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Classical spin spirals in frustrated magnets from free-fermion band topology
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The formation of coplanar spin spirals is a common motif in the magnetic ordering of many frustrated magnets.
For classical antiferromagnets, geometric frustration can lead to a massively degenerate ground state manifold
of spirals whose propagation vectors can be described, depending on the lattice geometry, by points (triangular),
lines (fcc), surfaces (frustrated diamond), or completely flat bands (pyrochlore). Here we demonstrate an exact
mathematical correspondence of these spiral manifolds of classical antiferromagnets with the Fermi surfaces of
free-fermion band structures. We provide an explicit lattice construction relating the frustrated spin model to a
corresponding free-fermion tight-binding model. Examples of this correspondence relate the 120◦ order of the
triangular lattice antiferromagnet to the Dirac nodal structure of the honeycomb tight-binding model or the spiral
line manifold of the fcc antiferromagnet to the Dirac nodal line of the diamond tight-binding model. We discuss
implications of topological band structures in the fermionic system for the corresponding classical spin system.
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I. INTRODUCTION

In frustrated magnets, competing interactions give rise to
many nearly degenerate low-energy states and a characteristic
residual entropy down to zero temperature [1]. In the presence
of such an abundance of low-energy states, these magnets
oftentimes evade thermal ordering around the Curie-Weiss
temperature as the system remains fluctuating within the
manifold of nearly degenerate states down to considerably
lower temperature scales, giving rise to a regime that is
commonly referred to as a cooperative paramagnet or spin
liquid [2]. The emergence of such a massive degeneracy
of distinct ground states is sometimes coined “accidental”
as there is no distinct symmetry mechanism protecting it
or instigating it in the first place. Nevertheless, for specific
systems one can find elegant ways to describe the physics of
such highly degenerate ground state manifolds. This includes
the emergence of Coulomb phases [3] in the presence of local
constraints (as, for instance, in spin ice [4]) or the formation
of spiral surfaces [5–8] in a broad family of geometrically
frustrated Heisenberg antiferromagnets, which will be of
interest in this paper.

For classical Heisenberg antiferromagnets it has long been
appreciated that competing interactions generically lead to
the formation of coplanar spin spirals [9–11]. Indeed, spin
spirals are a ubiquitous motif in the magnetic ordering
of many frustrated magnets [12]. With a single coplanar
spiral being uniquely described by a propagation vector
(indicating its direction and pitch), one can express sets of
degenerate spiral states by the manifold of their respective
propagation vectors. For instance, the two possible orientations
of the 120◦ order of the triangular lattice antiferromagnet,
illustrated in Fig. 1, are captured by the two propagation
vectors �q = (2π/

√
3, ± 2π/3). The multitude of degenerate

ground states of the fcc antiferromagnet can be described
by all q-vectors along a line in reciprocal space [5]. Even
higher degeneracies are encountered for frustrated diamond
lattice antiferromagnets (with both nearest and next-nearest
neighbor couplings) where the spiral propagation vectors form
a two-dimensional surface [6], as illustrated in Fig. 2, and the
pyrochlore antiferromagnet where any propagation vector in

the volume of the Brillouin zone is permissible [7,8], thus
indicating an extensive degeneracy.

Given this variety of distinct spiral manifolds in reciprocal
space what inevitably comes to mind is a striking resemblance
to Fermi surfaces of electronic systems. While in most
metals the conductance and valence bands touch along a
two-dimensional Fermi surface, some semimetals exhibit band
touchings confined to nodal lines or even single points, as in
the case of Dirac or Weyl semimetals [13]. It is thus natural
to ask whether one can make a one-to-one correspondence
between spiral manifolds and Fermi surfaces. However, it is
far from obvious that one can establish any correspondence at
all, since one is dealing with a manifold of minimal-energy
ground states in a classical system on the one hand, and
with a manifold of mid-energy states (at the Fermi level) in
a quantum system on the other hand. In addition, the classical
and quantum systems in such a correspondence must have
the same spatial dimensionality, which is adverse to the often
employed correspondence between a quantum system in d

spatial dimensions and a classical system in d + 1 spatial
dimensions.

It is the purpose of this paper to describe exactly such
a correspondence between spiral manifolds in frustrated
classical antiferromagnets and Fermi surfaces in electronic
systems captured by simple free-fermion tight-binding models.

FIG. 1. Coplanar spirals. (a) A coplanar spin spiral can be
described by a single propagation vector �q in reciprocal space
indicating its direction and pitch. (b) The 120◦ order of the triangular
lattice antiferromagnet is a familiar example of a spin spiral. The
two possible orientations correspond to propagation vectors �q =
(2π/

√
3, ± 2π/3), respectively.
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FIG. 2. Spiral manifolds. Geometrically frustrated classical an-
tiferromagnets on the triangular, fcc, and frustrated diamond lattice
exhibit degenerate spiral ground states whose propagation vectors
form distinct manifolds in reciprocal space. The variety of mani-
folds is strikingly reminiscent of nodal structure/Fermi surfaces of
electronic systems as indicated in the bottom line.

The basic idea is that by squaring the Hamiltonian of the
fermionic system one can move the states at the Fermi level
(EF = 0) of a tight-binding Hamiltonian (with symmetric
energy spectrum) to turn into its minimal eigenvalues. Using
precisely this idea, one can then formulate a general matrix
identity

M(�k) = H(�k)2 − E0 · 1 (1)

that relates the Fourier-transformed spin-coupling matrix M(�k)
and its minimal eigenvalues (plus associated eigenvectors) to
the tight-binding matrix H(�k) of a corresponding free-fermion
system and its eigenvalues (plus associated eigenvectors). The
additional offset −E0 is precisely the ground-state energy of
the classical spin system. The above matrix correspondence
thereby allows us to establish a rigorous connection between
the highly degenerate ground states of the spin system and
nodal features of the fermionic band structure and pinpoints
the sought-after identification of spiral surfaces and Fermi sur-
faces. In addition, we provide an explicit lattice construction
that allows us to connect specific spin and fermion lattice mod-
els on the left and right hand sides of the matrix correspondence
(1). Specifically, this lattice construction gives an explicit
meaning to the “squaring” of the fermionic Hamiltonian—it
is the sublattice of next-nearest neighbor sites in the fermion
lattice that can be identified with the respective spin lattice.
Vice versa, going from the spin model to the fermion model
(i.e., taking a “square root”) is achieved by systematically
replacing fully connected plaquettes (such as triangles) of the
spin lattice with individual sites of the corresponding fermion
lattice. Examples of this construction relate, for instance, the
120◦ order of the triangular lattice antiferromagnet to the Dirac
nodal structure of the honeycomb tight-binding model or the
spiral line manifold of the fcc antiferromagnet to the Dirac
nodal line of the diamond tight-binding model. A number of
further examples of this correspondence are summarized in
Table I.

The matrix correspondence (1) and its associated lattice
construction allow us to reveal a number of additional
connections. For instance, one can ask how topological aspects
of the fermionic band structure play out in the classical
magnet—a perspective which we will discuss along general
symmetry arguments by considering the free-fermion models
of (1) in terms of the classification of topological insulators
[14–16] rooted in the symmetry classification of free-fermion
systems [17]. We will also consider more specific situations

TABLE I. Overview of results. The matrix correspondence (1)
relates frustrated Heisenberg antiferromagnets on the lattice given in
the first column to a free-fermion tight-binding model on the lattice
given in the fourth column. In the central (third) column we provide
the nodal structure that simultaneously describes the spiral manifold
of the spin model and the Fermi surface of the electronic model. The
second column indicates that the Luttinger-Tisza (LT) approximation
[26,27] is fully valid for all spin models considered in this table. The
fifth column indicates the symmetry class of the tight-binding model
in the 10-fold way classification of free-fermion models [17]. The
lattice descriptor bi-honeycomb refers to a bilayer honeycomb lattice.
The lattice descriptor honeycomb-x denotes an extended honeycomb
lattice as illustrated in Fig. 8.

free fermions

Heisenberg spins nodal lattice symmetry

lattice LT structure class

triangular � points honeycomb BDI
fcc � lines diamond

honeycomb J1-J2 � line bi-honeycomb BDI
diamond J1-J2 � surface bi-diamond
bcc J1-J ∗

2 � surface bi-bcc

kagome � flat band honeycomb-x BDI
pyrochlore � flat band diamond-x

and discuss the occurrence and absence of edge states or the
effect of strain in triangular lattice antiferromagnets. Vice
versa, identifying spin systems with extensive ground-state
degeneracies allows to engineer fermionic band structures with
completely flat bands—an essential ingredient, for instance,
for models of interacting electrons exhibiting fractional Chern
insulators [18–22].

Before we indulge in a detailed discussion of our results
in the remainder of the paper, we note that identifying such
a general matrix correspondence (1) between a classical
system and free-fermion quantum system (of identical spatial
dimensionality) is reminiscent of the recent work of Kane
and Lubensky [23] introducing the concept of “topological
mechanics,” which is based on a similar matrix correspondence
between the classical Hamiltonian describing zero-frequency
“floppy modes” of an isostatic lattice and a free-fermion
Hamiltonian of the same spatial dimensionality. Our work also
connects to the earlier identification of parallels of classical
normal modes in disordered systems and disordered, noninter-
acting fermion systems by Gurarie and Chalker [24,25].

The remainder of this paper is organized as follows. We
will derive the spin-fermion correspondence in Sec. II. This
includes a brief review of the Luttinger-Tisza approximation
for classical spin models and the tight-binding calculation
for free-fermion models in Sec. II A that motivates in rather
general terms the matrix correspondence of Eq. (1). Sec-
tion II C 2 is devoted to an explicit lattice construction relating
the spin and free-fermion models summarized in Table I above.
We close Sec. II with a discussion of the general symmetry
properties of the fermionic models in terms of the 10-fold way
symmetry classification. Multiple case studies of the spin-
fermion correspondence are discussed in Sec. III including
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magnetic Bravais and non-Bravais lattices as well as J1-J2

Heisenberg models on a variety of underlying lattices. Finally,
in Sec. IV we discuss aspects of topological band structures
in the free-fermion models with regard to the corresponding
spin models. We close with a discussion in Sec. V and round
off the paper with an Appendix providing a short discussion of
the validity/breakdown of the Luttinger-Tisza approximation.

II. SPIN-FERMION CORRESPONDENCE

To formally derive the spin-fermion correspondence in this
section we proceed in multiple steps. We start by pointing
out a number of analogies between the Luttinger-Tisza
method to identify spiral ground states in classical Heisenberg
spin models and tight-binding calculations for free-fermion
systems. These observations naturally lead to the identification
of the matrix correspondence (1). We then proceed to discuss
a lattice correspondence that allows us to explicitly construct
a classical spin model from a free-fermion model and vice
versa. We conclude this formal part with a discussion of the
symmetries of the free-fermion Hamiltonians considered in
this spin-fermion correspondence and their classification in
terms of the 10-fold way symmetry classification.

A. Luttinger-Tisza versus tight-binding calculations

Our spin-fermion correspondence is rooted in an analogy of
the Luttinger-Tisza approach to classical Heisenberg models
and tight-binding calculations of free-fermion systems. To set
the stage, we start by shortly recapitulating the main steps in
both approaches.

1. Luttinger-Tisza method for classical spin systems

The Luttinger-Tisza method [26,27] is a rather general
approach to identify the ground states of a classical Heisenberg
model. Its principal idea is to soften the constraint that all
spins must have equal length while minimizing the energy,
and to identify the true ground state(s) of the spin system by
those minimal eigenstate(s) that meet the original hard spin
constraint. It is this softening of the spin constraint that allows
to find the energy minimum in a straightforward manner via a
diagonalization of the interaction matrix in momentum space.

Let us discuss this approach by starting from a generic
Heisenberg model

Hspin =
∑
i,j

Jij
�Si · �Sj (2)

defined on a lattice with arbitrary interactions Jij between
O(3) spins on sites i and j . We can rewrite this Hamiltonian
as a sum over real-space coordinates

Hspin = 1

2

∑
�r

∑
A,B

∑
�μ

JAB( �μ) �SA(�r ) · �SB(�r + �μ ), (3)

where �r runs over all unit cells, the indices A and B indicate
the sites within the unit cell (for a non-Bravais lattice), and
the vectors �μ run over all connections between coupled
sites. To obtain the energy minima of this Hamiltonian one
first performs a component-wise Fourier transformation to

momentum space yielding for each component

Hspin =
∑

�k

∑
A,B

SA
�k MA,B(�k) SB

−�k, (4)

where MA,B(�k) is the Fourier-transformed interaction matrix

MA,B(�k) = 1
2

∑
�μ

JAB( �μ) e−i�k �μ (5)

of dimensionality n × n for a lattice with n sites per unit cell.
This Fourier-transformed interaction matrix can be readily
diagonalized allowing us to identify the momenta �k with
minimal energy eigenvalues. This manifold of minimal �k-
vectors can be captured via

det[M(�k) − E · 1] = 0, (6)

where E is the ground-state energy. The corresponding
eigenvectors allow us to reconstruct the real-space spin
configurations via an inverse Fourier transformation, which
for eigenvectors obeying the original hard spin constraint
generically yields a coplanar spin spiral of the form

�SA(�r) = Re
[
(�u + i�v)SA

�k ei�k�r], (7)

where the vectors �u and �v span an arbitrary plane in the O(3)
spin space.

2. Tight-binding calculation for free fermions

The diagonalization of a real-space Hamiltonian via a
Fourier transformation to momentum space is, of course, a
rather well known procedure frequently employed in the study
of lattice systems. Probably the most elementary example is
its application to the solution of free-fermion Hamiltonians,
which in real space take the tight-binding form

Hfermion =
∑
i,j

tij c
†
i cj + H.c., (8)

where c
†
i and cj are fermionic creation and annihilation opera-

tors (acting at sites i and j , respectively) and the tij indicate the
hopping strength. Applying a Fourier transformation allows us
to write this Hamiltonian in momentum space as

Hfermion =
∑

�k

∑
A,B

c
†
A,�k HA,B(�k) c

B,�k, (9)

where the Fourier-transformed hopping matrix takes the form

HA,B(�k) =
∑

�δ
tAB(�δ ) e−i�k�δ, (10)

which is again an n × n matrix for a lattice with n sites in
the unit cell. The Fermi surface (at EF = 0 for the half-filled
model at hand) can then be readily identified with the manifold
of �k-vectors satisfying

det[H(�k)] = 0. (11)

Note that for the fermionic system there is no additional
constraint on the eigenvectors; each eigenstate at the Fermi
energy constitutes a valid solution.
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B. Matrix correspondence

As presented above, there is a close analogy between
each step in the Luttinger-Tisza (LT) approach and the
tight-binding calculation. After Fourier transformation of the
original real-space Hamiltonians both yield n × n matrices
in momentum space that have matching forms; see Eqs. (5)
and (10). Diagonalizing these matrices yields in both cases
a momentum-resolved energy spectrum with n bands. But
while in the LT approach one is interested in the global energy
minimum and the manifold of spin spiral states defined by (6),
the Fermi surface physics of the fermion model plays out in
the middle of the energy spectrum (11). As such one cannot
expect that for any given lattice the spin spiral manifold and the
Fermi surface coincide when simply identifying the interaction
parameters Jij and tij of the corresponding spin and fermion
lattice models.

To establish an identification of a spin spiral surface with
a Fermi surface, one thus has to go an extra step. The crucial
idea is to square the fermion interaction matrix

H(�k), εj �→ H(�k)2, ε2
j , (12)

which squares all its eigenvalues εj and thereby moves its zero-
energy eigenvalues to the bottom of the spectrum. In addition,
one can shift these newly constructed minimal eigenvalues of
the squared fermion matrix by an arbitrary constant E0:

H(�k)2, ε2
j �→ H(�k)2 − E0 · 1, ε2

j − E0. (13)

If we now consider a spin system whose interaction matrix
precisely matches this latter form

M(�k) ≡ H(�k)2 − E0 · 1,

then all minimal eigenvalues of M(�k) correspond exactly to
the zero eigenvalues of H(�k). As such, the spin spiral surface
defined by (6) matches precisely the Fermi surface of (11) and
the ground-state energy of the spin system equals E0.

This correspondence on the level of the interaction matrices
is of rather universal character as it lays a general connection
between a minimization problem (finding the ground state
of a classical spin system) and the well-known Fermi surface
physics of free fermions. However, on this general level it does
not readily imply a precise recipe for how to identify the spin
and fermion lattice models underlying the interaction matrices
on the left and right hand sides of this matrix correspondence.

C. Lattice construction

One way to realize the spin fermion correspondence (1) is to
explicitly compose matching pairs of spin and fermion lattice
models whose interaction matrices by construction satisfy the
matrix correspondence. In the following, we will discuss an
explicit lattice construction that works both ways—either by
starting from a given fermion lattice model and constructing
the corresponding spin model or, vice versa, starting from a
given spin model and constructing the corresponding fermion
model.

1. Fermions to spins

To set the stage, let us start with a free fermion model on a
given lattice and ask how we can explicitly construct a classical

(a) (b)

FIG. 3. Spin lattice construction. Mapping the lattice of hopping
fermions on a lattice of interacting spins by squaring the hopping
matrix yields chained connections. These can be interpreted as a new
connection. Diagonal elements are handled with care.

spin model so that their respective interaction matrices will
satisfy the matrix correspondence (1). The key observation
of that correspondence is that one has to square the fermion
matrix to match it to a spin model. This squaring has a direct
interpretation in terms of the lattices underlying the pair of
corresponding spin and fermion models; the lattice underlying
the classical spin model is simply given by the next-nearest
neighbor lattice of the fermion model as we will argue in the
following.

To be specific, consider an element of the squared fermionic
hopping matrix (10) given by

(H2)A,B(�k) =
∑
C

∑
�δ1,�δ2

tAC(�δ1) tCB(�δ2) e−i�k(�δ1+�δ2), (14)

which describes a hopping process between sites A and B

through all possible intermediate sites C as illustrated in Fig. 3.
In the language of the fermion model, this process describes
a next-nearest neighbor hopping. Our goal here, however, is
to interpret this matrix element as an element of the to-be-
constructed spin interaction matrix (5). This can be readily
accomplished by identifying

JAB( �μ) = 2
∑
C

tAC(�δ1) tCB(�δ2), (15)

where �μ = �δ1 + �δ2. Note that one has to carefully distinguish
the cases of �μ 	= 0 and �μ = 0. For �μ 	= 0 the fermionic
hopping process always leads to a next-nearest neighbor
site and can therefore always be identified as a contribution
to the spin interaction matrix M(�k). Diagonal/off-diagonal
matrix elements naturally arise if the labels of the connected
next-nearest neighbor sites are equal/distinct (with the former
case requiring the two sites to reside in different unit cells). In
contrast, for �μ = 0 the fermion hopping describes a process
returning to the original site as illustrated in Fig. 3(b). This
generically leads to a �k-independent diagonal matrix with
elements

E∗
AA =

∑
C,�δ

∣∣∣tAC(�δ )
∣∣∣2

(16)

that describe all hopping processes from a site to its neighbors
and back.

The squared fermionic interaction matrix thus naturally
decomposes into the spin interaction matrix and an additional
�k-independent diagonal matrix

H2(�k) = M(�k) + E∗. (17)
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FIG. 4. Fermion lattice construction. Mapping plaquettes of the
fermion lattice (middle) to the resulting parts in the spin lattice (right).
One can easily see that in a bipartite lattice all sites of one type form
one individual sublattice. Therefore, this procedure is taken as a
controlled way to map a spin lattice to a fermion lattice.

By construction the spin interaction matrix M(�k) is restricted
to the lattice spanned by the next-nearest neighbor bonds
of the original fermion lattice. For a bipartite lattice this
leads to a decomposition of the lattice into its two sublattices
and the newly constructed spin model is restricted to these
individual sublattices. An elementary example is the fermionic
honeycomb model, which decomposes into two triangular
sublattices which underly the newly constructed spin model.
Turning to the �k-independent diagonal matrix E∗ we observe
that this matrix typically has identical diagonal elements. For
a large number of lattices this traces back to the fact that lattice
symmetries require all sites to have the same local connectivity.
For these lattices, the diagonal matrix E∗ can be expressed as
E∗ = E0 · 1, where by construction −E0 must be equal to
the lowest eigenvalue of the spin interaction matrix M(�k),
since they sum to zero—the lowest eigenvalue of the squared
fermion matrix in Eq. (17). This implies that −E0 is the
ground-state energy of the spin model. In our example sections,
we will return to this point and discuss several instances of this
correspondence including cases where multiple distinct entries
in the diagonal matrix E∗ occur.

2. Spins to fermions

We now turn to the inverse direction and ask how one
can explicitly construct a fermion model from a given spin
model. In the language of the matrix correspondence (1) this
corresponds to “taking the square root” of the spin interaction
matrix. While this might be a formidable task, we note that
in the fermion to spin model construction, the squaring of the
fermion matrix translated into an explicit lattice construction. It
is precisely this lattice construction that allows for a relatively
straightforward inversion and thereby allows us to lay out an
explicit procedure on how to construct a fermion model as the
“square root” of a given spin model.

In the fermion to spin model construction (described in the
previous subsection) we have seen that for bipartite fermion
lattices the squaring of the hopping matrix H has led to a
decomposition of the original lattice into its sublattices. In
particular, as illustrated in Fig. 4, this decoupling transforms
elementary z-coordinated sites of the fermion lattice into fully

connected plaquettes of z sites in the corresponding spin
lattice. Thus, in an inverse construction going from a spin to a
fermion model one has to invert precisely this step by replacing
all fully connected plaquettes of z sites by newly added
z-coordinated sites. Noting that fully connected plaquettes
of z sites naturally contain all fully connected plaquettes of
smaller sizes (e.g., the checkerboard plaquette in the bottom
row of Fig. 4 contains four triangular plaquettes), one has
to replace the fully connected plaquettes of any given spin
lattice by decreasing size. Further note that the insertion of
additional sites upon replacing fully connected plaquettes in
the spin lattice is precisely what gives rise to the bipartite
structure of the fermion lattice. Note that these added sites
constitute the second sublattice that does not necessarily have
to be identical to the original spin lattice. This readily implies
a deeper connection also between these two spin models—a
point to which we will return below.

This geometric construction of the fermion model is a fully
consistent inversion of the fermion to spin model construction;
i.e., by subsequently applying both lattice constructions one
indeed returns to the original spin or fermion model. This is
illustrated for the elementary lattice motives in Fig. 4 and
fleshed out for a large number of lattices in the example
sections.

D. Symmetry classification

One instructive way to think about the spin-fermion
correspondence laid out in this paper is to classify the types of
free-fermion models which can arise in this correspondence
in terms of the 10-fold way symmetry classification [17]. To
do so, we note that the mapping of a spin model to a fermion
model in our correspondence leads to a free spinless fermion
model on a bipartite lattice. The fermionic hopping matrix will
take the general block form

H =
(

0 Q
Q† 0

)
, (18)

where the two off-diagonal subblocks correspond to the
hopping matrices between the two sublattices. In general,
these blocks are matrices of dimensionality n × m, where
n and m indicate the number of sites in the unit cells
of the two sublattices (and which do not necessarily have
to be identical). With this matrix form the fermion model
naturally falls into one of the chiral symmetry classes. Upon
further inspection, one finds that the Hamiltonian exhibits
time-reversal symmetry, particle-hole symmetry (at half fill-
ing), and sublattice symmetry. As such the fermion system
generically resides in symmetry class BDI of the 10-fold way
classification [17].

Further symmetry considerations

In passing we note that squaring a free fermion matrix of
the general form (18) yields a block-diagonal matrix

H2 =
(

QQ† 0
0 Q†Q

)
(19)

that via our matrix correspondence is directly related to the spin
interaction matrix M. The two blocks QQ† and Q†Q capture
the spin interactions on the two sublattices of the fermion
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lattice, respectively. Note that for the case m 	= n, i.e., when
the two sublattices have unit cells of different sizes, the spin
models with the larger number of sites per unit cell will have
|m − n| flat bands at its ground-state energy. Analogously, the
respective fermion model will have a corresponding number
of flat bands at the Fermi energy. This can be seen from the
fact that if m 	= n, then the matrix rank of Q is the minimum of
m and n, and the higher-dimensional block of QQ† and Q†Q
will have a kernel of dimension |m − n|. Like before, these
zero-energy eigenvalues (of the fermion hopping matrix) will
be shifted to match the ground-state energy of the respective
spin model via our matrix correspondence.

III. CASE STUDIES

We now turn to a number of case studies illustrating the
spin-fermion correspondence. Our guiding motif in choosing
these examples is to start from a frustrated Heisenberg model
on some magnetic lattice and to construct the corresponding
fermion lattice model. We start with the simplest scenario—
frustrated magnets defined on Bravais lattices such as the
triangular lattice or the fcc lattice. We then turn to non-Bravais
lattices, for which additional care in checking the validity of the
Luttinger-Tisza approach is needed. Specifically, we consider
the Heisenberg models on the kagome and pyrochlore lattices.
As an additional variation we consider J1-J2 Heisenberg
models with both nearest and next-nearest neighbor spin
exchange on a variety of lattices.

Going through these examples we will present (multiple)
instances of frustrated magnets where the ground-state spin
spiral manifold is captured by points, lines, surfaces, or entire
Brillouin zone volumes. A summary is given in Table I.

A. Magnetic Bravais lattices

As a first set of examples we consider frustrated Heisenberg
antiferromagnets defined on Bravais lattices. For these partic-
ularly simple lattices, the Luttinger-Tisza approach is known
to be exact [28]; i.e., all minimal-energy states must satisfy the
hard spin constraint and therefore capture a valid ground state
of the magnetic system.

1. Triangular lattice

A most illustrative example to start with is the triangular
lattice Heisenberg antiferromagnet. Its corresponding fermion
model is defined on the honeycomb lattice, which follows di-
rectly from the lattice construction discussed in Sec. II C. This
can be easily seen by inspecting the two lattices as illustrated
in Fig. 5. Starting from the fermionic honeycomb lattice, one
immediately finds that the sublattices spanned by next-nearest
neighbor bonds are indeed triangular lattices. Going in the
other direction works in a similarly straightforward way by
replacing all up-pointing triangles in the triangular lattice with
tricoordinated sites, which immediately yields the honeycomb
lattice. Note that only one type of triangle needs to be replaced
in this reverse lattice construction as this will already suffice
to replace all bonds in the original triangular lattice.

In the spirit of the spin-fermion correspondence we can
now proceed to discuss the ground state of the triangular
lattice antiferromagnet by identifying it with the well-known

FIG. 5. The triangular lattice with spatially anisotropic couplings
indicated by the bold and dashed lines. The corresponding fermion
model is defined on the honeycomb lattice with similarly spatially
anisotropic couplings.

Dirac physics of free fermions on the honeycomb lattice.
To do this, let us quickly recap the elementary free-fermion
calculation on the honeycomb lattice in the language of the
previous section. Considering isotropic hopping along all
nearest-neighbor bonds the hopping matrix for the honeycomb
lattice with its two-site unit cell takes the well-known form

H(�k) =
(

0 f (�k)
f ∗(�k) 0

)
, (20)

where the off-diagonal matrix elements are given by f (�k) =
t(e−i�k�δ1 + e−i�k�δ2 + e−i�k�δ3 ) with nearest neighbor bonds along
�δ1 = (1/

√
3,0) and �δ2,3 = (−1/2

√
3, ± 1/2). Diagonalizing

the hopping matrix (20) gives the two-band energy spectrum

ε±(�k) = ±
√

f ∗(�k)f (�k) with its two characteristic Dirac cones
located at

�k1,2 =
(

2π√
3
, ± 2π

3

)
. (21)

The nodal structure of the honeycomb fermion model is thus
constituted by precisely these two points.

We can now turn to the triangular lattice antiferromagnet.
Quickly going through the Luttinger-Tisza approach we can
write down the interaction “matrix” M(�k), which for the
triangular lattice with its single site in the unit cell reduces
to a real function. It is explicitly given by

M(�k) = J ( cos[�k(�a1 + �a2)/3] + cos[�k(−2�a1 + �a2)/3]

+ cos[�k(�a1 − 2�a2)/3]).

The minima of this function, E0 = −3/2J , are located at
the two �k points (2π/

√
3, ± 2π/3). These two minima

describe two spin spiral states—the two possible orienta-
tions of the well-known 120◦ order of the triangular lattice
antiferromagnet.

With these two elementary calculations in place, we can
now see how the spin-fermion correspondence plays out
in this example. The 120◦ order of the triangular lattice
antiferromagnet is captured by precisely the two �k points
that indicate the location of the Dirac cones of the fermionic
honeycomb model. That is, the spin spiral manifold of the
triangular lattice model is precisely captured by the nodal
manifold of the fermionic honeycomb model.

To also establish this connection on the level of the original
matrix correspondence, we note that H(�k)2 is a 2 × 2 matrix
of the block-diagonal form

H(�k)2 =
(|f (�k)|2 0

0 |f (�k)|2
)
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(c)

(a) (b)

(d)

FIG. 6. Ground-state structure of the spin model on the triangular
lattice for anisotropic coupling. Varying the hopping amplitude t−
from t− = 1/3 to t− = 1/2 merges the 120◦ order points along the
edges of the Brillouin zone. For t− > 1/2 the fermion system develops
a gap so that the Fermi surface vanishes but the spin system stays
in an antiferromagnetic alignment in the ground state. Besides the
appearing k points, a visualization of the ground-state spiral on the
lattice is given.

≡
(

M(�k) − E0 0
0 M(�k) − E0

)
, (22)

where each diagonal block corresponds to the description of
one of the two triangular sublattices. Note that one could
have derived the numerical value of the ground-state energy
E0 from this correspondence via Eqs. (15) and (16) without
minimizing M(�k).

2. Anisotropic exchange

For the fermionic honeycomb model it is well known that
one can move the location of the Dirac points by introducing
a spatially anisotropic hopping. For instance, strengthening
the hopping along the horizontal bonds in the honeycomb
lattice (indicated by the dashed lines in Fig. 5) moves the two
Dirac cones towards each other along the line connecting the
K and K ′ points in the Brillouin zone. Via our spin-fermion
correspondence this immediately implies that an anisotropic
spin exchange in the triangular lattice antiferromagnet has the
exact same effect: the �k-vectors describing the two coplanar
spiral ground state configurations move towards one another
as illustrated in Fig. 6.

To be more specific, let us denote with t− and t〉 the hopping
along the horizontal and vertical zigzag bonds in the fermionic
honeycomb lattice, respectively. The corresponding triangular
spin model then exhibits an anisotropic spin exchange with
coupling constants J| and J× along the vertical and diagonal
coupling directions, respectively. The spin and fermion cou-
plings are related to one another via Eq. (15):

J× = 2 t−t〉 and J| = 2 t2
〉 .

With this relation of the couplings in place, the general form
of the matrix correspondence (22) holds for all values of the
couplings. Notably, this is in particular the case for t− > 2t〉
where the fermionic system exhibits a gap in the excitation
spectrum. For the corresponding spin couplings the magnetic
ordering remains fixed in the Néel state, captured by �k =

FIG. 7. The geometrically frustrated Heisenberg antiferromagnet
on the fcc lattice (left) is related via the spin-fermion correspondence
to free fermions on the diamond lattice (right). Their common
spiral/Fermi surface is shown in the middle panel.

(2π/
√

3,0)—the momentum which corresponds precisely to
the location of the gap in the fermionic band structure. By
virtue of the matrix correspondence (22) one can directly
calculate the size of the gap in the fermionic band structure as
�E = 2

√
E∗ − E0 = 4(t− − 1/2).

3. fcc lattice

As a second example of a magnetic Bravais lattice we con-
sider the Heisenberg antiferromagnet on the three-dimensional
face-centered cubic (fcc) lattice. Its corresponding fermion
model lives on the diamond lattice, which can be easily
seen by remembering that the diamond lattice consists of
two fcc sublattices. With the illustration of Fig. 7 at hand,
one can also see the inverse lattice correspondence; if one
replaces every up-pointing tetrahedron in the FCC lattice by
a four-coordinated site one instantly arrives at the diamond
lattice.

Turning to the spin spiral/nodal manifold of the respective
models, we find that these are described by two crossing lines
confined to the square-shaped faces of the Brilouin zone as
illustrated in the middle panel of Fig. 7.

B. Magnetic non-Bravais lattices

In considering examples for our spin-fermion correspon-
dence a natural next step is to consider Heisenberg an-
tiferromagnets on non-Bravais lattices. The latter include
some quintessential frustrated magnets such as the kagome
antiferromagnet in two spatial dimensions or the pyrochlore
antiferromagnet in three spatial dimensions. Both stand out as
they are known to exhibit an extensive ground-state degener-
acy. For both lattices, the source of this extensive degeneracy
can be tracked back to the lattice geometry of corner-sharing
triangle or tetrahedra, respectively, which gives rise to a local
constraint on the total spin of each triangle/tetrahedron [8]. We
will consider precisely these two examples in the following and
explicitly construct their corresponding fermion models.

Let us first consider the kagome antiferromagnet. With a
unit cell of three sites, one has to exercise care in performing
a Luttinger-Tisza calculation as it is no longer guaranteed
to result in valid ground states that obey the uniform spin
length constraint. Without enforcing the hard spin constraint,
one finds the Luttinger-Tisza spectrum [29–31] of Fig. 8.
The extensive ground-state degeneracy manifests itself in
the occurrence of a flat band at the minimal energy in this
spectrum. This flat band consists out of many single-k spirals
that themselves violate the hard-spin constraint but which
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1
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2

1

FIG. 8. Spectrum and flat bands of the spin model on the
kagome lattice as well as of the corresponding fermion model on
an extended honeycomb lattice. The fermionic spectrum (bottom)
is the positive/negative square root of the Luttinger-Tisza spectrum
(top). Note the threefold band crossing of a Dirac cone and a flat band
at the � point.

can be combined into multi-k states that in return satisfy the
Luttinger Tisza constraint. The corresponding fermion model
is readily constructed (via the lattice construction of Sec. II C)
by replacing all elementary triangles in the kagome lattice
by tricoordinated sites, which gives what we denote as the
extended honeycomb lattice illustrated in Fig. 8. The fermionic
spectrum contains five bands with a flat band residing precisely
at the Fermi energy. The origin of the flat band can be traced
back to the arguments presented in Sec. II D and noting that
the extended honeycomb lattice decomposes into two distinct
sublattices, a kagome and a honeycomb lattice, with differing
number of sites in the unit cell. Note that the fermionic
spectrum is indeed given by the positive/negative square root
of the Luttinger-Tisza spectrum of the spin model. Probably
the most notable feature of this fermionic spectrum beyond the
flat band is the Dirac cone crossing the flat band at the � point
(similarly to the spectrum of the Lieb lattice), an interesting
example of a high-degeneracy point (for a spinful fermion
model there is a sixfold degeneracy).

A similar picture emerges for the pyrochlore lattice.
With its four-site unit cell one obtains the Luttinger-Tisza
spectrum [7] of Fig. 9, which contains two degenerate flat
bands at the minimal energy indicative of the extensive
ground-state degeneracy. The corresponding fermion model
is obtained by replacing every elementary tetrahedron in
the pyrochlore lattice with a four-coordinated site resulting
in the extended diamond lattice (composed of a pyrochlore
and diamond sublattice) illustrated in Fig. 9. Its spectrum
is again given by the positive/negative square root of the
Luttinger-Tisza spectrum. Similarly to the two-dimensional
extended honeycomb model, probably its most notable feature
is an eightfold degeneracy at the � point (for a spinful fermion
model) where a Dirac cones crosses the two degenerate flat
bands. Such highly degenerate crossings (at high-symmetry
points in the Brillouin zone) are of fundamental interest [32,33]

1

0

1

2

3

2

1

0

1

2

FIG. 9. Spectrum and flat bands of the spin model on the
pyrochlore lattice as well as of the corresponding fermion model
on the diamond-x lattice. The fermionic spectrum (bottom) is the
positive/negative square root of the Luttinger-Tisza spectrum (top).
Note the fourfold band crossing of a Dirac cone and two flat bands at
the � point.

as they allow for elementary fermionic excitations beyond
the standard (high-energy) classification of Dirac, Weyl, and
Majorana fermions.

C. J1- J2 Heisenberg models

Another often-studied family of frustrated spin models are
J1-J2 Heisenberg models where an antiferromagnetic next-
nearest neighbor exchange J2 destabilizes the conventional
order of the nearest neighbor model. A particularly interesting
member of this family is the J1-J2 Heisenberg model on the
diamond lattice, which is one of the few frustrated magnets
to exhibit a subextensive ground-state degeneracy captured
by a spiral surface in momentum space [6]. These spiral
surfaces have been proposed to occur in certain A-site spinel
compounds [6,34–38], with recent inelastic neutron scattering
experiments on MnSc2S4 indeed reporting their unambiguous
experimental observation [39]. In the context of this paper, the
spiral surface of the J1-J2 diamond model bears, of course,
the most striking resemblance to the Fermi surface of a
metal. In the following, we will lay out how to construct a
fermionic tight-binding model that exhibits precisely the same
Fermi surface. We will also discuss a number of other J1-J2

Heisenberg models that exhibit spin spiral surfaces such as the
J1-J2 honeycomb model or a modified J1-J2 model on the bcc
lattice.

To be specific, we consider a model

H = J1

∑
〈i,j〉

�Si
�Sj + J2

∑
〈〈i,j〉〉

�Si
�Sj , (23)

where 〈i,j 〉 and 〈〈i,j 〉〉 denote nearest and next-nearest
neighbors, respectively. We will restrict ourselves to bipartite
lattices in the following, i.e., lattices that generally decompose
into two individual sublattices A and B. In terms of these
sublattices, J1 is a coupling (of arbitrary sign) between the two
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FIG. 10. The spin-fermion correspondence for J1-J2 Heisenberg
models illustrated for the honeycomb model. In employing the lattice
construction scheme of Fig. 4, the elementary step is to replace each
fully connected plaquette of nearest and next-nearest neighbor bonds
around a given site (highlighted) as illustrated. The end result is a
fermionic hopping model on a bilayer of the original spin lattice.

sublattices, while J2 is an antiferromagnetic coupling only
within one of the two sublattices.

To map such a J1-J2 spin model to a fermion model in terms
of the spin-fermion correspondence, one can readily employ
the lattice construction algorithm of Sec. II C. Specifically,
the elementary step is to again replace all fully connected
plaquettes in the spin lattice by fermionic sites. The largest
fully connected plaquette for a J1-J2 spin model on a z-
coordinated lattice can be easily identified. It is given by
the z sites around a given site connected via both nearest
and next-nearest neighbor connections. As an example, this is
illustrated for the honeycomb J1-J2 model in Fig. 10. Note that
this construction replaces all bonds of the original spin model
in a single step of the lattice construction, if the next-nearest
neighbor coupling J2 is defined by bond distance (which in
turn leads to the fully connected plaquettes described above).
For systems where J2 is defined more generally, e.g., by
real-space distance or involving spatial anisotropies, the lattice
construction might include multiple steps (which will not be
discussed in the following). Replacing all fully connected
plaquettes as described above, the end result of the lattice
construction generically is a fermionic bilayer of two copies
of the original spin lattice.

In terms of coupling constants, the spin-fermion correspon-
dence of Eq. (15) immediately gives

t1 = J1/
√

8J2,

t2 =
√

J2/2, (24)

where t1 is the coupling between the two layers and t2 is
the coupling within a layer; see also Fig. 10. Note that in
the limit of J1 = 0, where the spin model decomposes into its
two individual sublattices, the corresponding fermionic bilayer
model likewise decomposes into two separate layers (with each
layer corresponding to one of the sublattices in the spin model).

J2/J1 = 0.2 J2/J1 = 0.5 J2/J1 = 1 J2/J1 = 5

FIG. 11. Spin spiral lines for the honeycomb lattice J1-J2 Heisen-
berg model for different ratios of the couplings.

As an alternative to formulating the fermion model as a
hopping Hamiltonian on a bilayer lattice, one can introduce a
Z2 spin variable (indicating the layer) so that one arrives at a
spinful fermion Hamiltonian on the original spin lattice of the
form

H = t2
∑
〈i,j〉

σ=↑,↓

c
†
j,σ ci,σ + t1

∑
i

(
c
†
i,↑ci,↓ + H.c.

)
, (25)

where t2 is the strength of a spin-conserving hopping on the
lattice and t1 now parametrizes an on-site spin-flip term.

Before we turn to a discussion of a number of example
J1-J2 spin models, let us note that it typically takes a finite
coupling strength J2 to destabilize the Néel (or ferromagnetic)
order favored by the nearest neighbor coupling J1. The exact
strength of the critical coupling can be derived directly from the
spin-fermion correspondence by noting that the conventionally
ordered magnetic phases correspond to a gapped fermion
spectrum and the critical point coincides with the gap closing
for increasing J2. Starting from a Néel ordered state (for
antiferromagnetic J1) its ground-state energy reads

ENéel = − 1
2J1z + 1

2J2z(z − 1)

as a function of J2. On the other hand, the Fermi energy of the
corresponding fermion model maps according to Eq. (16) to

−E∗ = −zJ2

2
− J 2

1

8J2
,

which is lower than the above Néel energy. The gap ENéel + E∗
closes precisely at J2/J1 = 1/(2z), which indeed indicates
the transition to coplanar spin spiral ground states (with
energy −E∗).

Examples

To illustrate the above spin-fermion correspondence for
J1-J2 Heisenberg models we proceed with a number of
examples. Starting in two spatial dimensions, the J1-J2 model
on the honeycomb lattice might be of particular interest. As
worked out in detail in Ref. [40], this model exhibits spin spiral
ground states for J2/J1 > 1/6 captured by a line in momentum
space whose evolution with varying J2 is illustrated in Fig. 11.
Note that the J2 → ∞ limit corresponds to the 120◦ order
of the triangular lattice antiferromagnet discussed above. In
terms of the spin-fermion correspondence, these spin spiral
lines correspond to the Fermi surface of a spinful fermion
model on the honeycomb lattice. Starting from the two Dirac
cones in the t1 = 0 (J2 → ∞) limit, an on-site spin-flip term
leads to the formation of a full Fermi surface (i.e., lines in
two spatial dimensions) by shifting the Dirac cones above and
below the Fermi energy.

085145-9



JAN ATTIG AND SIMON TREBST PHYSICAL REVIEW B 96, 085145 (2017)

J2/J1 = 0.4 J2/J1 = 3 J2/J1 = 100J2/J1 = 0.2

FIG. 12. Spin spiral surfaces for the diamond lattice J1-J2

Heisenberg model for different ratios of the couplings.

In three spatial dimensions, we first turn to the J1-J2

diamond model of Ref. [6]. For a next-nearest neighbor
coupling J2/J1 > 1/8 this model exhibits a spin spiral surface
that with increasing J2 changes its topology as illustrated in
Fig. 12. In the limit J2 → ∞ one recovers the physics of the
fcc lattice whose ground-state spin spiral manifold is described
by a set of crossing nodal lines [41]. Via our spin-fermion
correspondence we can readily identify these spin spiral
surfaces with the Fermi surfaces of fermions hopping on a
bilayer diamond lattice, or analogously with a spinful fermion
model (25) on the diamond lattice.

Another interesting example in three spatial dimensions
might be the J1-J2 model on the body-centered cubic (bcc)
lattice [42]. We note that like the diamond lattice, the bcc lattice
is a bipartite lattice whose two identical sublattices are Bravais
lattices (i.e., simple cubic lattices). One might therefore hope
to find spin spiral surfaces similar to those for the diamond
lattice when introducing a next-nearest neighbor coupling J2.
This is indeed the case, but only if one restricts the next-nearest
coupling J2 to be defined by bond distance (which we denote as
J ∗

2 in the following). As illustrated in Fig. 13, a spherical spin
spiral surface forms for J ∗

2 /J1 > 1/16, which deforms into a
cube for increasing J ∗

2 and ultimately matches the boundary
of the Brillouin zone in the limit J ∗

2 → ∞.
As a final example we mention the J1-J2 model on the

hyperhoneycomb lattice. The hyperhoneycomb is an example
of a tricoordinated lattice in three spatial dimensions [43] and
as such closely related to the two-dimensional honeycomb
lattice. One might therefore again expect to find spin spiral
surfaces upon introducing a next-nearest neighbor coupling
J2. However, for this non-Bravais lattice (with four sites in
the unit cell), a more subtle picture emerges. While the energy
minimization indeed results in degenerate surfaces (illustrated
in Fig. 14), the Luttinger-Tisza constraint (requiring uniform
spin length) is found to be violated for most spiral states
on the surface. In fact, the true ground-state degeneracy is
found to be described by lines for all J2/J1 > 1/6, as first
pointed out in Ref. [44]. The evolution of these spiral lines is

J∗
2 /J1 = 0.1 J∗

2 /J1 = 0.5 J∗
2 /J1 = 3

FIG. 13. Spin spiral surfaces for the bcc lattice J1-J ∗
2 Heisenberg

model for different ratios of the couplings.

J2/J1 = 3

J2/J1 = 0.18

J2/J1 = 0.75J2/J1 = 0.5

J2/J1 = 0.35J2/J1 = 0.25J2/J1 = 0.22

J2/J1 = ∞

FIG. 14. Spin spiral surfaces for the hyperhoneycomb lattice
J1-J2 Heisenberg model for different ratios of the couplings.

illustrated in Fig. 14 for various coupling strengths. Note that
only in the limit J2 → ∞ the spiral lines are found to collapse
onto a set of symmetry-related, individual points indicating a
single magnetic ground state (without any degeneracies). For
an illustration of an individual sublattice see Fig. 19.

D. Reverse spin-fermion correspondence

As a final case study we discuss a reverse example of the
spin-fermion correspondence, i.e., the explicit construction of
a frustrated spin model from a given fermion hopping model.
To do so, we consider free fermions on the square lattice as a
starting point. Diagonalizing the real-space Hamiltonian via a
Fourier transformation, their dispersion is given by

ε(�k) = 2t[cos(kx) + cos(ky)],

which readily identifies the nodal structure at the Fermi energy
ε(�k) = 0 as a Fermi line parametrized by

kx = ±(ky ± π ) (26)

as illustrated in the middle panel of Fig. 15.
To construct a spin model whose spiral ground-state

manifold is described by precisely these lines in momentum
space, we again resort to the lattice construction of Sec. II C.
The spin model is simply defined by the lattice of next-nearest
neighbors of the square lattice; this is a fully connected square
lattice illustrated in the right panel of Fig. 15. Besides a

1st Brillouin zone

FIG. 15. An example of a reverse spin-fermion correspondence.
Starting from a free-fermion hopping model on the square lattice
(left), one can construct a frustrated spin model on one of its
sublattices which is a fully connected square lattice as illustrated
on the right. The nearest-neighbor coupling J× is indicated by the
solid red lines, while the next-nearest neighbor coupling J+ couples
all sites at a bond distance 2 as illustrated by the dashed red lines.
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nearest neighbor exchange indicated by the solid red lines and
denoted by J× in the following, there is a next-nearest neighbor
coupling indicated by the dashed red lines and denoted by J+
in the following. The full spin Hamiltonian thus reads

H =
∑
〈i,j〉

+bonds

J+ �Si · �Sj +
∑
〈i,j〉

×bonds

J× �Si · �Sj . (27)

To exactly map to the fermion model the two couplings need
to be tuned to

J× = 4t2, J+ = 2t2. (28)

For this ratio of coupling strengths J×/J+ = 2 the spin model
will exhibit a ground-state degeneracy of coplanar spirals
described by momenta along the lines captured by the Fermi
surface of the fermionic model. Slightly detuning from this
coupling ratio will immediately split this degeneracy and result
in conventional magnetic order.

IV. TOPOLOGICAL BAND STRUCTURES

The spin-fermion correspondence provides a stringent map-
ping between the ground states of the Luttinger-Tisza spectrum
of the spin interaction matrix and fermionic eigenstates at the
Fermi energy. In the case studies above our focus has been to
exemplify this correspondence for various spin models where
we could map degenerate spin spiral ground-state manifolds
to the Fermi surfaces of matching fermion models. Now we
want to take the opposite approach and ask whether certain
aspects of a given electronic band structure that go beyond the
Fermi surface can reveal themselves also in the corresponding
spin models. In particular, we are interested in asking whether
topological features such as edge states that can occur in
electronic band structures have an equivalent feature in the
Luttinger-Tisza spectrum. Going beyond ground states one
could also ask whether features farther up in the energy
spectrum, such as Landau levels, might have any bearing also
in the corresponding spin model.

A. Edge states

The occurrence of edge states in a simple tight-binding
model is well known from the physics of graphene; depending
on the realization of boundary of the underlying graphene
flake, gapless modes can be localized at the edge of the
sample [45]. Zigzag boundaries are found to harbor gapless
edge modes, while armchair boundaries do not exhibit any
such states [45,46]. These experimental observations are in
full agreement with the theoretical expectation derived from a
simple tight-binding model on the honeycomb lattice realizing
these different choices of boundary conditions [47].

In the context of the spin fermion correspondence at
the heart of the current paper, this observation motivates
the question of whether the 120◦ order of the triangular
antiferromagnet—the spin analog of the fermionic honeycomb
model—exhibits gapless edge modes depending on the choice
of boundary conditions. As illustrated in Fig. 16 the two
different honeycomb boundary conditions map to two distinct
boundary conditions also for the corresponding triangular
lattice spin model. Upon performing a Luttinger-Tisza calcula-
tion for these different boundary conditions the energy spectra

FIG. 16. Different boundary conditions of the honeycomb lattice
(left column) and one of its triangular sublattices (right column). The
upper row shows zigzag, the lower row shows armchair boundaries
along the x direction.

of the spin model are found to be in general correspondence to
their respective fermionic equivalents; i.e., the Luttinger-Tisza
spectrum of the classical model is the “square” of the fermionic
spectrum as required by the spin-fermion correspondence of
Eq. (17); see the side-by-side comparison of Fig. 17. However,
a crucial feature is missing: the edge state of the fermionic
spectrum, manifesting itself as a flat band at the Fermi energy,
is strikingly missing from the classical spectrum. In retrospect,
this might not come as too much of a surprise since an edge
mode is a localized feature of the quantum system, i.e., a
feature of the ground-state wave function that exponentially

3

0

3

3
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2

2

6

2

2

6

FIG. 17. Occurrence of edge states in the band structure of
free fermions on the honeycomb lattice and the corresponding
antiferromagnet on the triangular lattice. While the fermionic model
exhibits an edge state for zigzag boundaries (upper left panel) and
none for armchair boundaries (lower left panel), the corresponding
triangular spin model exhibits no edge modes for either boundaries
(right column).
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FIG. 18. Deformation of the honeycomb and triangular lattice
due to triaxial strain.

decays as one moves away from the boundary. For the classical
system, however, the Luttinger-Tisza approximation strictly
requires that all spins exhibit uniform length across the system
thus inherently excluding the emergence of any spatially
localized features. What might be counterintuitive is that the
edge mode is missing from the Luttinger-Tisza spectra of
Fig. 17 which have been calculated without enforcing the
uniform spin length. In fact, it is a different, more algebraic
mechanism that prevents the edge states from making an
occurrence in the classical spectrum.

Recall that the spin-fermion correspondence requires that
the classical interaction matrix M is not simply the squared
fermionic hopping matrix H2, but that there is an additional
diagonal matrix E∗ of the form

M = H2 − E∗.

Upon close inspection, one finds that the elements of E∗
are proportional to the number of nearest neighbors of the
respective sites as required by Eq. (16). For a system with
periodic boundary conditions the matrix E∗ is therefore
proportional to the identity matrix and results in a simple shift
of the classical spectrum. However, for systems with open
boundary conditions as considered here this is no longer the
case. With the sites at the boundary of the system having a
smaller number of neighbor sites than those in the bulk, one
finds that the first and last element of the diagonal of E∗ are
in fact smaller than all other diagonal elements. It is exactly
this effect that algebraically eliminates the edge states from
the classical spectrum.

B. Landau levels

Another idea that one might want to entertain is the question
of whether the spin-fermion correspondence allows for an
analog of Landau level physics in a frustrated antiferromagnet.
While the emergence of Landau levels is typically associated
with the application of an external magnetic field, an alternative
route of inducing Landau levels has been explored via the
application of triaxial strain (inducing a pseudomagnetic field
in form of an artificial gauge-field vector potential) in the
context of graphene [48]. Again, this physics can be captured
by a simple honeycomb tight-binding model—in this case with
spatially modulated hopping amplitudes reflecting the effect
of the triaxial strain, which is visualized in the left panel of
Fig. 18. One might therefore ask what the effect of triaxial
strain and a similarly spatially modulated coupling strength is

on the triangular lattice antiferromagnet; see the right panel
of Fig. 18. By virtue of the spin-fermion correspondence, one
indeed finds that the spectrum of the interaction matrix of the
strained triangular lattice antiferromagnet exhibits a discrete
level spacing above the ground-state energy (not shown).
However, all of these states do not reflect the actual physical
states of the classical antiferromagnet as they generically do
not obey the uniform spin length requirement.

Nevertheless, it might be an interesting direction for
future exploration to ask whether triaxially strained triangular
antiferromagnets exhibit any topological features in their
ground states.

C. Topological insulators

Considering topological features of fermionic band struc-
tures, one might further ask whether the topological insulator
has a classical spin analog that can be motivated via the
spin fermion correspondence. While this is a tempting idea
that would bear some similarity to the concept of topological
mechanics introduced by Kane and Lubensky [23], such a
scenario is prevented for several reasons. First, going back
to the general form of the fermionic Hamiltonian arising
from the spin-fermion correspondence (18) discussed in
Sec. II D one finds that the fermionic system naturally resides
in symmetry class BDI. From the general classification of
topological insulators [14–16] rooted in the 10-fold way
symmetry classification it is known that symmetry class BDI
does not allow for the occurrence of a topological insulator
in two and three spatial dimensions, which are of interest
here, but only in one spatial dimension. Second, we note
that even if the fermionic band structure would have allowed
for the occurrence of a topological insulator one of its key
features—protected gapless edge states on its surface—would
not be possible to realize in the spin model (as discussed
above).

V. DISCUSSION

The spin-fermion correspondence derived in this paper
relates the spin spiral surface of frustrated antiferromagnets
with the Fermi surface of noninteracting fermion systems.
Despite this close relation one should note that there exist
some fundamental differences between the two manifolds.
One such distinction arises when considering the effect of
small perturbations. A Fermi surface is a remarkably stable
object in that most perturbations (but pairing or nesting
instabilities) leave it mostly untouched and merely deform
its shape. In contrast, the spin spiral surface is an exceedingly
unstable object. Any residual interaction added to the original
Heisenberg Hamiltonian typically destroys the degenerate spin
spiral manifold and favors some sort of spin spiral order.
For some systems the spin spiral surface is unstable even to
entropic effects such as an order-by-disorder transition [49]
at finite temperatures. As such the spin spiral manifold of a
classical antiferromagnet oftentimes governs only its ground
state at zero temperature. In fermionic systems, on the other
hand, knowledge of the Fermi surface immediately allows
to infer some thermodynamic signatures such as the leading
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contribution to the specific heat at low temperatures (a power
law dominated by the codimension of the Fermi surface).

An interesting aspect of the spin-fermion correspondence
is that it points a way to inferring the ground-state physics of
a frustrated magnet (which might be hard to access) from the
band topology of a free-fermion system at the Fermi energy
(which might be readily available) and vice versa. In practice,
the most intriguing example of such a transfer would have been
to find topological aspects of the fermion system reincarnate
themselves in the spin system. While we have explored this
idea in the context of edge states to no success, it remains to be
seen whether it works in other instances such as the suggestion
that the ground state of the triaxially strained triangular lattice
antiferromagnet might exhibit topological features similar to
the corresponding triaxially strained fermion model on the
honeycomb lattice. The reverse direction—inferring features
of the fermionic band structure from knowledge about the
ground state of the corresponding spin model—has proved
insightful in constructing simple fermion models that exhibit
completely flat bands at the Fermi energy as demonstrated
explicitly for the extended honeycomb and diamond lattices.
This connection, which in a certain sense generalizes the line-
graph construction of fermionic flat band models [50–53],
might be a useful starting point for the further construction of
fractional Chern insulators or other nontrivial states that are
generated from an interaction-induced splitting of such highly
degenerate flat bands.

Taking a step back, we note that the spin-fermion corre-
spondence introduced in this paper is in some way orthogonal
to the concept of fractionalization, which is often employed
in the context of quantum spin liquids. The latter are concep-
tualized as macroscopically entangled quantum states where
the original spins decompose into novel, emergent degrees of
freedom that carry a fractional quantum number: partons and
a gauge field. Oftentimes, the emergent parton is a fermionic
degree of freedom and the spin liquid state is understood
as a metal formed by these emergent fermions. Familiar
examples of this fractionalization include the representation
of the original spins in terms of Majorana fermions (coupled
to a Z2 gauge field) or Abrikosov fermions [coupled to a
U (1) gauge field]. The former scenario is well known from
the analytical solution of the Kitaev model in two and three
spatial dimensions [54,55], where the emergent Majorana
fermions form various types of Majorana metals with Fermi
surfaces, nodal lines, or Weyl/Dirac points depending on the
geometry of the underlying lattice [54–58]. The latter scenario,
a decomposition of the original spins into Abrikosov fermions
and a U (1) gauge field, has been proposed, for instance,
for the kagome antiferromagnet [59] where the emergent
Abrikosov fermions form a Dirac semimetal. This picture of
fractionalization, which also makes a correspondence between
a spin system and a fermion metal, should be contrasted to the
spin-fermion correspondence described in the paper at hand.
Here we note that in order to arrive at the fermion model it takes
two classical spin systems (each constituting one sublattice of
the fermion lattice model); i.e., in a certain sense one “doubles”
the classical system to arrive at the fermion system and thereby
reverses the idea of fractionalization.

Going beyond spin models, we note that the classical to
quantum correspondence of this paper establishes an exact

connection between a minimization problem (such as the
identification of the ground-state manifold of a classical spin
system) and the widely studied physics of Fermi surfaces.
This is an intriguing avenue for further exploration as more
general minimization problems might in fact fit the classical
to quantum correspondence more generically than the spin-
fermion case study at hand where the additional Luttinger-
Tisza constraint of uniform spin length has obscured some
aspects of the general correspondence. One such more general
example occurs in the context of Ginzburg-Landau theory
where the free energy can be expressed in terms of a complex,
momentum-dependent order parameter ��k by

F [�] =
∫

d3k �∗
�k(r · 1 + M(�k))��k + U�4 + · · · ,

where r is some control parameter tuning the system through
the phase transition (such as r = T − Tc for a thermal phase
transition) and M(�k) is a general, momentum-dependent
interaction matrix. To identify the location of the phase
transition one needs to track the minimum (and sign change)
of the quadratic term in the Ginzburg-Landau expansion—
a minimization problem that via the classical to quantum
correspondence can again be recast in terms of a fermionic
system (but without any additional constraints on the order
parameter).

Finally, on a more philosophical level we note that taking
nontrivial square roots—the principal step in our correspon-
dence going from a classical spin model to a free-fermion
quantum model—has a long tradition in physics. Surely, the
best-known example is the passage from the Klein-Gordon
equation to the Dirac equation in relativistic quantum mechan-
ics. In the context of condensed matter physics, the concept
of nontrivial square roots has recently been identified [60] as
a versatile mechanism to construct tight-binding models with
an enriched, topologically nontrivial band structure, by taking
square roots of topologically trivial tight-binding models.
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APPENDIX: VALIDITY OF
LUTTINGER-TISZA CALCULATION

In contrast to simple Bravais lattices, applying the
Luttinger-Tisza approach to non-Bravais lattices (with mul-
tiple sites in the unit cell) requires an additional step beyond
the minimization of eigenvalues of the interaction matrix. One
needs to carefully analyze that the minimal eigenvectors fulfill
the Luttinger Tisza “hard spin” constraint. In order to provide
a meaningful description of a ground-state spin configuration
for an O(3) Heisenberg model, every minimal eigenvector
S̃�q,j needs to exhibit a uniform spin length for all sites in the
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FIG. 19. The hyperhoneycomb lattice (left) and one of its
sublattices (right).

unit cell; i.e., it needs to fulfill the condition |S̃A
�q,j

|2 = 1 for
all components A (corresponding to the different sites in the
unit cell).

There are some special cases in which the constraint is
satisfied naturally. First of all, any Bravais lattice satisfies the
constraint by construction, as it only has one site per unit
cell and therefore any eigenvector only has one component.
Examples include the triangular or square lattice. Moreover,
any bipartite lattice which can be decomposed into two Bravais
lattices also generically satisfies the Luttinger-Tisza constraint.
This can be seen by squaring the interaction matrix which
preserves the eigenvectors but results in a block structure for
the two sublattices. Examples for this case are the diamond,
bcc, and honeycomb lattices.

Luttinger-Tisza calculation for the hyperhoneycomb
J1- J2 model

We close with an example calculation where the diago-
nalization of the spin interaction matrix results in a large
manifold of states, out of which only a small subset fulfills
the Luttinger-Tisza constraint of uniform spin length. The
example at hand is the J1-J2 model on the hyperhoneycomb
lattice, an elementary tricoordinated lattice in three spatial
dimensions [43] illustrated (together with one of its sublattices)

J2/J1 = 3

J2/J1 = 0.18

J2/J1 = 0.75J2/J1 = 0.5

J2/J1 = 0.35J2/J1 = 0.25J2/J1 = 0.22

J2/J1 = ∞

FIG. 20. Minimal energy manifold after diagonalization of the
the spin interaction matrix of the J1-J2 Heisenberg model on the
hyperhoneycomb lattice for various ratios of the couplings J2/J1.
Note that most states on these manifolds do not fulfill the Luttinger-
Tisza constraint of uniform spin length; see for comparison Fig. 14
which shows the reduced linelike manifolds of these valid ground
states.

in Fig. 19. Diagonalizing the spin interaction matrix for various
couplings J2 one generically finds a manifold of states that
constitutes a surface in the Brillouin zone as illustrated in
Fig. 20. However, most of the states on this surface are
found to violate the uniform spin length constraint and are
therefore not valid ground states of the original spin model.
In fact, the subset of valid ground states is reduced to lines
in the Brillouin zone as illustrated in Fig. 14. Considering
the corresponding fermion model, which can be defined either
on a bilayer hyperhoneycomb or, alternatively, as a spinful
hyperhoneycomb model, we note that its Fermi surface is
given by the full Luttinger-Tisza minimal energy manifold
of Fig. 20, as the fermionic system is not subject to any further
constraints.
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