energy are exactly equal leading to coexistence of the two phases. For the high-Q
Potts model at hand there is a considerable amount of latent heat associated with this
transition, i.e. the internal energies of the two phases in proximity to this phase transition
vastly differ as shown in figure 2(a). As the system goes from one phase to the other
this latent heat is not released (or absorbed) in a single step, but the system undergoes
a sequence of phase transitions between various metastable states which are not minima
of the free energy in thermal equilibrium, but correspond to states with intermediate
internal energies. One such metastable state is a droplet of one phase inside the other
phase. Since the free energy density of the two phases becomes arbitrarily close in the
vicinity of the transition, the free energy cost of forming a droplet is due to the surface of
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Figure 2. Thermodynamic properties of the Q-state Potts model in the large,
but finite Q limit: (a) internal energy, (b) specific heat, (c) free energy, and
(d) entropy. The temperature axis is rescaled by the transition temperature
T ∗ = 1/ ln (1 +

√
Q). Data shown is for system size L = 22 with periodic

boundary conditions.

the droplet, and not to its volume. It is thus entropically favorable to nucleate and grow a
single droplet of a shape that minimizes its surface free energy. This droplet condensation
transition has recently been studied in detail for a variety of physical systems using both
numerical [10], [26]–[28] and analytical [29]–[33] approaches.

For a torus geometry, e.g. a system with periodic boundary conditions, this droplet
will subsequently expand as the total energy is changed until it percolates and it becomes
entropically more favorable to form a strip wrapping around one of the boundaries. As this
strip further grows the role of the two phases will eventually be reversed and the system
will undergo a second sequence going from a strip to a droplet and eventually annihilate
the remaining droplet to complete the phase transition from one phase to the other. This
transition was first discussed for the Ising model in an external magnetic field by Leung
and Zia [34] and studied in detail by Neuhaus and Hager [10] using multicanonical Monte
Carlo sampling. The droplet nucleation and droplet–strip transitions were also observed
for the Potts model with Q = 10 and system sizes of up to 1024 × 1024 spins using a
microcanonical approach [35].

We show representative snapshots of spin configurations reflecting these metastable
states in figure 3. All snapshots have been taken from our numerical simulations of the
250-state Potts model.
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Figure 3. Snapshots of spin configurations in the phase coexistence region of the
250-state Potts model. (a) Formation of several small ordered droplets within the
disordered phase. (b) A dominant droplet is formed. (c) The droplet percolates to
a strip wrapping around one boundary. (d) A single disordered droplet remains in
the ordered phase. All data shown is for system size L = 20. (a) E/2N = −0.20,
(b) E/2N = −0.35, (c) E/2N = −0.54, (d) E/2N = −0.87.

3.3. Droplet nucleation and droplet–strip transition

For the toroidal system we can thus distinguish four intermediate transitions taking place
‘within’ a first-order transition: the nucleation of a dominant droplet (which might occur
via the condensation of multiple small droplets), a droplet to strip transition and two more
processes where the roles of the two phases are reversed. These intermediate transitions
occur at energies that are within the discontinuous jump of the internal energy U(T )
plotted in figure 3(a) and are therefore not equilibrium energies at any temperature. For
the canonical ensemble the states at these intermediate transitions are strongly suppressed,
with its characteristic bimodal distribution of sampled energies as shown in the bottom
panel of figure 4.

3.3.1. Multi-peak structure. In sharp contrast to the canonical ensemble the feedback
algorithm of section 2 reallocates significant statistical weight to the energy range
located within the double-peak structure of the canonical distribution corresponding
to the discontinuous jump of the internal energy. Strikingly, we find the emergence
of a distinct multi-peak structure in this energy range as shown in the top panel of
figure 4. The emergent peaks resolve precisely the four intermediate transitions discussed
above. We come to this identification, as given in figure 4, by (i) comparing the
energies of typical configuration snapshots as shown in figure 3 with the locations of
these peaks, (ii) estimating the transition energies of the droplet–strip transitions as
discussed in section 3.3.2 and (iii) calculating order parameters for the droplet–strip
transitions as detailed in section 3.3.3. The redistribution of statistical weight in this
multi-peak structure also reveals that these transitions between metastable states are of
different severity. With the histogram peaks corresponding to the droplet–strip transitions
being much more pronounced than those corresponding to droplet nucleations we can
conclude that the entropic barriers associated with the former transitions are significantly
larger than those associated with the latter transitions. Another observation regarding
this emerging multi-peak structure is that the histogram distribution is not perfectly
symmetric with respect to the ordered/disordered phases. For instance, the difference of
the two smaller peaks reflects that droplet formation in the disordered phase is associated
with a larger entropic barrier than droplet formation in the ordered phase.
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Figure 4. Histograms of the optimized ensemble (top panel) and the canonical
ensemble at the transition temperature T ∗ (bottom panel) for the 250-state
Potts model with L = 22 and toroidal geometry. In contrast to the bimodal
distribution of the canonical ensemble the histogram of the optimized ensemble
reveals a distinct four-peak structure reflecting the transitions between the
various metastable states in the phase coexistence region.

These characteristic features of the multi-peak structure further evolve as we vary
the strength of the underlying first-order transition by increasing the number of Potts
states Q or the system size L as shown in figures 5 and 6, respectively. With increasing
the number of Potts states Q we find the droplet–strip transitions to attract considerably
more statistical weight than the droplet formation transitions. In particular, the histogram
peaks associated with the droplet–strip transitions seem to diverge with increasing Q,
while the histogram peaks associated with the droplet formation transitions appear to
converge to a finite height while sharpening with increasing Q, see figure 5. Similarly, we
find that increasing the system size L increases the peaks associated with the droplet–strip
transitions more strongly than those associated with the formation of a droplet, as shown
in figure 6.

3.3.2. Location of droplet–strip transitions. We can estimate the location of the
intermediate droplet–strip transitions more quantitatively by estimating the interface
length of the droplet/strip on either side of the transition. Making such an estimate for
the droplet, however, requires knowledge of its rough shape. The latter depends on the
anisotropy of the surface tension and to some extent the geometry of the system. For the
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Figure 5. Optimized histograms for increasing number of Potts states Q and fixed
system size L = 22 with toroidal geometry. While the histogram peaks in the
emerging multi-peak structure seem to diverge with increasing Q for intermediate
energies and associated with the droplet–strip transitions, the histogram peaks
associated with droplet formations appear to converge. The plotted energy range
corresponds to the coexistence region defined in equation (11).

Figure 6. Optimized histogram for increasing system size L and fixed number of
Potts states Q = 50. Similar to figure 5 the peaks associated with the droplet–
strip transitions proliferate more strongly with increasing system size than those
associated with droplet formation. The plotted energy range corresponds to the
coexistence region defined in equation (11).
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Potts model, the surface tension and consequently the equilibrium droplet shape have been
calculated analytically for a droplet of fixed size embedded in an infinite volume [36, 37]; for
finite systems, Billoire et al [38] have estimated the surface tension based on multicanonical
simulations of the canonical probability density for mixed-phase states. In the limit of
large Q, which we consider here, the surface tension σ is found to become isotropic and
the droplet shape is expected to be roughly circular. The location of the droplet–strip
transition can then be estimated by identifying the radius of the droplet R for which the
surface free energy of the droplet, Fdroplet = 2πσR, becomes equal to the surface free
energy of the strip, Fstrip = 2σL. The transition is therefore expected to take place at
R = L/π. At this transition point, the droplet occupies area πR2 = L2/π and thus a
fraction 1/π of the total area of the sample. We can estimate the total energy of a given
domain pattern as a sum of the contributions from the domains and the interfaces. For
the example of an ordered droplet of radius R in a disordered background we have

E = (L2 − πR2)edis(T ) + πR2eord(T ) + 2πReσ. (8)

This configuration, by local stability of the curved interface, is at a temperature T that
is below the transition temperature T ∗ by an amount proportional to the curvature 1/R
of the interface. At that temperature, the energy densities of the two phases are eord(T )
and edis(T ), while eσ is the excess energy per unit length in the interface.

Simplifying this expression by keeping only the contributions that are proportional to
the areas of the domains, we obtain that the transition energies of the two droplet–strip
transitions can be approximated as

E∗
droplet−strip,1 = −1

π
, (9)

E∗
droplet−strip,2 = −1 +

1

π
, (10)

where these energies are given relative to the size of the coexistence region, e.g. the width
of the jump of the internal energy plotted in figure 3(a). In the following, we rescale
energies such that the energy of the ordered phase Eord(T

∗) is mapped to −1 at the
transition temperature T ∗ and the energy of the disordered phase Edis(T

∗) becomes 0:

E∗ =
E − Eord(T

∗)
Edis(T ∗) − Eord(T ∗)

− 1. (11)

To rescale our numerical results we use the exactly known energy densities of the two
phases at the transition temperature T ∗ in the thermodynamic limit.

We have indicated the so-estimated locations of the two droplet–strip transitions by
the vertical bars in figures 5 and 6. Indeed, the respective histogram peaks associated
with these transitions seem to converge to these locations in the limit of large Q and L.
In more quantitative terms, the energy of the interface moves E∗ at the transitions to a
higher energy by an amount proportional to 1/L. The small shift in T due to the curvature
of the interface of the droplet also moves E∗ at the transition by amount proportional
(ignoring logs) to 1/(L

√
Q) at large Q; this latter effect is of the same sign at the lower

energy droplet–strip transition, where the system is slightly ‘superheated’. The trends
with increasing Q and L at this lower transition can be clearly seen in figures 5 and 6,
respectively. At the higher energy droplet–strip transition the two 1/L finite-size effects
are of opposite signs, so the peak in the histograms stays closer to E∗ = −1/π.
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At the energies of these droplet–strip transitions, the two configurations (droplet and
strip) have the same entropy. However for the system to make a transition between these
two configurations, it must increase the amount of interface by an amount proportional
to L. The entropy deficit per unit length in the interface is proportional to log Q at large
Q, so the entropy barriers at these transitions are proportional to L log Q.

3.3.3. Order parameter for the droplet–strip transition. An alternative approach to locate
and further describe the droplet–strip transition is to define an order parameter for this
transition. In doing so we follow an idea of Neuhaus and Hager [10] and measure the
existence of a strip by measuring the dimensions L1, L2 of the minimal bounding box for
the largest droplet in the system

Odis/ord = δ(L − max(L
dis/ord
1 , L

dis/ord
2 )), (12)

where the index ‘dis/ord’ distinguishes whether the phase in the droplet corresponds to
the disordered or ordered phase, respectively. When the droplet percolates and a strip is
formed, one dimension of the bounding box becomes equal to the system size L and the
order parameter jumps from 0 to 1. Furthermore, we can associate a susceptibility with
this order parameter,

χO = 〈O2〉 − 〈O〉2 = 〈O〉 − 〈O〉2 ∈ [0, 1/4], (13)

which we expect to proliferate at the droplet–strip transition. Comparing the divergence
of this susceptibility with the respective intermediate peaks forming in the optimized
histogram, we find that they coincide not only in location, but also their respective shapes
as shown in figure 7. The latter illustrates that the entropic barriers at this intermediate
transition which the optimized ensemble overcomes by shifting statistical weight towards
this transition arise solely from percolating a droplet into a strip.

3.3.4. Droplet anisotropy. Finally, we return to the droplet anisotropy and estimate
corrections to the circular shape induced by the finite size of our system. To this end
we monitor the anisotropy of the droplet by measuring the ratio of the dimensions L1, L2

of the minimal bounding box for the largest (ordered) droplet in the system

a =
max(L1, L2)

min(L1, L2)
. (14)

In this notation a spherical droplet corresponds to a = 1.
In figure 8 we plot this anisotropy for the largest ordered droplet measured for

energies in the phase coexistence region. At the droplet–strip transitions—indicated by
the vertical bars in the figure—the droplet anisotropy undergoes rapid changes as the
droplet percolates and deforms into a strip. For energies above the upper droplet–strip
transition we find that the droplet anisotropy deviates from unity which indicates that the
ordered droplet in an otherwise disordered phase exhibits an non-spherical rather than
a spherical shape. Since the analytical calculation for a droplet embedded in an infinite
system predicts a roughly spherical shape [37], the observed anisotropy must be rooted in
the finite size of our system. Interestingly, we also seem to observe a signature indicating
the droplet formation with the droplet anisotropy suddenly increasing from a ≈ 1.25 to
a ≈ 1.5 in the respective energy region.
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Figure 7. Optimized histogram and susceptibilities for the droplet percolation
order parameters. The lower susceptibility peak has been rescaled to match the
height of the peak in the optimized histogram. Data shown is for a 250-state
Potts model and system size L = 24.

3.4. Simulations on the cube surface

Since the droplet–strip transition causes the main bottleneck for simulations in a toroidal
geometry, one could ask whether simulations on other surface topologies, in particular
on simply connected surfaces, do not suffer from entropic barriers originating from such
shape transitions. In order to explore this idea we have simulated the Potts model in a
‘sphere topology’ by considering the surface of a cube. We assemble such a cube surface
with L sites on each edge and a total number of sites N = 6L2 − 12L + 8 such that the
corners have coordination number z = 3, while all other sites have coordination number
z = 4.

Figure 9 shows results for the optimized histograms for the Potts model on such a
cube surface. In panel (a), histograms for fixed Q = 250 and L in the range L = 6, . . . , 16
are shown, while in panel (b), the system size is fixed at L = 10 and simulations are
shown for various Q = 10, . . . , 250. As opposed to the simulations on the torus, the peaks
corresponding to droplet nucleation/evaporation are now dominating the histogram for
these parameters.

However, for the largest systems with Q = 250 and L ≥ 14 (N ≥ 1016 spins) spins,
four smaller peaks emerge. Examining snapshots of the system in the associated energy
ranges, we find that droplets nucleate around corners of the cube and the transitions
mark a change in the number of occupied corners. A similar observation has been made
previously for multicanonical simulations of the Ising model in an external field [10].

There are multiple reasons why droplets nucleate at the corners of the cube. Naively,
one might think that this is solely due to the lower coordination number of the corner
sites, which provides a small energetic advantage (of order one in the system size) to place
a droplet on a corner. Closer inspection of the surface free energy of a droplet enclosing
a corner, however, reveals that similar to the droplet–strip transition there are entropic
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Figure 8. Anisotropy of the largest droplet of ordered phase as defined in
equation (14) in the phase coexistence region of a 250-state Potts model (L = 18).
A spherical droplet corresponds to anisotropy 1 as indicated by the dashed
line. At the droplet–strip transitions indicated by the vertical bars the droplet
anisotropy quickly changes. The deviation from unity above the upper droplet–
strip transition indicates an anisotropy due to finite-size effects.

barriers which scale with the system size L. To see this consider a droplet of area A. If A
is small enough (relative to L2), this droplet may sit on one of the faces of the cube so that
it encloses no corners of the cube. Then the surface it sits on is flat, so the surface free
energy is minimized by a circular droplet with radius R so that A = πR2. Alternatively,
the drop may enclose one corner. Putting the corner at the center of the droplet, the
droplet can be a quarter-circle on each of the three adjacent faces. These quarter-circles
each have radius R̃ with A = (3πR̃2)/4. The net result is that the perimeter of the droplet
(which sets the surface free energy) is smaller by a factor of

√
3/2 when the droplet is

centered on a corner as compared to when it does not contain a corner. The difference is
of order

√
A, so for large enough cubes will dominate over the order one effect mentioned

above.
While the simulation bottlenecks/entropic barriers associated with the corner

transitions are significantly suppressed in comparison with the droplet–strip transitions of
the toroidal geometry, which is illustrated figure 10, we have not succeeded in suppressing
all entropic barriers of order L by going from the torus to the cube surface. As a
consequence, we expect the same asymptotic performance of the optimized ensemble
simulations for both geometries.

4. Sampling efficiency and round-trip times

We finally address the numerical efficiency of sampling the optimized statistical ensemble
for the Q-state Potts model and, more generically, for a strong first-order phase transition.
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Figure 9. Optimized histogram for the Potts model on the cube surface for
(a) a fixed number of Potts states Q = 250 and various system sizes L, (b) a
fixed system size L = 10 and different choices of the number of Potts states Q.
In contrast to the simulations on the torus (cf figure 6), the dominant peaks are
related to droplet nucleation/annihilation transitions, while the emerging, smaller
peaks reveal transitions between states with droplets occupying an increasing
number of corners of the cube. The plotted energy range corresponds to the
coexistence region defined in equation (11).

In order to quantify this performance we follow earlier work [11, 13, 12] and measure the
characteristic timescale of the random walk in energy space, e.g. the round-trip time to
traverse the full energy range [E−, E+], and its scaling with system size L and number of
Potts states Q. Our results are summarized in figures 11 and 12.

For systems undergoing continuous transitions it was shown [11] that the flat-
histogram ensemble sampled in the Wang–Landau method generally suffers from a power-
law slow down

τflat−histogram ∝ N2 · N z , (15)

which is reminiscent of the well-known critical slowing down in the canonical ensemble.
The additional exponent z depends on the system at hand, and was measured to be
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Figure 10. Comparison between optimized histograms for the cube surface and
the torus at Q = 50 for various system sizes L. The plotted energy range
corresponds to the coexistence region defined in equation (11).

z ≈ 0.4 for the Ising model and z ≈ 0.9 for the fully frustrated Ising model [11]. In
contrast, the optimized ensemble method does not suffer from such a ‘critical slowing
down’ at continuous transitions and produces round-trip times that scale almost perfectly
with system size

τoptimized−ensemble ∝ N2 · (ln N)2, (16)

up to a logarithmic correction [13]. The improved scaling of the optimized ensemble
can thus considerably speed up the sampling efficiency of a broad-histogram simulation,
with improvements of two orders of magnitude reported already for intermediate system
sizes [13].

Exploring the efficiency of simulations at a first-order phase transition, previous work
has found an exponential divergence of the round-trip time with L in the Ising model in
an external magnetic field [10], which is referred to as supercritical slowing down. This
divergence occurs in the presence of shape transitions such as the droplet–strip transition
discussed above and the quantitative behavior of the scaling can indeed be related to
the surface tension of droplets. In a recent study Neuhaus et al [7] demonstrated that
the multiple Gaussian modified ensemble (MGME) method suffers only from a residual
supercritical slowing down when applied to the Potts model (with Q = 20 and 256 states
in their simulations).

For the optimized ensembles the scaling of the round-trip times is shown in figures 11
and 12 as a function of both system size L and number of Potts states Q, respectively.
Similar to previous results for continuous transitions, we find a dramatic improvement of
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Figure 11. Scaling of the round-trip time between the lowest and highest energy
states with system size L for the optimized ensemble simulations using heat bath
dynamics and the toroidal geometry. While the scaling can be fitted to polynomial
behavior for small Q � 35, the scaling crosses over to exponential behavior for
larger Q � 50.

the optimized ensemble when compared to the flat-histogram ensemble. However, even
for the optimized ensemble we do not recover the almost perfect scaling (16) observed for
continuous transitions when the severity of the first-order transition proliferates, e.g. by
increasing the system size L or the number of Potts states Q. In general, we find that the
scaling is independent of the transition dynamics, e.g. whether we choose Metropolis or
the heat bath transition rates.

We first look at the scaling with system size L when fixing the number of Potts states
Q in the range 8 ≤ Q ≤ 150. As shown in figure 11 we find that, for the range of L
studied, the round-trip times appear to scale polynomially τ ∼ N2+z in system size L for
Q � 35. We estimate the effective exponents to be z ≈ 0.3 for Q = 8, z ≈ 0.31 for Q = 10,
z ≈ 0.38 for Q = 20, and z ≈ 0.48 for Q = 35. We note that in this regime the first-order
transition is still relatively weak and we do not (yet) observe the characteristic multi-
peak structure in the optimized histogram. However, when further increasing number of
Potts states Q we find that the scaling crosses over to the expected exponential behavior
τ ∼ exp(αL) for Q � 50 due to the entropy barriers at the droplet–strip transitions,
and this becomes apparent already on rather small system sizes. This, of course, bears
witness of the strong first-order nature of the phase transition in this regime, which also
becomes evident in a noticeable multi-peak structure of the optimized histogram even for
considerably small system sizes L ≥ 14. Our results however do not exclude a crossover to
supercritical scaling also for weaker transitions at some larger system size. Indeed, results
in [35] indicate that also for Q = 10, an extended stripe phase emerges for system sizes
L � 512, which may well lead to the same effect we observe for large Q at much smaller
L.
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Figure 12. Scaling of the round-trip time between the lowest and highest energy
states with the number of Potts states Q for the optimized ensemble simulations
using both Metropolis and heat bath dynamics in the toroidal geometry. The
dashed lines represent cubic regressions to the data.

5. Conclusions

We presented an application of the optimized ensemble method to improve equilibration of
broad-histogram simulations of the first-order transition in the large-Q Potts model. The
optimized histogram develops a characteristic multi-peak structure which indicates that
the system releases latent heat in a sequence of phase transitions. The intermediate
metastable states exhibit droplets of the coexisting phases in varying shapes. For a
toroidal system geometry the dominant bottleneck in the simulation is the entropic barrier
associated with a droplet–strip transition. We find that the ensemble optimization is
capable to only partially overcome this bottleneck by shuffling statistical weight towards
the entropic barriers. It still exhibits the same asymptotic supercritical slowing down for
strongly first-order transitions previously reported for flat-histogram simulations [10]. It
thus remains an open question whether simulation schemes for strongly first-order phase
transitions can be further improved to overcome this asymptotic slowing down. Possibly,
statistical ensembles defined in multiple system variables could further improve extended
ensemble simulations, or one might turn to modified update technique, which, for instance,
attempt to specifically update the boundaries of a droplet.
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