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We present an extensive numerical study of spin quadrupolar correlations in single and coupled bilinear-
biquadratic spin one chains, using several methods such as exact diagonalization, density matrix renormaliza-
tion group, and strong coupling series expansions. For the single chain, we clarify the dominant correlation
function in the enigmatic gapless period-three phase for �� �� /4 ,� /2�, which is of spin quadrupolar nature
with a period three spatial structure. Then we revisit the open problem of the possible existence of a ferroqua-
drupolar phase between the dimerized and the ferromagnetic phases. Although an extended critical region is in
principle compatible with the numerical results, a scenario with a huge crossover scale is more plausible.
Finally we study the fate of the dimerized phase upon coupling two chains in a ladder geometry. The dimerized
phase rapidly vanishes and an extended gapped phase takes over. This gapped phase presumably has dominant
short-ranged ferroquadrupolar correlations for �� �−3� ,4 ,−� /2� and—surprisingly—seems to be adiabati-
cally connected to the plaquette single solid phase of the Heisenberg S=1 ladder and therefore also with the
Haldane phase of isolated chains.
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I. INTRODUCTION

The recent experimental demonstration1 of the transition
from a superfluid state to a Mott insulating state of atoms in
an optical lattice has opened the way to novel realizations of
effective quantum lattice models with widely tunable control
parameters. Quantum magnetic systems can be realized by
spinor atoms in an optical lattice, e.g., 23Na with a total S
=1 moment. Confining S=1 atoms to an optical lattice there
are two scattering channels for identical atoms with total spin
S=0,2 which can be mapped to an effective bilinear and
biquadratic spin interaction2–4

H = �
�i,j�

�Jbl�Si · S j� + Jbq�Si · S j�2� , �1�

where we adopt the standard parametrization Jbl=cos � and
Jbq=sin �. In one dimension, the bilinear-biquadratic spin-
one model has a rich phase diagram �see Fig. 1� with some
well established phases: the Haldane gap phase,5 a dimerized
phase,6 a ferromagnetic phase and some less well understood
phases: a critical phase with period three correlations,7 which
we will characterize as having dominant spin nematic corre-
lations, and possibly a gapped spin nematic phase between
the dimerized and ferromagnetic phase,8 which, however, re-
mains controversial.

On the square and the simple cubic lattice, the bilinear-
biquadratic spin-one model is well understood for the case
Jbq�0. It exhibits a ferroquadrupolar spin nematic phase for
�� �−3� /4 ,−� /2�.9–11 Adjacent to it are an antiferromag-
netic Néel phase and a ferromagnetic phase.9,10 The region of
purely antiferromagnetic couplings Jbl ,Jbq�0 remains to be
understood, and could possibly contain a spin liquid region.12

Recently the Hamiltonian �1� on the triangular lattice at-
tracted some interest,13–15 as a possible explanation of the
unconventional magnetism of NiGa2S4.16

For a single chain Chubukov8 suggested the existence of a
gapped, nondimerized phase showing dominant spin nematic
correlations close to the ferromagnetic region of the phase
diagram. Subsequent numerical work17 could, however, not
substantiate this claim and it was therefore believed for a
while that the dimerized phase would extend up to the ferro-
magnetic phase boundary. Recent quantum Monte Carlo
calculations18 and field theoretical work19 suggest that this
picture might need to be reconsidered, especially in the light
of possible experimental verifications in Bose-Einstein con-
densate systems.2,4 In the meantime there has been a consid-
erable number of publications in favor or against a spin nem-
atic phase close to �=−3� /4,20–24 but leaving the final
answer still open.

FIG. 1. Phase diagram of the bilinear-biquadratic spin-one
chain. The firmly established phases are the Haldane, the ferromag-
netic and the dimerized phase. We characterize the extended gapless
phase � /4���� /2 by having dominant k= ±2� /3 spin quadru-
polar correlations. The possible occurrence of a spin nematic like
phase close to −3� /4 is investigated and critically discussed.
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The aim of the present paper is twofold. First we give a
characterization in terms of the dominant correlation func-
tion for the extended gapless critical phase, whose mere ex-
istence is well established. We find in this case that the pre-
dominant correlations are of spin quadrupolar nature, with a
wave vector of ±2� /3. The second aim is to shed some more
light on the region �� �−3� /4 ,−� /2� of the single chain.
We present extensive numerical simulation results based on
different numerical methods and discuss possible interpreta-
tions. Due to the difficulty in obtaining a firm conclusion
regarding the spin nematic phase, we have also studied
bilinear-biquadratic ladders. In this case the dimerized phase
plays only a minor role in the phase diagram and we report
an extended gapped spin nematic phase, very close in spirit
to the proposal by Chubukov8 for the single chain. Surpris-
ingly this phase seems to be adiabatically connected to the
well known Haldane phase of the isolated chain.

The outline of the paper is the following. In Sec. II we
show that the established gapless phase �� �+� /4 ,� /2� has
dominating spin quadrupolar correlations, a characterization
which was lacking before. We then move on to the region
�� �−3� /4 ,−� /2� and discuss the possible existence of a
spin nematic intermediate phase between the dimerized and
the ferromagnetic phase. We report several anomalous physi-
cal properties encountered upon approaching �→−3� /4,
which could be interpreted as a phase transition to a spin
nematic state. However, due to numerical limitations it has
remained elusive to pinpoint such a phase transition, and an
alternative scenario where a very large crossover scale
emerges as one approaches the SU�3� point at −3� /4 be-
comes more plausible. In Sec. IV we introduce an extension
of the single chain model by coupling two chains to form a
ladder. We show that the dimerized phase gives very rapidly
way to an extended gapped phase. This short-ranged ordered
phase encompasses the Haldane phase at �=0 as well as its
ladder extension, the so-called “plaquette singlet solid”
state,25 and crosses over to a gapped spin nematic state close
to �→−3� /4.

II. THE ENIGMATIC PERIOD THREE PHASE

The existence of an extended critical phase in the interval
�� �+� /4 ,� /2� was first discussed in Ref. 7. Later work in
Refs. 26–30 agreed on the gapless nature of the phase due to
soft modes at k=0, ±2� /3. The special point �= +� /4 has
an enlarged SU�3� symmetry and is solvable by Bethe
ansatz31–33 �Uimin-Lai-Sutherland model�, proving the exis-
tence of soft modes at k=0, ±2� /3 as a rigorous result.

Despite the consensus on the presence of an extended
gapless phase, the nature of the dominant correlations in this
phase has not been clearly worked out. Initially Xiang26 pro-
posed an almost “trimerized” ground state, with dominant
singlet correlations involving three consecutive spins. Al-
though models can be constructed which have exactly trim-
erized ground states,34 in the present model these are not the
dominant fluctuations, as shown earlier in Ref. 30.

Here we show that the dominant correlations are not of
singlet, but of spin nematic, i.e., quadrupolar, character. We
build upon the field theoretical work of Itoi and Kato29 in

which they showed that throughout the critical region there
are three fields with spin S=0,1 ,2 whose scaling dimensions
are all equal to x=2/3. However, apart from �=� /4 it is the
S=2 mode at k= ±2� /3—which is subject to correlation-
enhancing logarithmic corrections—which will show the
dominant correlations. Note that this is consistent with the
observation7 that the lowest energy level at k= ±2� /3 on
finite chains carries S=2.

In order to work out the correlation content of this S=2
mode we note that this mode will only show up in a dynami-
cal correlation function if it is targeted with an S=2 operator.
A natural operator is the irreducible quadrupolar part of the
rank two tensor Si

�Si
�. In order to test this conjecture, we

calculate a component of the static spin quadrupolar struc-
ture factor

Q�k� = ��Sz�2�− k��Sz�2�k�� �2�

and similar for the static spin structure factor

S�k� = �Sz�− k�Sz�k�� �3�

both at the wave vector k=2� /3. The results shown in the
upper plot of Fig. 2 for system sizes up to L=18 display
nicely that the quadrupolar correlations indeed become more
important than the spin-spin correlations when one moves
beyond the SU�3� symmetric point at �=� /4. Although all
correlation exponents �dimer, spin, quadrupolar� are equal to
�=2x=4/3, logarithmic corrections29 render the quadrupolar
correlations clearly dominant in this phase. Note that our
notion of a dominant correlation function in this case is
analogous to the S=1/2 antiferromagnetic Heisenberg chain,
where both staggered spin and staggered dimer correlations
have equal correlation exponent �=1, but the logarithmic
corrections enhance the spin-spin correlations and then decay
more slowly. Hence, in the same spirit as one argues that the
dominant correlations of the Heisenberg chain are the spin-
spin correlations, the dominant correlations of the bilinear-
biquadratic spin-one chain for �� �+� /4 ,� /2� are of spin
quadrupolar nature with wave vector ±2� /3.

For completeness we show selected parameters of this
critical region in the lower panel of Fig. 2. The results are in
good agreement with field theoretical predictions29 �c=2 and
xq=2/3�, exact results33 �v��=� /4�=2� /3�2�, and previous
numerical work.7 The numerical estimate of the scaling di-
mension xq is slightly smaller than the expected value of 2 /3,
due to the presence of logarithmic corrections.

To close this section we note that the occurrence of domi-
nant period-three quadrupolar correlations on a single chain
calls for a fully ordered three sublattice structure when the
chains are coupled in an appropriate two-dimensional fash-
ion. The triangular lattice perfectly fulfills this prerequisite,
and indeed recent works13,14 reported analytical and numeri-
cal evidence for a three sublattice quadrupolar ordered phase
in the region �� �� /4 ,� /2�.

III. FROM THE DIMERIZED TO THE
FERROMAGNETIC PHASE

After having elucidated the nature of the dominant corre-
lations in the extended critical region beyond the Haldane
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phase, we now turn to the behavior of the bilinear-
biquadratic chain between the point where the dimerized
ground state is firmly established ��=−� /2�6 and the point
where the ferromagnetic state takes over ��=−3� /4�. Let us
note that this point �=−3� /4 is special due to a SU�3� sym-
metry. This symmetry has the consequence that the conven-
tional ferromagnetic multiplet is degenerate with a fully or-
dered ferroquadrupolar spin nematic state.35

Chubukov8 suggested the existence of an intermediate
phase which was supposed to be completely gapped and to
have dominant short-ranged nematic correlations. Since then
several studies17–23—most of them numerical—tried to pin
down the existence of an intermediate phase. Presently it
seems most likely that the gapped nematic phase in its origi-
nal form is not realized in the single chain model, mainly
because the gap data do not show evidence for a closing and
reopening. Nevertheless the spin nematic correlations grow
dramatically as one approaches �→−3� /4+. It could there-
fore in principle be possible that the dimerized phase gives
way to a critical spin nematic phase without a gap.20–22 We
will critically discuss this possibility in the following.

A. The S=2 finite size gap

We track the evolution of the energy gap to the first mag-
netic excitation using density matrix renormalization group
�DMRG� calculations36 on long open chains of up to 512
spins and retaining up to 1000 states. A phase transition is
signaled by the closing of the gap. The lowest excited state
on open chains carries spin two for �� �−3� /4 ,−� /2�.17

Our results shown in Fig. 3 are clearly consistent with a
finite gap of the S=2 excitation for �	−0.65�. However, for
�
−0.65� the extrapolated gap becomes very small �of the
order of 10−3 for �=−0.7�� which could suggest the exis-
tence of a phase transition around −0.67� below which the
gap is zero. The data shows no evidence for a reopening of
the S=2 gap in the interval �� �−3� /4 ,−0.67��, at variance
with the initial proposal.8

In order to investigate the possible closing of the gap by
different means we have calculated strong coupling series
expansions37 of the S=2 single particle gap starting from the
dimerized limit up to 10th order in the interdimer coupling �
for fixed �. A direct evaluation of the quintuplet gap shows a
closing of the gap around �=−0.67� which is illustrated in
the left panel of Fig. 4. Using DLog Padé approximants we
have determined the critical interdimer coupling �c��� where
the gap closes, see upper right panel of Fig. 4. Consistent
with previous estimates by Chubukov8 these extrapolations
suggest that the gap closes for the uniformly coupled ��
=1� chain around �	−0.67�.

As a further indication for the possible closure of the gap
around �=−0.67�, we now consider the existence of a gen-
eralized BKT phase transition. To determine the critical point
we use phenomenological level spectroscopy. We calculate
the level crossing �c

L of the lowest singlet excitation at k
=� with the lowest spin-2 level at k=0 for different system
sizes L with ED and extrapolate L→�. The results are
shown in Fig. 5. The extrapolation is performed with 1/L
and 1/L2 corrections, fitting only the largest four system
sizes. The extrapolated critical point is �c= �−0.67±0.02��,
in good agreement with estimates obtained by other tech-

FIG. 2. �Color online� Upper plot: Static structure factors for
spin and quadrupolar correlations at momentum k=2� /3 as a func-
tion of � for different system sizes. At the SU�3� point �= +� /4 the
two correlation functions are related by symmetry. By going deeper
into the critical region the spin correlations get weaker, while the
quadrupolar correlations are enhanced. Lower plot: the central
charge, the excitation velocity and the scaling dimension of the
quintuplet field in the critical region. The filled red square is the
exact result �Ref. 33� for the velocity at �=� /4.

FIG. 3. �Color online� Extrapolated DMRG S=2 gaps as a func-
tion of �. The gray region denotes the estimated onset of the critical
behavior. The filled diamond is the exactly known gap result at �
=−� /2. Inset: finite size extrapolation of the S=2 gaps �32 to 512
sites�. � /� varies from −0.5 to −0.7 with decrements of 0.025 from
top to bottom.
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niques.2,8 The coefficient of the 1/L correction is small, and
fitting without this term yields slightly larger values �c
�−0.67�.

B. Dimerization and quadrupolar correlations

Dimerization in the phase diagram of the spin-one chain
has been firmly established by exact results obtained for the
�=−� /2 point.6 It should be noted that although the system
is dimerized, it is rather poorly described by a simple product
wavefunction of alternating singlets, as can be seen from the
small gap and the large correlation length over the whole
dimerized phase. The dimerization operator considered
here is

D�k� 

1
�L

�
j

eikrj�S j · S j+1� �4�

with k=�. The second kind of correlations expected to be
important in this region of the phase diagram9,10 are the fer-
roquadrupolar spin fluctuations

Q�k� 

1
�L

�
j

eikrj��Sj
z�2 − 2/3� �5�

with k=0. Note that we considered similar fluctuations with
k=2� /3 in Sec. II.

Based on these fluctuation operators we have calculated
the standard static structure factor �SF�

CSF�k� = �C�k��0��2 �6�

and the generalized nonlinear susceptibility �i.e., the real part
of the dynamical correlation function at zero frequency�

CGNS�k� = Re lim
�→0+

�0�C†�− k�
1

H − E0 + i�
C�k��0� �7�

for both kinds of correlations �C=D ,Q�. The nonlinear sus-
ceptibility quantifies the perturbative response of the system
upon explicitly coupling the symmetry breaking operator to
the Hamiltonian.38

We present ED results concerning the dimerization in the
left panel of Fig. 6. The SF and the GNS both diverge as L

FIG. 4. Strong coupling dimer expansion of
the S=2 gap. Left panel: S=2 gap as a function
of �. The gap closes at �c	−0.67�. Upper right
panel: Critical value �c where the gap vanishes.
The uniformly coupled chain of interest here cor-
responds to �=1 �dashed line�. Lower right
panel: Critical exponent of the S=2 gap opening
as a function of the dimerization ���−�c���
calculated by various DLog Padé approximants.

FIG. 5. Finite size scaling of the crossing points between the
singlet gap at momentum � and the quintuplet �S=2� gap at mo-
mentum 0. The extrapolation yields a critical value �c	−0.67� in
the thermodynamic limit.

FIG. 6. Static and generalized susceptibilities for the bilinear
dimerization �left panel� and the ferroquadrupolar correlations
�right panel�, obtained by ED on systems of 8 to 16 sites. Solid
symbols: Static structure factors. Open symbols: Corresponding
generalized susceptibilities.
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→� for �=−� /2, where long range dimer order is
established.6 Similar behavior is found for �	−0.67�. For
�� �−3� /4 ,−0.67�� however, we find that the SF and the
GNS both decrease with system sizes, pointing to a possible
absence of spontaneous dimerization in this region.

In the right panel we display the same kind of observables
for the k=0 �ferroquadrupolar� mode of the quadrupolar cor-
relations. Here the behavior seems different: while there are
only short range correlations deep in the dimerized phase,
the ferroquadrupolar correlations increase drastically with
system sizes for � close to −3� /4.

In order to shed more light on the excitations and their
nature close to �=−3� /4 we have calculated in addition the
dynamical dimer and quadrupolar structure factor using a
continued fraction technique. This will allow us to track the
evolution of the energy of the important levels and their
spectral weight. The dynamical structure factor is defined as
follows:

C�k,�� = −
1

�
Im lim

�→0+
�0�C†�− k�

1

� − �H − E0� + i�
C�k��0� ,

�8�

where we focus again on the dimerization and the ferroqua-
drupolar correlations. The plots discussed below show the
normalized intensity for a given �. The overall weight can be
obtained by multiplying with the structure factors displayed
in Fig. 6.

The results for the dimerization shown in the upper panel
of Fig. 7 are very interesting. They show a strong crossover
with a redistribution of spectral weight on the way from �
=−� /2 to −3� /4. While there is a single state �the lowest
energy singlet� exhausting almost all of the k=� dimer
weight around �=−� /2 �as expected in a truly dimer ordered
phase�, the weight in this state entirely fades out and is trans-
ferred to a higher energy state at �→�2 as �→−3� /4.

The results for the dynamical ferroquadrupolar correla-
tions don’t show such a crossover but show a steady lower-
ing of the finite size S=2 gap upon approaching −3� /4,
accompanied by an accumulation of all the weight in that
single state. This is a manifestation of the continuity of the
finite size ground state wave function as one approaches the
fully ferroquadrupolar ordered state at �=−3� /4. We return
to the special behavior of the spin-two gap in Sec. III C 2.

We believe that it is this strong crossover seen in the
dynamical dimer correlations which renders numerical calcu-
lations very difficult. On finite size systems sufficiently close
to �=−3� /4 the system looks basically similar to a ferroqua-
drupolar ordered system, even in one dimension, due to the
very strong influence of the SU�3� point −3� /4. As a conse-
quence a crossover scale seems to emerge, which rapidly
grows close to −3� /4, and one has to go to huge systems in
order for the dimerization to win, i.e., for the lowest singlet
at k=� to collapse onto the ground state, while the lowest
S=2 exitation at k=0 should remain gapped. This scenario
would then imply that the curve in Fig. 5 finally would have
to bend down for large systems and touch the y axis only at
�=−3� /4.

C. Critical phase versus crossover

1. Parameters of a hypothetical critical theory

In order to discriminate between potential conformal
theories describing the phase transition and the extended
gapless region, we calculate relevant field theory parameters,
i.e., the scaling dimensions �SD� x of several fields and the
central charge c �Fig. 8�. The calculation of these parameters
has been performed with ED and relies on finite size scaling
properties of ground state and excited states energies.39

Leading logarithmic corrections have been taken into ac-
count. The SD of the k=� singlet field �xs� and the k=0
quintuplet field �xq� are both close to 3/8 at the onset of
criticality near �	−0.67�. xs significantly increases, while
xq decreases and seems to approach 0 as �→−3� /4, com-
patible with quadrupolar long range order precisely at
�=−3� /4.35 Our results for the effective central charge are
unexpected. The central charge c does not seem to be con-
stant throughout the potentially critical region. The smallest
value is found at the onset �c	3/2�, and then seems to in-
crease monotonously. While this behavior can not directly be
ruled out on field theoretical grounds, it is rather uncommon.
It remains to be understood whether c is really continuously
increasing or whether we are facing a crossover phenom-
enon. The hypothetical critical theory at �	−0.67� is, how-

FIG. 7. ED dynamical correlation results on a L=16 chain. Up-
per panel: dynamical staggered dimer correlation function D�q
=� ,�� plotted for a range of values of �. There is an important
transfer of spectral weight upon lowering � from a low energy
level—collapsing to the ground state as a function of system
size—to a level which will converge to the energy �2 at �=−3� /
4. Lower panel: dynamical ferroquadrupolar correlations Q�q
=0,�� for �� �0.75,0.60��.
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ever, surprisingly well characterized by a level two SU�2�
Wess-Zumino-Witten model given that both the scaling di-
mensions �3/8� and the central charge �3/2� are in agree-
ment with such a theory. Some more support for this claim
comes from the indirect calculation of xs within our series
expansions. There the critical exponent � of the S=2 gap is
related to the scaling dimension xs by �=1/ �2−xs�. In the
lower right panel of Fig. 4 we show the critical exponent
calculated by DLog Padé approximants to the tenth order
series. In the vicinity of �	−0.67� the various approxi-
mants reveal only small spreading. Within the precision of a
10th order calculation the exponents comply with a scaling
dimension of xs=3/8 �dashed line�.

2. Single mode approximation

In the following we present an argument based on the
single mode approximation �SMA� which aims at explaining
the anomalously strong suppression of the S=2 gap upon
approaching −3� /4. In the single mode approximation one
starts by constructing a trial state upon the application of a
structure factor operator on the ground state.

�O�k�� = O�k��0� , �9�

where

O�k� =
1
�L

�
j

eikrjOj , �10�

and Oj is an operator acting on site j. One can now relate the
variational energy of the state �O�k�� to a groundstate expec-
tation value

�k =
1

2

�0��O†�− k�,�H,O�k����0�
�0�O†�− k�O�k��0�

. �11�

Note that the energy �k is a strict upper bound on the gap in
the momentum k sector. The power of the SMA comes from
the fact that it can be used to prove the absence of a gap
under certain conditions. There are two prototypical cases for

the absence of a gap. �i� The denominator diverges as a func-
tion of systems size, while the numerator diverges more
slowly or stays finite. This is the conventional situation for
systems which are critical or exhibit spontaneous symmetry
breaking in the thermodynamic limit. In this case the diverg-
ing static structure factors drives the gap to zero, but only for
the infinite system. �ii� The numerator vanishes, while the
denominator does not vanish. A sufficient condition for the
numerator to vanish is if the structure factor operator O�k�
commutes with the Hamiltonian.

If we now choose for the operator O�k� the spin quadru-
polar structure factor at zero momentum: i.e., Q�0�
=1/�L �i��Sz�i

2−2/3� we realize scenario �ii� at the special
SU�3� point �=−3� /4. For this specific value Q�0� com-
mutes with the Hamiltonian and therefore the numerator is
zero. Numerically we find that the denominator is different
from zero. This means that there is at least a level with S
=2 which is degenerate with the ground state already on
finite size samples.17 The reason which makes the numerical
analysis for ��−3� /4 so difficult is that there is a continu-
ity in the wave function as a function of � when approaching
the SU�3� point from above. On one hand we know that the
commutator �Q�0� ,H���� will vanish continuously as we ap-
proach −3� /4+, on the other hand we find numerically that
the denominator �the ferroquadrupolar structure factor�
grows rapidly as a function of the accessible system sizes,
see the full symbols in the right panel of Fig. 6. So these two
factors cooperate in giving an anomalously small SMA en-
ergy �k, which is an upper bound to the measured gap.

IV. TWO COUPLED CHAINS

We have seen considerable difficulty in the preceding sec-
tion to actually decide whether the dimerization vanishes be-
fore reaching �=−3� /4. One potential way of circumventing
the spontaneous dimerization of a single chain is to consider
two coupled chains in a ladder geometry. It seems rather
natural to assume that the dimerization of a single chain dis-
appears once the coupling on the rung is sufficiently strong.
We will substantiate this claim using numerical simulations
below. The ladder model is also a first step towards a realistic
setup of spin-1 bosonic atoms in optical lattices, where a
finite interchain coupling can easily be generated. The ladder
Hamiltonian is given as follows:

H = J�
i,n

cos ��Si,n · Si+1,n� + sin ��Si,n · Si+1,n�2

+ K�
i

cos ��Si,1 · Si,2� + sin ��Si,1 · Si,2�2, �12�

where Si,n denotes a spin-one operator at position i on chain
n� �1,2�. In the following we choose K ,J�0 and vary � as
well as K /J�0, where the limit K /J=0 corresponds to de-
coupled chains and J /K=0 to decoupled rung dimers.

For �=0 the Hamiltonian �12� describes a conventional
S=1 Heisenberg spin ladder.25,40 Interestingly, for this spe-
cial case Todo et al.25 have shown numerically that the finite
gap of the single chain does not close for any K /J, i.e., two
points on the K /J axis can be reached without any second

FIG. 8. �Color online� Hypothetical conformal field theory pa-
rameters calculated in ED on chains of 8 up to 18 sites. The scaling
dimensions of the singlet �k=��, and the quintuplet �k=0� field are
shown. Inset: effective central charge. The value at the boundary of
the critical region ��	−0.67�� is c	3/2.
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order quantum phase transition in between. They also gener-
alized the string order parameter of a single chain to a more
complicated nonlocal operator which is nonzero for any fi-
nite value of K /J, therefore showing that this phase is also
topologically ordered.25 In the following we will show that
this gapped spin liquid state at �=0 extends deeply into the
region ��0, and for sufficiently large K /J even to −3� /4+.
While the ground state is always protected by a finite gap,
the nature of the lowest excitation changes as a function of �.
For �� �−� /2 ,0� the lowest excitation carries S=1, while
for �� �−3� /4 ,−� /2� it carries S=2. In the absence of
dimerization such a state on the ladder where the lowest
excitation is of ferroquadrupolar nature, is very close in spirit
to the long-sought gapped nematic phase initially proposed
by Chubukov8 for the single chain. The phase diagram of
two coupled chains with �� �−� ,0� and K /J� �0,1� is
shown in Fig. 9. We expect the extended gapped phase to
continue up to the rung dimer limit J /K=0, similar to the
results for �=0.25,40

Let us now describe the simulation results which lead to
the phase diagram presented in Fig. 9. First we discuss the
behavior of the dimerization of the single chain upon cou-
pling two chains. To this end we performed DMRG calcula-
tions on ladder systems of sizes up to 2�256 sites. We have
determined the boundary of the dimerized phase using finite
size extrapolations of the remnant dimerization in the middle
of a chain.41 assuming a columnar dimer arrangement on the
two chains.42,44 An example for such finite size data is shown
for �=−� /2 in Fig. 10. We expect the dimerization in the
middle of the chain to converge to a finite value for 1 /L
→0 in a dimerized phase, and to exhibit an exponential drop
upon reaching the correlation length of a disordered phase.
These two distinct behaviors can be seen in Fig. 10 for the
values K /J=0,0.1,0,125 and K /J=0.15,0.175,0.2,0.3, re-
spectively. This leads us to the conclusion of a critical ratio
�K /J�c=0.1375±0.0125 at �=−� /2, below which the ladder
is still dimerized. The evolution of the values of �K /J�c with
� is shown in Fig. 9. The dimerized phase is most stable
close to �=−� /2, and seems to vanish linearly upon ap-

proaching the BT point at−� /4, similar to the case of ex-
plicit dimerization for a single chain.43 On the other side,
however, the dimerization boundary drops rapidly and be-
comes very small once �
−0.7�. Similar to the single chain
case it is very difficult to decide whether the dimerized phase
ceases to exist before −3� /4 or not. In the ladder case, how-
ever, this implies that for a finite—but very small—
interchain coupling the spontaneous dimerization �if any� of
a single chain vanishes.

Next we investigate the behavior of the spin gap in the
nondimerized phase. We performed DMRG calculations for
a fixed value of K /J=1. The results for the gap to the lowest
Sz=1 state are plotted in Fig. 11 for system sizes 2�L with
L=32,64,128. Starting at �=0 where we find good agree-
ment with the high-precision QMC gap from Ref. 25, the gap
grows monotonously until reaching the bipartite SU�3� point
at �=−� /2. There we observe a level crossing, and the gap
decreases for ��−� /2. Note that at this special point the
total spin quantum number of the lowest level changes.

FIG. 9. �Color online� Phase diagram of two coupled bilinear-
biquadratic S=1 chains. The dimerization along the chains is rap-
idly suppressed by a finite interchain coupling. The dominating
phase is a unique gapped phase which is adiabatically connected to
the Haldane phase of two isolated Heisenberg chains.

FIG. 10. �Color online� Finite size scaling of the dimerization
measured in the middle of a ladder as a function of K /J. It can be
clearly seen that the dimerization extrapolates to a finite value for
K /J�0.125, while it tends to zero for K /J�0.15.

FIG. 11. �Color online� Evolution of the spin gap for constant
K /J=1 as a function of �� �−3� /4 ,0�. The nature of the gap
changes at the SU�3� point �=−� /2, from a S=1 state for �
�−� /2 to a S=2 state for ��−� /2. The QMC value of the gap at
�=0 is from Ref. 25.
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While it is a S=1 state for ��−� /2, the lowest levels carries
S=2 for ��−� /2. Similar to the single chain case discussed
in Sec. III A, we detect a very small gap for � close to
−3� /4. This anomalously small S=2 gap can again be un-
derstood using a single mode approximation argument, along
the lines of Sec. III C 2, the extension of the argument to the
ladder case being straightforward. We take this dichotomy of
the gap as a first indication that the SU�3� line ��=−� /2�
constitutes a crossover line inside the extended gapped
phase, where the spin-spin correlations dominate for �
	−� /2, while we expect dominant short-ranged spin nem-
atic ferroquadrupolar correlations for �
−� /2. Our gap re-
sults give evidence that the ground state for � close to −3� /4
adiabatically connects to the “plaquette singlet solid” phase,
which is itself connected to the Haldane phase of the isolated
chains. This would also imply that the whole phase is char-
acterized by a finite nonlocal order parameter. It would be
interesting to investigate this order in a future work.

V. CONCLUSIONS

To summarize, we have shown that spin nematic correla-
tions in the form of quadrupolar correlations play an impor-
tant role in the phase diagram of single or coupled S=1
bilinear-biquadratic chains. We first addressed the long-
standing question of the nature of the dominant correlations
in the gapless period-three phase, where we uncovered the

spin quadrupolar correlations at k= ±2� /3 as the leading
ones. We critically discussed the phase diagram close to the
SU�3� point at �=−3� /4 and by assembling several numeri-
cal and analytical results concluded that an unconventional
crossover phenomenon is at the heart of the considerable
difficulty in settling the issue on the existence or absence of
the gapped nematic phase put forward by Chubukov.8 Finally
we studied two coupled bilinear-biquadratic chains in a lad-
der geometry and found an extended gapped phase which is
surprising in two respects: first it realizes a variant of Chu-
bukov’s nematic phase, i.e., a gapped, nondimerized phase
with dominant spin-nematic correlations for �
−� /2, and
second, this phase is adiabatically connected to the standard
S=1 Heisenberg ��=0� ladder, and therefore also connected
to the Haldane phase of single chains, as shown by Todo et
al.25
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