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In topological mechanics, the identification of a mechanical system’s rigidity matrix with an electronic tight-
binding model allows one to infer topological properties of the mechanical system, such as the occurrence of
“floppy” boundary modes, from the associated electronic band structure. Here, we introduce an approach to
systematically construct topological mechanical systems by an exact supersymmetry (SUSY) that relates the
bosonic (mechanical) and fermionic (e.g., electronic) degrees of freedom. As examples we discuss mechanical
analogs of the Kitaev honeycomb model and of a second-order topological insulator with floppy corner modes.
Our SUSY construction naturally defines a set of topological invariants for bosonic (mechanical) systems, such
as bosonic Wilson loop operators that are formulated in terms of a SUSY-related fermionic Berry curvature.
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In quantum mechanics, supersymmetry (SUSY) explicitly
relates bosonic and fermionic degrees of freedom—a funda-
mental concept that has first been introduced [1–3] in high-
energy physics and widely been adopted in the formulation
of extensions of the standard model [4]. For nonrelativistic
settings, the concept of SUSY has been exploited extensively
in the study of random phenomena and quantum chaos in
mesoscopic systems [5], where a supersymmetric combina-
tion of commuting and anticommuting variables allows for
the otherwise intractable calculation of disorder averages. The
discovery of topological (classical) mechanics has produced
another intriguing setting where two fundamentally distinct
degrees of freedom are found to be closely related—the
mechanical modes of a classical system are cast in analogy
to the wave function of an electronic system [6]. At its heart,
this analogy identifies the Newtonian equation governing the
classical system, ẍ = −Dx, with a Schrödinger equation,
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where the dynamical matrix D of the original classical sys-
tem enters the Hamiltonian matrix of the quantum system.
Exploiting such matrix analogies has produced some far-
reaching insight, most prominently in the realization that zero-
energy “floppy” boundary modes in isostatic lattices [7] can
be identified with the inherently protected boundary modes
of topological insulators [8]. It has previously been noted
[6,8] that the Hamiltonian matrix in (1) corresponds to a
certain symmetry class (BDI) [9] and therefore generically
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has a supersymmetric form [5]. In going one step further, the
concept of supersymmetry can be used to explicitly connect
the degrees of freedom of a constrained mechanical system
such as a balls and springs model or certain frustrated magnets
with complementary fermionic degrees of freedom and so
inherit the topological properties of these fermions [10]. More
precisely, considering that the mechanical system is described
in terms of real-space coordinates and momenta (q, p), which
are both real bosonic variables, their natural SUSY partners
are not complex fermions but real fermions, i.e., Majorana
fermions.

Here, we report our discovery that we can also use SUSY
to map fermionic systems to bosonic ones while preserving
locality in both and give a recipe for how to fabricate these
bosonic systems with metamaterials. As examples of this
construction, we discuss mechanical incarnations of the Z2

spin-liquid phase in the Kitaev honeycomb model and of a
second-order topological insulator. Furthermore, this SUSY
construction allows us to identify topological properties of the
bosonic (mechanical) system by explicitly associating it with
a fermionic Berry curvature. We showcase such a calculation
by evaluating bulk topological invariants, i.e., bosonic Wil-
son loops, for the mechanical equivalent of a second-order
topological insulator. Our results demonstrate that one can
construct different topological mechanical systems by using
the concept of supersymmetry to directly relate many of the
recent advances from the field of topological quantum matter
to mechanical analogs.

SUSY construction. To set the scene for our SUSY con-
struction of topological mechanical systems, let us briefly
recapitulate the concept of supersymmetry. The central object
here is a non-Hermitian SUSY charge operator

Q = c†
i Ri jb j (2)

that connects the annihilation operator of a (complex) boson
b with the creation operator of a (complex) fermion c via
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an arbitrary matrix R. The indices i and j run over the
total number of fermionic and bosonic degrees of freedom,
respectively. From this charge operator one can immediately
construct a supersymmetric Hamiltonian

HSUSY = {Q,Q†} = c†RR†c + b†R†Rb (3)

that decomposes into decoupled bosonic and fermionic parts.
By construction, these two partner Hamiltonians are not
only both quadratic and isospectral to one another, but their
eigenstates are explicitly related by Q, allowing a one-to-one
identification of bosonic and fermionic states [11].

For the case of topological mechanics, with phase-space
coordinates (q, p) for bosonic degrees of freedom, we have
to further specialize this SUSY connection to the case of real
bosons and real fermions (and later take the classical limit).
More explicitly, we are now led to consider a Hermitian SUSY
charge

Q = γ B
i 1i j p̂ j + γ A

i Ai j q̂ j (4)

that connects the two bosonic degrees of freedom ( p̂, q̂)
(where the hats indicate that these are still quantum me-
chanical operators fulfilling the usual commutator relations
[q̂i, p̂ j] = iδi, j), with a matching number of two species of
Majorana fermions γ A and γ B. Note that in comparison to the
complex boson/fermion case of Eq. (2) we have restricted the
matrix R to a block-diagonal form R = (1 0

0 A) for reasons
that are apparent when looking at the SUSY Hamiltonian
HSUSY = {Q,Q†} that again decomposes into bosonic and
fermionic partner Hamiltonians, taking the form

Hfermion = iγ B
j AT

jk γ A
k − iγ A

j A jk γ B
k , (5)

Hboson = p̂i p̂i + q̂i(AT A)i j q̂ j . (6)

Written in this way, the Majorana Hamiltonian (5) describes
the hopping of Majorana fermions between two types of
sites A and B, as it is realized, for instance, for nearest-
neighbor hopping on bipartite lattices. In such a two-sublattice
realization, the bosonic operators reside only on one of the
sublattices (namely, B).

Taking the classical limit of the bosonic Hamiltonian (6),
one can further read off that in this form R in fact corresponds
to the rigidity matrix of the mechanical system, with its upper
left block giving rise to the mass matrix (set to unity here) and
the lower right block giving rise to the dynamical matrix via
D = AT A. To summarize these steps, we have accomplished
that by restricting the matrix R in the SUSY charge for the
real boson/fermion case (4) it may not only be interpreted as
the rigidity matrix of the classical system, but it also connects
the mechanical system to a particularly accessible form of
Majorana hopping problems. In more practical terms, our
particular choice of R allows us to directly connect a number
of well-known Majorana systems [of form (5)] to mechanical
analogs as given by Eq. (6).

Finally, we note that time-reversal symmetry is pre-
served in the supersymmetry construction [12]. In short,
time-reversal symmetry T transforms under SUSY as Tb =
R−1T f R = T f , because [R, T f ] = 0 (where b and f refer
to bosons and fermions, respectively). As a consequence,
any (topological) features of the fermion system protected

by time-reversal symmetry will be protected by both time-
reversal and supersymmetry in the bosonic system.

Classical balls and springs models. The final step in our
SUSY construction is to formulate the classical limit of the
real boson Hamiltonian (6) as an easy-to-engineer classical
model, a system of balls and springs whose Hamiltonian can
be written as
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∑
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where the spring constants ki j and κi can be extracted from the
dynamical (spring) matrix D = AT A as

ki j = −2
∑
a∈A

AT
iaAa j, (8)

κi = 2
∑
a∈A

A2
ia −

∑
b∈B

kib. (9)

The intersite spring constants ki j are the off-diagonal elements
of D, that by virtue of our SUSY construction arise from
next-nearest-neighbor Majorana hopping (within the boson
sublattice B) [13]. The on-site spring constants κi are the
diagonal elements of AT A arising from Majoranas hopping
back and forth, modified by a contribution coming from the
intersite springs.

Mechanical Kitaev model. We now proceed to discuss a
classical analog of the celebrated Kitaev model [14], a spin
model with characteristic bond-directional exchanges on the
honeycomb lattice. The analytical solution of this model [14]
is achieved by recasting it in terms of noninteracting Majorana
fermions hopping on the same honeycomb lattice [in the
background of a classical (static) Z2 gauge field]—precisely
the type of Majorana Hamiltonian (5) that is amenable to our
SUSY construction. Going through the steps outlined above,
we end up with a classical balls and springs model on the
triangular lattice [15] (i.e., one of the two sublattices of the
honeycomb lattice) as illustrated in Figs. 1(a) and 1(b). Each
mass, located at a site of the triangular lattice, is restricted to
a movement along an axis perpendicular to the lattice plane,
and is connected via two types of springs to both the plane and
its neighboring masses.

To illustrate the physics of this mechanical Kitaev model,
we have integrated the Hamiltonian equations of motion aris-
ing from (7) for a system of 40×40 masses. By applying
a periodic drive of a given frequency ω to a single mass
located at the center of the system, we are able to probe
individual eigenmodes of the mechanical model. To do so,
we take real-space snapshots of the balls and springs con-
figuration (for drives of different frequencies ω), which we
subsequently Fourier-transform. This allows us to recover the
full energy dispersion of the classical system for a given set of
fermionic parameters. Comparing these classical dispersions
with their corresponding Majorana fermion band structures
we find perfect agreement throughout the phase diagram of
Fig. 1(c) as shown in Figs. 1(d) and 1(e) for two particular sets
of coupling parameters. In Fig. 1(d) we probe the isotropically
coupled Kitaev model and recover the well-known Dirac
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FIG. 1. Mechanical Kitaev model. (a) and (b) Realization in the
form of a classical balls and springs model (see also the main text).
(c) The phase diagram of the classical model exhibits a gapless
region (blue) and three gapped phases (gray). The excitation spectra
of the classical model extracted from numerical simulations for the
(d) gapless and (e) gapped phases.

cone spectrum of the quantum system. Obtaining such a
linear low-energy spectrum in a spring system (which on the
level of individual springs always exhibits quadratic energy
dispersions) is striking evidence of the many-body physics at
play. In Fig. 1(e) we show an energy spectrum for a situation
where one of the three coupling parameters dominates and
the spectrum exhibits a well-defined low-energy gap, i.e., the
mechanical system remains rigid for low-frequency drives up
to a threshold given by the gap. While this is imposed from
the physics of the quantum system, it is again an unusual
situation for a classical system, which typically defies a small-
frequency rigidity (in particular, on the level of individual
springs) [16].

The propagating phonon modes constitute the classical
analogs of the Majorana fermions in the Kitaev model, with
their energy spectra being in one-to-one correspondence. Note
that also the underlying Z2 gauge structure of the Kitaev spin
liquid is fully present in the mechanical model. A pair of
gauge excitations—visons in the language of Z2 spin liquids—
can be excited by flipping the sign of an intersite spring con-
stant [17], in direct analogy to flipping the hopping on a bond
in the quantum model. In total, our SUSY construction allows
us to build a full mechanical analog of the Z2 quantum spin
liquid of the Kitaev model, complete with classical analogs of
both the fractional quasiparticles (Majorana fermions) and the
underlying Z2 lattice gauge structure.

Mechanical second-order topological insulator. As a sec-
ond example, we apply our SUSY construction to derive a
classical balls and springs model of the “octupolar insula-
tor” introduced in Refs. [18,19] as a principal example of a
second-order topological insulator (SOTI) with topologically
protected, gapless corner modes [20]. The original formu-
lation [18] of the SOTI is based on a square-lattice tight-
binding model whose hopping strengths are staggered for the
elementary square plaquettes of the lattice (which each en-

FIG. 2. Balls and springs model of a second-order topological
insulator. Mechanical realization shown in (a) side view and (b) top
view. As discussed in the main text, the system decouples into two
independent systems, denoted here by B1 and B2. (c) Schematic
phase diagram for a staggering of the coupling constants around
the isotropic coupling point. The excitation spectra of the classical
model extracted from numerical simulations for the (d) gapless and
(e) gapped (both topological and trivial) phases.

compasses a π flux). While the original model is not sensitive
to whether the underlying degrees of freedom are complex or
real fermions, we again take the real-fermion formulation as
the principal input for our SUSY construction. Going through
the two steps of first constructing the SUSY-related real boson
model (6) and then taking its classical limit (7), we arrive at
the balls and springs model illustrated in Figs. 2(a) and 2(b).
The mechanical system is composed of two square lattices
of coupled balls and springs (denoted B1 and B2 in the
figure). The two lattices turn out to be decoupled, since any
interlattice coupling always arises from two exchange paths in
the quantum model that exactly cancel (as the coupling along
the two paths always involves opposite signs as mandated by
the plaquette π flux in the quantum model). Concentrating on
just one of the two mechanical lattices, this leaves us with
a system of balls and springs where the masses are again
restricted to move along an out-of-plane axis only, with all
intersite spring couplings taking the same value (independent
of the staggering in the original quantum model). The on-
site spring couplings, on the other hand, will be crucial in
realizing the topological corner modes of interest here. By
construction [Eq. (9)], the on-site couplings are sensitive to
the number of neighbors. Considering a system with open
boundary conditions, this gives rise to a spatial variation of
these couplings along the boundary of the mechanical system.

Probing the mechanical system, we again find a one-to-one
correspondence of its bulk energy spectra to the fermionic
dispersions for various combinations of γ /λ as illustrated
for two particular staggerings in Figs. 2(d) and 2(e). The
occurrence of gapless corner modes in the balls and springs
system, predicted by analogy to the quantum model, can
be probed by applying a small force to one of the corner

032047-3



ATTIG, ROYCHOWDHURY, LAWLER, AND TREBST PHYSICAL REVIEW RESEARCH 1, 032047(R) (2019)

masses. While in the coupling regime corresponding to the
trivial phase of the quantum model there is a restoring force
in the mechanical system, this is not the case when entering
the coupling regime corresponding to the topological phase
in the quantum model (i.e., for γ /λ < 1). In this regime, the
corner mass can be moved arbitrarily far from its original
position when exercising an infinitesimal force—this is the
gapless corner mode in the mechanical system. That this
mechanical corner mode is indeed the signature of a bulk topo-
logical phase in the classical system, can be made apparent
by considering bulk topological invariants of the mechanical
system as discussed in the following.

Topological invariants. A unique aspect of our SUSY
construction is that it also defines a way to explore topological
properties of mechanical/bosonic systems by connecting the
symplectic bosonic eigenfunctions with a fermionic Berry
phase of its SUSY partner. The SUSY formalism thereby
provides a platform to define bosonic invariants that character-
ize the topology of an arbitrary mechanical model, specified
solely by its rigidity matrix, that go beyond the classification
based on conventional bosonic Berry phases (which are not
capable of revealing the topological order).

Consider a SUSY pair of fermion and boson models. For
the fermionic case, the Berry connection is given by

A = 〈um(k)|i∇k|un(k)〉, (10)

where |um(k)〉 are the eigenvectors of the fermionic Hamilto-
nian. These eigenstates map to the bosonic eigenstates |vm(k)〉
via the rigidity matrix (2)

|um(k)〉 = R(k)√|ωm(k)| |vm(k)〉 ≡ R̃(k)|vm(k)〉, (11)

with the prefactor ensuring the symplectic normalization
〈vm(k)|σ2|vn(k)〉 = (σ3)m,n of the bosonic eigenproblem [12].
Inserting into (10) then leaves us with a definition of the
fermionic Berry curvature in terms of the bosonic states

ASUSY = 〈vm(k)|iR̃†∇k (R̃|vn(k)〉)

= 〈vm(k)|iσ2(∇k + σ2R̃†∇kR̃)|vn(k)〉. (12)

Note that the SUSY construction adds a covariant deriva-
tive to the conventional definition of a Berry curvature
for the bosonic eigenstates. Importantly, bosonic eigenstates
that are trivial with regard to the conventional definition
can be revealed as topological states using this augmented
definition.

This SUSY framework allows for a comprehensive dis-
cussion of the topology of bosonic systems. Applying it to
the SOTI balls and springs model, we can demonstrate that
its corner modes indeed owe their existence to the topology
of the bulk excitation spectrum, shown in Fig. 2. First, we
construct edge Hamiltonians using the technique of Wilson
loop operators, generalizing the recently developed approach
for fermionic SOTIs [18] to the bosonic systems at hand [12].
Computing the Berry phase from the eigenstates of this edge
Hamiltonian allows us to distinguish topologically nontrivial
phases from trivial ones for the mechanical SOTI model.
As illustrated in Fig. 3, a nontrivial topological phase arises
for staggering γ /λ < 1. Second, a key feature of topological
phases is their stability against disorder. We have verified

FIG. 3. Bosonic topological invariants. The Berry phase θB/π

of the mechanical SOTI model calculated from the supersymmetric
Berry curvature (12) vs the staggering parameters γ /λ. The insets
display the eigenvalues νx of the edge Hamiltonian Hx,k plotted
against ky in the topological (γ /λ < 1) and the trivial (γ /λ > 1)
phase in which the two bands acquire distinct Berry phases of θB = π

or θB = 0, respectively.

that such a topological robustness is indeed inherited by
the mechanical SOTI model, i.e., in the presence of SUSY-
preserving disorder topology is indeed preserved, while for
SUSY-nonpreserving disorder topological zero modes gap
out. For a more detailed discussion of disorder effects, we re-
fer to the Supplemental Material [12]. To conclude, the SUSY
framework developed in this Rapid Communication allows
us not only to construct bosonic/mechanical equivalents of
topological fermion models, but also define other ways of
investigating their topological features.

Outlook. The fundamental link between topological me-
chanics and supersymmetry, which we have explicitly formu-
lated in this Rapid Communication, provides both concep-
tual and practical insights. On the conceptual side, it is the
definition of topological invariants for mechanical (bosonic)
systems via the supersymmetric Berry curvature (12), which
allows for a different perspective on these systems that might
lead to a deeper understanding of the classification of bosonic
insulators. In expanding the conceptual connection in the
future, it would be interesting to go beyond the single-particle
equivalences employed in the current work and use SUSY
to connect many-fermion states with mechanical (bosonic)
analogs. In practical terms, our SUSY construction allows us
to translate many of the topological Majorana band theories
to topological balls and springs models ready to be built in
the laboratory. As demonstrated for the mechanical Kitaev
model and SOTI, the obtained mechanical models might be
of intriguing simplicity [21]. One interesting future avenue
to explore is whether the mechanical analogs of Majorana
fermion systems discussed in this work can regain their quan-
tum mechanical character, e.g., by employing optomechanical
systems or nanoscale metamaterials [22], and thereby allow us
to realize the bosonic quantum modes that are SUSY partners
of Majorana fermions.
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