Spin-orbit physics of $j = \frac{1}{2}$ Mott insulators on the triangular lattice

Michael Becker,1 Maria Hermanns,1 Bela Bauer,2 Markus Garst,1 and Simon Trebst1

1Institute for Theoretical Physics, Cologne University, Zülpicher Straße 77, 50937 Cologne, Germany
2Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA

I. INTRODUCTION

The physics of spin-orbital entanglement in effective $j = \frac{1}{2}$ Mott insulators, which have been experimentally observed for various 5d transition-metal oxides, has sparked an interest in Heisenberg-Kitaev (HK) models thought to capture their essential microscopic interactions. Here, we argue that the recently synthesized Ba$_3$IrTi$_2$O$_9$ is a prime candidate for a microscopic realization of the triangular HK model, a conceptually interesting model for its interplay of geometric and exchange frustration. We establish that an infinitesimal Kitaev exchange destabilizes the 120° order of the quantum Heisenberg model. This results in the formation of an extended \mathbb{Z}_2-vortex crystal phase in the parameter regime most likely relevant to the real material, which can be experimentally identified with spherical neutron polarimetry. Moreover, using a combination of analytical and numerical techniques, we map out the entire phase diagram of the model, which further includes various ordered phases as well as an extended nematic phase around the antiferromagnetic Kitaev point.

DOI: 10.1103/PhysRevB.91.155135

PACS number(s): 75.10.Jm, 71.20.Be, 74.25.Uv
First, every pair of iridium ions is coupled via two separate exchange paths as indicated in Fig. 1(c) leading to a destructive interference and subsequent suppression of the isotropic Heisenberg exchange [6–8]. In comparison to the triclad iridates \((\text{Na,Li})_2\text{IrO}_3\), which exhibit Ir-O-Ir exchange paths, the triangular \(\text{Ba}_3\text{IrTi}_2\text{O}_9\) exhibits somewhat longer Ir-O-O-Ir exchange paths as indicated in Fig. 1(c), leading to a destructive interference and subsequent suppression of the isotropic Heisenberg exchange [6–8] as illustrated in Fig. 1(a) and ultimately giving rise to the three components of the Kitaev exchange. Note that the Ir layer is normal to the \((111)\) direction, hence, the three directions are all equivalent. The description of the microscopic physics is thus given in terms of a Heisenberg-Kitaev (HK) Hamiltonian

\[
\mathcal{H}_{\text{HK}} = J_H \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_K \sum_{\gamma \parallel \langle i,j \rangle} \mathbf{S}_i^\gamma \cdot \mathbf{S}_j^\gamma, \tag{1}
\]

where \(\mathbf{S}_i\) is a spin operator located on site \(i\) of the triangular lattice spanned by the lattice vectors \(\mathbf{a}_i = (1,0,0)^T\), \(\mathbf{a}_y = (-1/2,\sqrt{3}/2)^T\), and \(\mathbf{a}_z = -\mathbf{a}_x - \mathbf{a}_y\), [see Fig. 2(a)]. Here and in the following, we measure lengths in units of the lattice constant \(a\). The first term is the standard Heisenberg coupling \(J_H\) that describes an SU(2) invariant interaction between the spin-orbit entangled \(j = \frac{1}{2}\) moments on nearest-neighbor lattice sites. The Kitaev interaction \(J_K\), on the other hand, explicitly breaks spin-orbit invariance and acts only between single components \(S_\gamma\) of adjacent spins. The precise component depends on the link between the lattice sites [see Fig. 2(a)]; for our particular choice here, the \(\gamma\) components of spins interact via \(J_K\) if sites are connected by a lattice vector \(\mathbf{a}_\gamma\) with \(\gamma = x,y,z\).

III. 120° ORDER AND \(\mathbb{Z}_2\)-VORTEX CRYSTAL

We will start our discussion of the ground states of Hamiltonian (1) by first elucidating the magnetic structure around the antiferromagnetic Heisenberg point, where an extended \(\mathbb{Z}_2\)-vortex crystal phase is found in agreement with Ref. [19]. The ground state of the antiferromagnetic Heisenberg Hamiltonian on the triangular lattice, which corresponds to couplings \(J_H > 0\) and \(J_K = 0\) for Hamiltonian (1), is characterized by a 120° ordering of spins [20]. At the classical level, this ordering is captured by a spin orientation \(\mathbf{S}_i = \xi(\mathbf{Q} \cdot \mathbf{r})\) with the unit vector \(\xi(\mathbf{Q} \cdot \mathbf{r})\) connecting the center with a corner of the Brillouin zone \(\mathbf{Q} = \frac{4\pi}{3}(1,0)\). The orthonormal frame \(\mathbf{e}_i\) with \(i = 1,2,3\) and \(\mathbf{e}_1 = \mathbf{e}_1 \times \mathbf{e}_2\) constitutes an SO(3) order parameter. The energy per site for this classical state is given by

\[
E_{120°} = -S^2 \frac{1}{2}(3J_H + J_K). \tag{2}
\]

Crucially, the 120° ordering possesses \(\mathbb{Z}_2\) vortices [21] as topologically stable point defects, which can be understood by considering the first homotopy group of its order parameter \(\Pi_1[\text{SO}(3)] = \mathbb{Z}_2\).

A. Kitaev interaction destabilizes 120° ordering

For any finite \(J_K\), the 120° state becomes immediately unstable with respect to fluctuations, which we demonstrate in the following. We parametrize the fluctuations with the help of two real fields \(\mathbf{\pi}(\mathbf{r}) = [\pi_1(\mathbf{r}),(\pi_2(\mathbf{r}))]^T\):

\[
\hat{\mathbf{\pi}}(\mathbf{r}) = \hat{\mathbf{\pi}}_{120°}(\mathbf{r})\sqrt{1 - (\mathbf{\pi}(\mathbf{r}))^2} + \pi_1(\mathbf{r})\mathbf{e}_1 \sin(\mathbf{Q} \cdot \mathbf{r}) + \mathbf{e}_2 \cos(\mathbf{Q} \cdot \mathbf{r}) + \pi_2(\mathbf{r})\mathbf{e}_3, \tag{3}
\]

so that \(\hat{\mathbf{\pi}}(\mathbf{r}) = 1\) is maintained. Plugging this ansatz in the Hamiltonian and expanding up to second order in the fluctuation fields one obtains for the energy \(\mathcal{E} = N \epsilon_{120°} + \mathcal{E}^{(2)}\) with \(N\) denoting the number of lattice sites. The fluctuation

FIG. 1. (Color online) (a) Crystal structure of \(\text{Ba}_3\text{IrTi}_2\text{O}_9\). (b) View of single iridium layers from two different perspectives. Within the plane, the \(x,\ y,\) and \(z\) exchange paths are indicated by the gray planes. The planes labeled by \(x\) and \(z\) are normal to the coordinate axis \(\hat{x},\ \hat{z}\). (c) The exchange between the iridium moments (blue) is mediated by two coplanar exchange paths.

FIG. 2. (Color online) (a) The triangular lattice with the three lattice vectors \(\mathbf{a}_\gamma\). Solid, dashed, and dotted bonds carry the three distinct Kitaev interactions (see text). (b) Bragg peaks, respectively, expected in the static spin structure factor for the \(\mathbb{Z}_2\)-vortex crystal. Each color corresponds to a different spin component as listed in panel (a).
part reads as

$$E^{(2)} = -\varepsilon_{120} \sum_i \langle r_i | \pi | r_i \rangle^2 - \frac{J^2}{2} \sum_{(ij)} \{ \pi_{i1} \pi_{i1} - 2 \pi_{i2} \pi_{i2} \} + J^2 \sum_{y||i|j|} \{ \varepsilon^2 \pi_{i1} \pi_{i2} + \varepsilon^2 \pi_{i2} \pi_{i2} \} + \varepsilon^2 \varepsilon^2 \cos(Q_i r_i) \cos(Q_j r_j)$$

+ \varepsilon^2 \cos(Q_i r_i) \sin(Q_j r_j) + \varepsilon^2 \cos(Q_j r_j) \pi_{i1} \pi_{i1} + \left[-\varepsilon^2 \sin(Q_i r_i) + \varepsilon^2 \cos(Q_i r_i) \pi_{i1} \pi_{i2} \right] \left(i \leftrightarrow j \right).$$

with the abbreviation $\pi_{ai} = \pi_a(r_i)$ for $a = 1, 2$. The fluctuation eigenmodes are determined with the help of the Fourier transform $\pi_a(r) = \frac{1}{\sqrt{N}} \sum_{k=1}^{BZ} e^{i k r_a} \pi_a(k)$. In the absence of the Kitaev interaction $J_K = 0$, one obtains

$$E^{(2)}|_{J_K=0} = \frac{J_H S^2}{2} \sum_{k=x,y,z} \{ 1 - \cos(k a_y) \} |\pi^y(k)\}^2$$

+ $I + 2 \cos(k a_y) \pi^y(k) \pi^y(k) \}$

(5)

with $\pi^y(k) = \pi_a(-k)$. Whereas the π^y mode becomes soft at the center of the Brillouin zone, i.e., at $k = 0$, the energy of the π^y mode vanishes at its edge, e.g., for momenta $k = \pm Q$. The zero modes $\pi^y(k = 0)$ and $\pi^y(\pm Q)$ thus identify three Goldstone modes that correspond to a long-wavelength rotation and tilting of the local orthogonal frame, respectively. In particular, the energy dispersion of the tilting mode $\varepsilon^y_{Q, k}$ is $J_H S^2 \sum_y \{ 1 + 2 \cos(k \cdot a_y) \}$ close to momentum Q possesses the form $\varepsilon^y_{Q, k}|_{J_K = 0} \approx J_H S^2 \frac{k^2}{2}$. Adding a finite Kitaev coupling J_K immediately results in a negative energy eigenvalue and, therefore, destabilizes the 120° ground state. We can still diagonalize for the eigenenergies perturbatively in J_K. In lowest order and in the long-wavelength limit, the zero modes do not hybridize, and we obtain for the tilting mode a dispersion relation that is given in the long-wavelength limit $|k| \ll |Q|$ by

$$\varepsilon^y_{Q, k} \approx J_H S^2 \frac{3}{2} \frac{k^2}{2} - 2 J^2 \frac{S^2}{2} \sum_{y=x,y,z} k \cdot a_y \sin(Q \cdot a_y) (\varepsilon^y_j)^2.$$

(6)

It becomes maximally negative for a wave vector

$$k_{\text{inst}} = \frac{J_K}{J_H} \frac{4}{3} \sum_{y=x,y,z} a_y \sin(Q \cdot a_y) (\varepsilon^y_j)^2$$

+ $J_K \left(\frac{1}{\sqrt{3}} \{ (\varepsilon^y_j)^2 - (\varepsilon^y_j)^2 \} \right.$

- $(\varepsilon^y_j)^2 - (\varepsilon^y_j)^2 \}$

(7)

that can be expressed in terms of the normal e_j. In the special case where the spins of the 120° ordering are confined within the x-y plane and $e_j = \hat{z}$, this wave vector is just given by $k_{\text{inst}} = J_K / J_H (1 / \sqrt{3} \alpha \gamma)^2$. So it is the tilting Goldstone modes that trigger the instability of the 120° antiferromagnetic ordering in the presence of a finite Kitaev interaction J_K.

B. Incommensurate antiferromagnet: Z_2-vortex crystal

Indeed, allowing for a slowly spatially varying orthogonal frame $e_j(r)$ one finds in the limit $|J_K| \ll J_H$ the effective energy functional $E = \int d^2 r \mathcal{L}$ with

$$\mathcal{L} = \frac{3 J_H S^2}{4} \sum_{y=x,y,z} e^y_j(r) \left[-\nabla^2 - 2 i q_k a_y \cdot \nabla \right] e^y_j(r).$$

(8)

where $e^x = (e_1 \pm i e_2) / \sqrt{2}$. The Kitaev interaction induces a coupling $q_k = 2 J / (\sqrt{3} J_H)$ to constant gauge fields given by the triangular lattice vectors a_y, that can be identified as Lifshitz invariants as previously pointed out in Ref. [19]. The magnetization can thus minimize its energy by allowing for a spatial modulation of the $\text{SO}(3)$ order parameter on large length scales proportional to $1 / q_k \propto J_H / J_K$.

1. Luttinger-Tisza approximation

The character of this modulated classical ground state can be obtained by minimizing the Hamiltonian treating the orthonormal constraint $e_j \cdot e_j = \delta_{ij}$ or, equivalently, $\hat{Q} = 1$, within an improved Luttinger-Tisza approximation [22]. The latter is a good approximation for large length scales $q_k |r| \gg 1$ or, alternatively, for small momenta $|q| \ll q_k$. Note that this latter limit does not commute with $J_K \rightarrow 0$, and, as a consequence, does not smoothly connect with the Heisenberg point.

We start with the functional

$$E = J_K S^2 \sum_{y=x,y,z} \hat{Q} \cdot \hat{Q} + J_K S^2 \sum_{y=x,y,z} \hat{Q} \cdot \hat{Q} - \lambda_i (\hat{Q}^2 - 1).$$

(9)

The unit length of the vector \hat{Q}_i is locally imposed with the help of the Lagrange multipliers λ_i. Upon spatial Fourier transformation, $\hat{Q}(r) = \sum_q e^{i q r} \hat{Q}_q$, the functional takes the form

$$E = \sum_q 2^{\lambda q} Q \cdot Q - \lambda_0.$$

(10)

where $\lambda_0 = \lambda_q |q_0 = 0$. The matrix $J^{\alpha \beta}$ possesses only diagonal entries with

$$J^{\alpha \beta}(Q) = J_K S^2 \cos(a_\alpha \cdot Q) + \cos(a_\gamma \cdot Q) + \cos(a_\gamma \cdot Q) + J_K S^2 \cos(a_\alpha \cdot Q).$$

(11)

and $J^{\alpha \beta}(Q) = 0$ for $\alpha \neq \beta$. At the Heisenberg point $J_K = 0$, the diagonal components of the matrix are minimal for momenta at the corner of the Brillouin zone, e.g., $\mathbf{q} = Q$, thus leading to 120° ordering. A finite J_K, however, favors in general incommensurate order with wave vectors away from $Q = 120°$ become minimal for momenta of the form $Q_i = Q - t a_\gamma$ with $t \in \mathbb{R}$. On the other hand, Fourier components Q_i^α of the spin with such incommensurate wave vectors induce finite Fourier components $\lambda_\alpha^\beta(Q)$ with $\alpha = 1, 2, 3$ of the Lagrange multiplier. Finite Lagrange multipliers $\lambda_\alpha^\beta(Q)$,
in turn, induce two finite secondary Fourier components \(\hat{\Omega}^{\beta}_{\gamma} \)
with \(q_{\gamma}^{(2)} = Q - t(2a_\beta - a_\alpha) \) where \(\beta \neq \alpha \) and so on.

In the following, we discuss a Luttinger-Tisza approximation where we limit ourselves to the lowest finite Fourier components \(\hat{\Omega}^{\alpha}_{\gamma} \) and \(\hat{\Omega}^{\beta}_{\gamma} \) for the spin and \(\lambda_0 \) and \(\lambda_{\pm q_{\gamma}^{(2)}} \) for the Lagrange multiplier; all higher Fourier modes are neglected. In principle, this approximation can be systematically improved by including higher-order modes. Minimizing the functional (10) within this approximation, we obtain for the energy per site

\[
\varepsilon_{LT}(t) = -\frac{S^2}{9} \left[J_H \left(\cos \frac{\pi + 6t}{3} + 17 \sin \frac{\pi - 3t}{6} \right) + 8 \sin \frac{\pi + 6t}{6} + \sin \left(\frac{\pi + 15t}{6} \right) \right] + J_K \left(\cos \frac{\pi + 6t}{3} + 8 \sin \frac{\pi + 6t}{6} \right) \right],
\]

(12)

which still depends on the parameter \(t \) that quantifies the distance of the primary Bragg peak from the corner of the Brillouin zone \(Q \). The value of \(t_{\text{min}} \) identifying the position of the minimum of the function (12) finally determines the ground-state energy \(\varepsilon_{LT}(t_{\text{min}}) \). This analytical estimate for the ground-state energy is found to be in excellent agreement with numerical estimates obtained from Monte Carlo simulations discussed in Sec. IV C.

The corresponding state is given by

\[
S'(r) \approx \frac{4S}{3\sqrt{3}} \Re \left\{ e^{i\phi} \left(e^{i(Q-r_\alpha)(r-r_0)} + \frac{1}{4} \sum_{\eta \neq \gamma} e^{i(Q-r_\eta)(r-r_0)} \right) \right\},
\]

(13)

where \(S' \) is the \(y \) component of the spin and the ground state is obtained by setting \(t = t_{\text{min}} \). The first term in Eq. (13) is the most important, primary Fourier component which also possesses the smallest deviation of momentum from the corner of the Brillouin zone \(Q \). The secondary Fourier components have a smaller weight and are shifted further away from \(-t_{\text{min}}(2a_\eta - a_\gamma) \) with \(\eta \neq \gamma \). The resulting Bragg peaks in the static structure factor are visualized in Fig. 2(b), which nicely agrees with previous numerical findings for the classical model [19]. The relative weights of secondary and primary Bragg peaks are predicted to be \(1/4^2 = 1/16 \) within the above approximation. We find that the corresponding energy is independent of the choice of origin \(r_0 = (x_0,y_0)^T \) as well as the phase \(\phi \).

In the Luttinger-Tisza approximation, the length of the \(\hat{\Omega} \) vector is compromised to differ from unity \(\sum_{\alpha=1}^{3} |\hat{\Omega}_{\alpha}(r)|^2 \neq 1 \). Whereas the length \(|\hat{\Omega}_z(r)| \) varies in space, it nevertheless remains always finite so that the orientation of \(\hat{\Omega}_z(r) \) is always well defined. Note that in the limit \(J_K \to 0 \) the distance \(t_{\text{min}} \to 0 \) and \(\varepsilon_{LT}(0) = -5S^23J_H/2 \) recovers the exact ground-state energy whereas the state itself \(\hat{\Omega}_{\gamma=0}(r) \) does not reproduce the \(120^\circ \) ordering as expected.

\[\text{FIG. 3. (Color online) } Z_2\text{-vortex crystal stabilized for } J_K > 0 \text{ in the presence of a small but finite Kitaev interaction } J_K \text{ revealed by the chirality vectors of Eq. (14) which were computed from the classical ground state (13) in the Luttinger-Tisza approximation. The color code shows the length of the chirality vector } |\kappa(r)|, \text{ normalized to one, that becomes minimal at the } Z_2\text{-vortex cores. The arrows in the closeup of the left panel correspond to projections of } \kappa(r) \text{ onto the } x-y \text{ plane.}\]

2. Vector chirality and \(Z_2 \) vortices

It turns out that the approximate classical ground state (13) corresponds to a triangular lattice of condensed \(Z_2 \) vortices, thus confirming the numerical results of Ref. [19]. This is best seen by defining chirality vectors on upward-pointing triangles of the lattice

\[
\kappa(r) = \frac{2}{3\sqrt{3}} (S_x \times S_y + S_z + S_x \times S_y + S_z) \times S_z.
\]

(14)

The length of \(\kappa(r) \) measures the rigidity of the local \(120^\circ \) ordering and it vanishes at the center of each \(Z_2 \) vortex [21]. The chirality vector profile, that derives from Eq. (13), is shown in Fig. 3 and clearly reveals the \(Z_2\)-vortex crystal.

Within our Luttinger-Tisza approximation, we find three zero modes for the \(Z_2\)-vortex crystal represented by the phase \(\phi \) and the vector \(r_0 \). The latter are expected as the vortex crystal spontaneously breaks translational symmetry so that a constant shift of the origin \(r_0 \) does not cost any energy. The corresponding low-energy excitations are just the effective acoustic phonon excitations of the vortex crystal. If the coupling between the two-dimensional atomic triangular lattice planes of Ba$_3$IrTi$_2$O$_9$ is sufficiently small, these low-energy modes will destroy true long-range order of the \(Z_2 \)-vortex crystal at any finite temperature that will be reflected in a characteristic broadening of the Bragg peaks in the structure factor of Fig. 2(b).

C. Polarized neutron scattering

The structure factor of the \(Z_2 \)-vortex crystal possesses as a hallmark of the Kitaev interaction a characteristic correlation between the positions of the Bragg peaks and the associated spin components [see Fig. 2(b)]. We suggest to resolve this correlation with the help of spherical neutron polarimetry.

The probability that an incoming neutron with spin \(\sigma_{in} \) is scattered into a spin state \(\sigma_{out} \) is given by the energy-integrated scattering cross section \(\sigma_{in\sigma_{out}}(q) \), where \(q \) is the transferred momentum. Consider a polarizer and analyzer with an orientation specified by the unit vectors \(e_{\alpha} \) and \(e_{\alpha\sigma_{out}} \), respectively. The total probability and the relative probability
that a neutron is detected with spin $\pm e_{\text{out}}$ is then given by

$$\sigma(q, e_{\text{out}}, e_{\text{in}}) = \sum_{\tau = \pm 1} \sigma_{\tau} e_{\text{out}}^\tau e_{\text{in}}^\tau(q),$$

(15)

and

$$\Delta \sigma(q, e_{\text{out}}, e_{\text{in}}) = \sum_{\tau = \pm 1} \tau \sigma_{\tau} e_{\text{out}}^\tau e_{\text{in}}^\tau(q),$$

(16)

respectively. The polarization is then defined by the ratio $P(q, e_{\text{out}}, e_{\text{in}}) = \Delta \sigma(q, e_{\text{out}}, e_{\text{in}})/\sigma(q, e_{\text{out}}, e_{\text{in}})$. In the following, we concentrate on the magnetically ordered phase when the scattering probabilities are dominated by magnetic Bragg scattering so that we can neglect all nuclear contributions. For the particular choice that the axis of polarizer and analyzer coincide, $e_{\text{out}} = e_{\text{in}} \equiv e$, but are orthogonal to the transferred momentum $e \perp q$, the polarization attributed to magnetic scattering simplifies to \[23,24\]

$$P_{\text{mag}}(q, e, e) = 2 e_i \chi_{ij}(q) e_j/\chi_{ij}(q) - 1,$$

(17)

where $\hat q = \frac{q}{|q|}$ is the orientation of momentum and $\chi_{ij}(q) = \chi_{ij}(q, \omega = 0)$ is the spin susceptibility at zero frequency

$$\chi_{ij}(q, \omega) = i \int_0^\infty dt e^{i\omega t} \langle [S_i(q,t), S_j(q,0)] \rangle.$$

(18)

The magnetic structure factor of the \mathbb{Z}_2-vortex crystal, which follows from Eq. (13), has only nonzero diagonal components χ_{ii}, which however differ from each other and, moreover, possess different Bragg peak positions. For example, for our choice of the Kitaev interaction, the χ_{zz} component is expected to exhibit a primary Bragg peak at $q^{(1)} = Q = qa = \frac{1}{a} [\frac{1}{2} (1,0) - \tau (-\frac{1}{2}, -\frac{\sqrt{3}}{2})]$, where a is the lattice constant and we assumed for simplicity that the two-dimensional triangular lattice lies in the x-y plane. Measuring at this particular Bragg peak, one expects for $e \perp \hat z$ the value $P_{\text{mag}} = 1$ in contrast to $P_{\text{mag}} = -1$ that is obtained for e in the direction perpendicular to $\hat z$ and q. A systematic variation of the analyzer/polarizer orientation e should therefore allow, in principle, to resolve the correlation between the diagonal components χ_{ii} and their Bragg peak position.

IV. FULL PHASE DIAGRAM

After a detailed discussion of the magnetic structure close to the antiferromagnetic Heisenberg point in the previous section, we now turn to the remaining part of the phase diagram. It is represented in Fig. 4 by a circle with the help of the parametrization $(J_H, J_K) = (\cos \alpha, \sin \alpha)$. Importantly, the HK model (1) exhibits a duality \[6,25\] (also referred to as the Klein duality \[14\]) relating a pair of interactions on the right-hand side of the circle to a pair of interactions on the left-hand side, i.e., $J_H \rightarrow -J_H$ and $J_K \rightarrow 2J_H + J_K$. The corresponding dual states are related by a four-sublattice basis transformation (see Appendix A for more explanations). As a consequence, the antiferromagnetic $\alpha = 0$, as well as the ferromagnetic Heisenberg point $\alpha = \pi$, both possess a dual giving rise to four SU(2)-symmetric points marked by red bars in Fig. 4. In particular, this maps the ferromagnetic state for $J_H < 0$ at $\alpha = \pi$ to a dual ferromagnet at $J_H > 0$ and $J_K < 0$ consisting of alternating strips of up-
configuration where the order parameter is allowed to cover the whole sphere \(S^2 \), i.e., to point in any direction. In the presence of a finite \(J_K \), however, fluctuations discriminate between the various orientations of the ferromagnetic order parameter and reduce the order-parameter space from the sphere to \(\mathbb{Z}_6 \), i.e., to only six points. A similar order-by-disorder mechanism has recently been discussed [26] with regard to distortions in the hexagonal HK model.

We concentrate here on the regime of the phase diagram adjacent to the ferromagnetic Heisenberg point (dark blue shaded in Fig. 4). With the help of the duality transformation, analogous conclusions then apply to the dual ferromagnet corresponding to the light blue shaded regime in Fig. 4.

1. Analytical arguments

The classical ferromagnetic ground state is given by a constant, homogeneous spin configuration \(\hat{\mathbf{S}}(r) \equiv \hat{\mathbf{S}} \) with \(\hat{\mathbf{S}}^2 = 1 \). The corresponding classical energy per site is independent of the orientation of \(\hat{\mathbf{S}} \) and reads as

\[
e_{\text{FM}} = S^2 (3J_H + J_K).
\]

(19)

For \(J_K = 0 \), this indeed corresponds to the exact ground-state energy. Any finite \(J_K \), however, gives rise to fluctuation corrections to the ground-state energy that also discriminate between the various orientations of \(\hat{\mathbf{S}} \). The leading \(1/S \) fluctuation correction to the energy is computed in Appendix B and reads in lowest order in the Kitaev interaction \(J_K \) as

\[
\delta e_{\text{FM}} = -\frac{3}{2} \frac{J_K^2}{|J_H|} \frac{3(2\sqrt{3} - \pi)}{8\pi} \left(\hat{\mathbf{S}}^4 + \hat{\mathbf{S}}^2 \right).
\]

(20)

This correction favors the vector \(\hat{\mathbf{S}} \) to point along one of the six equivalent \((100)\) directions (as \(2\sqrt{3} - \pi > 0 \)). Whereas at the Heisenberg point, \(J_K = 0 \), the ferromagnetic ground-state manifold is the full sphere \(S^2 \), a finite Kitaev interaction reduces this manifold to only six points corresponding to a \(\mathbb{Z}_6 \) ferromagnetic order parameter.

2. Numerical evidence

To corroborate our analytical results for the reduced order-parameter space for \(J_K \neq 0 \) around the ferromagnetic Heisenberg point, we performed exact diagonalization calculations on small systems. We implemented lattice clusters with periodic boundary conditions containing 12 sites, with a geometry that preserves the \(C_6 \) rotational symmetry of the triangular lattice. By applying a small magnetic field \(\mathbf{B} \) to each spin,

\[
\mathbf{B} = B \begin{pmatrix}
\cos(\phi) \sin(\theta) \\
\sin(\phi) \sin(\theta) \\
\cos(\theta)
\end{pmatrix},
\]

(21)

where \(\phi \in [0,2\pi) \) and \(\theta \in [0,\pi] \), the magnetization was forced to point in different directions. Figure 6(a) shows results for the change in the ground-state energy as a function of the orientation of \(\mathbf{B} \) with respect to the parallel alignment \(\mathbf{B} \parallel \hat{\mathbf{z}} \) for a small finite Kitaev coupling \(J_K/|J_H| = \tan(11\pi/10) \approx 0.32 \). In agreement with our analysis above, the ground-state energy of the system is minimal when the magnetization points along one of the six \((100)\) directions. Scanning the orientation of \(\mathbf{B} \) along the yellow line shown in Fig. 6(a), we compare in Fig. 6(b) the effect of different Kitaev couplings (solid lines). While for \(J_K = 0 \) the energy is independent of the orientation of \(\mathbf{B} \), for any finite \(J_K \neq 0 \) the energy immediately acquires an orientational dependence, that becomes more pronounced as \(J_K \) increases. The black dashed line in Fig. 6(b) is a fit of Eq. (20), showing perfect agreement.

The same reduction of the order-parameter space is already at work on the classical level. Figure 7 shows results of a finite-temperature Monte Carlo simulation of the classical HK model. Whereas for \(J_K = 0 \) the order parameter covers the \(S^2 \) sphere uniformly as illustrated in Fig. 7(a), the thermal fluctuations in the presence of a finite \(J_K \) favor the alignment of the order parameter along one of the six \((100)\) directions as shown in Fig. 7(b).

B. Nematic order close to the Kitaev point

In the classical limit, the Kitaev model on the triangular lattice possesses a macroscopic ground-state degeneracy as pointed out in Ref. [19]. The spins form antiferromagnetically or ferromagnetically ordered Ising chains, for \(J_K > 0 \) and \(J_K < 0 \), respectively, along one of the three lattice directions. The Kitaev interaction, however, does not couple the ordering of the individual chains, thus giving rise to a \(3 \times 2^L \)-fold
subextensive ground-state degeneracy where \(L \) is the linear system size. Each ground state breaks the combined symmetry of the HK Hamiltonian of a \(C_6 \) lattice rotation and a cyclic spin exchange so that the ordering is that of a spin nematic. While the ferromagnetic Kitaev point \(J_K < 0 \) only separates the ferromagnetic and the dual ferromagnetic order, which is immediately stabilized for any finite \(J_H \), an extended nematic phase arises close to the antiferromagnetic Kitaev point \(J_K > 0 \) [19]. For later reference, the energy per site of the classical ground state close to the antiferromagnetic Kitaev point is given by

\[
\epsilon_{\text{nematic}} = -S^2(J_H + J_K).
\] (22)

In order to investigate this nematic ordering of the quantum model, we calculated the energies of the ground state and the first few excited states using the density matrix renormalization group (DMRG) [27,28]. Once the ground state was found, we targeted excited states by successively calculating states of lowest energy that are orthogonal to all previously found states. While the DMRG is highly successful for 1D systems, it can also be extended to systems with a small finite width, and we considered triangular lattice systems of width 3 and 4 and varying length with open boundary conditions. We ran calculations at bond dimensions \(M = 600,800,1000 \) making sure that the energies converged.

The geometry of the considered lattice clusters breaks the \(C_6 \) symmetry of the lattice and the spins order antiferromagnetically in the spin component corresponding to the interaction term along the longer direction. In Fig. 8, we show the energy differences between the lowest eight excited states and the ground state, alongside spin-spin correlators. The first three excited states collapse exponentially onto the ground-state energy as the length of the system increases. Likewise, the next four excited states collapse to the same energy, however, growing linearly in system length. From the calculated spin-spin correlators we can identify this excitation to be given by a breaking of the antiferromagnetic ordering between next-nearest-neighbor chains. Finally, the eighth excited level corresponds to a local defect in a chain, which is indicated by the vanishing spin correlation in the center left corner of the lattice cluster. Figure 9 shows the spin-spin correlations in the ground state for systems of width 3 and 4 at the antiferromagnetic Kitaev point (\(J_H = 0 \)). While nearest-neighbor chains are uncorrelated, there is a clear antiferromagnetic correlation between next-nearest-neighbor chains in the spin component given by the chain direction. This mechanism locks the spin alignment of next-nearest-neighbor chains to each other and thus reduces the macroscopic degeneracy of the ground state from \(3 \times 2^4 \) to the nonextensive value \(3 \times 2^2 \). Other spin components show only very short-ranged correlations as shown in the lower two panels of Fig. 9. Upon including a nonvanishing Heisenberg interaction correlations also form between nearest-neighbor chains further lifting the degeneracy to \(3 \times 2 \) states (not shown), which however preserve the nematic nature of the Kitaev point.

C. Phase boundaries and ground-state energies

The phase boundaries in Fig. 4 have been determined by calculating the ground-state energy for clusters with \(N = 6 \times 4 = 24 \) lattice sites and periodic boundary conditions as well

\[
\langle S_\gamma^z S_\gamma^z \rangle,
\]

\[
\langle S_\gamma^x S_\gamma^x \rangle,
\]

\[
\langle S_\gamma^y S_\gamma^y \rangle
\]

\[
\langle S_\gamma^z S_\gamma^z \rangle
\]

\[
\langle S_\gamma^x S_\gamma^x \rangle,
\]

\[
\langle S_\gamma^y S_\gamma^y \rangle
\]

\[
\langle S_\gamma^z S_\gamma^z \rangle
\]

FIG. 9. (Color online) Spin-spin correlations in the ground state of the antiferromagnetic Kitaev model on the triangular lattice. Black circles indicate positive correlations \(\langle S_\gamma^z S_\gamma^z \rangle > 0 \), whereas the red circles denote negative correlations. The small white dot indicates the position \(r_0 \). The geometry of the lattice clusters lifts the degeneracy of the lattice direction, favoring chains antiferromagnetically coupled with their \(x \) component along the \(x \) direction while correlations along the \(y \) and \(z \) directions are suppressed. Whereas adjacent chains remain uncoupled, next-nearest-neighbor chains couple antiferromagnetically.
as clusters with 27 lattice sites keeping the original C3 lattice symmetry, with both clusters preserving the SU(2) symmetry of the Heisenberg points under the Klein duality. Using exact diagonalization (ED) techniques, we have determined the phase boundaries by identifying the points where the second derivative \(-\frac{d^2E}{d\alpha^2}\) appears to diverge (on these finite systems) (see the upper panel of Fig. 10).

For completeness, we have also repeated the Monte Carlo simulations of the classical model that were already performed in Ref. [19]. The result for the classical ground-state energies is shown in the lower panel of Fig. 10 together with a comparison to the ground-state energies obtained from ED of the quantum model. As expected, the two agree for the ferromagnetic Heisenberg model and its dual point indicating the absence of quantum fluctuations around their classical ground states. We also compare the Monte Carlo data with the analytical estimates for the classical ground-state energies (colored solid lines), which approximate well the numerical result. It should be noted that the phase diagram for the quantum HK model closely mimics the one found for the classical HK model [19], which is due to the mainly classical nature of the various ordered phases. The exceptions are the Kitaev points where quantum fluctuations have a profound effect and lift the macroscopic degeneracy of the ground state.

V. CONCLUSIONS

To summarize, we propose that a \(Z_2\)-vortex crystal phase might be observed in the recently synthesized \(\text{Ba}_3\text{IrTi}_2\text{O}_9\) [18]. The latter forms a \(j = \frac{1}{2}\) Mott insulator, whose low-energy physics we argue to be captured by a Heisenberg-Kitaev model on a triangular lattice. We reemphasize that the \(Z_2\)-vortex crystal arises in the vicinity of the antiferromagnetic Heisenberg model, i.e., in the limit of small Kitaev interactions, and thus in the experimentally most relevant parameter regime, as revealed by numerous microscopic studies [12,13] of the honeycomb iridates indicating the presence of Kitaev-type interactions only in addition to a dominant Heisenberg exchange. Initial samples of \(\text{Ba}_3\text{IrTi}_2\text{O}_9\) [18] appear to suffer from significant Ir-Ti site inversion obscuring the formation of any ordered phase, but better samples should exhibit a distinct signature in polarized neutron scattering as we have discussed in detail. The physics of the triangular HK model is also relevant to the honeycomb iridates, for which it has been argued that a next-nearest-neighbor exchange (along the two triangular sublattices of the honeycomb lattice) is indeed present in the actual materials [29–32]. Finally, we have left it to future research to explore whether the \(Z_2\)-vortex crystal also plays out in the bilayer triangular lattice material \(\text{Ba}_3\text{TiIr}_2\text{O}_9\) [33], which is closely related to the \(\text{Ba}_3\text{IrTi}_2\text{O}_9\) compound by replacing the role of Ir and Ti.

ACKNOWLEDGMENTS

We acknowledge insightful discussions with M. Daghofer, L. Fritz, G. Jackeli, M. Punk, A. Rosch, and I. Rousochatzakis. Our DMRG [28] and exact diagonalization codes are based on the ALPS libraries [34]. The numerical simulations were
performed on the CHEOPS cluster at RRZK Cologne. Some of the figures were created using the Mayavi library [35] and VESTA [36], respectively.

APPENDIX A: KLEIN-DUALITY TRANSFORMATION

We review the Klein-duality relating couplings on the left and right-hand sides of the circle phase diagram [see Fig. 11(b)]. Under this transformation, the Heisenberg-Kitaev Hamiltonian retains the same structure but the coupling parameters change as

\[
J_H \rightarrow -J_H, \quad J_K \rightarrow 2J_H + J_K. \tag{A1}
\]

The transformation is performed by dividing the triangular lattice into four sublattices as illustrated in Fig. 11(a). Subsequently, each spin is subjected to a basis rotation, where the spins on the sublattice labeled “id” are not changed. For the three remaining sublattices, each spin is rotated by \(\pi\) around the spin axis according to the sublattice labeling. Since a \(\pi\) rotation around one spin axis effectively inverts the sign of the two other components, we can write the full transformation as

\[
\begin{align*}
\text{id} & : (S^x, S^y, S^z) \rightarrow (S^x, -S^y, -S^z), \\
x & : (S^x, S^y, S^z) \rightarrow (S^x, -S^y, -S^z), \\
y & : (S^x, S^y, S^z) \rightarrow (-S^x, S^y, -S^z), \\
z & : (S^x, S^y, S^z) \rightarrow (-S^x, -S^y, S^z).
\end{align*} \tag{A2a}
\]

Since this transformation is a simple local rotation of the spin basis, the original Hamiltonian and its counterpart after the transformation effectively describe the same physics, albeit for a resized unit cell. Interestingly, this transformation maps the SU(2)-symmetric ferromagnetic and antiferromagnetic Hamiltonians at \(J_K = 0\) and \(J_H = \pm 1\) onto Heisenberg-Kitaev Hamiltonians with \(J_K = -2J_H\), revealing two more SU(2)-symmetric points in the phase diagram. These points and their corresponding phases are termed the “stripy” (anti)ferromagnets, due to the magnetic order after the basis rotation. The spin configurations at these points are illustrated in Fig. 5.

APPENDIX B: FLUCTUATION CORRECTION TO THE FERROMAGNETIC GROUND-STATE ENERGY

The classical ferromagnetic ground state is given by a constant, homogeneous spin configuration \(\mathbf{\hat{S}}(\mathbf{r}) = \mathbf{\hat{S}}\) with \(\mathbf{\hat{S}}^2 = 1\). The corresponding classical energy per site is independent of the orientation of \(\mathbf{\hat{S}}\) and reads as

\[
\epsilon_{\text{FM}} = S^2(3J_H + J_K). \tag{B1}
\]

For \(J_K = 0\), this indeed corresponds to the exact ground-state energy. Any finite \(J_K\), however, gives rise to fluctuation contributions to the ground state that also discriminate between the various orientations of \(\mathbf{\hat{S}}\). Performing a standard Holstein-Primakoff transformation, the spin operator along the local \(z\) axis, here defined by the classical vector \(\mathbf{\hat{S}}\), can be expressed as

\[
\mathbf{\hat{S}}^z = S - a^+_i a_i, \quad \mathbf{\hat{S}}^+ = a^+_i \sqrt{2S - a^+_i a_i}, \quad \mathbf{\hat{S}}^- = a_i \sqrt{2S - a^+_i a_i}, \tag{B2}
\]

where \(\mathbf{\hat{S}}^\pm = \mathbf{\hat{S}}^x \pm i\mathbf{\hat{S}}^y\). The spin operator \(\mathbf{S}\) within the laboratory frame is related to \(\mathbf{\hat{S}}\) by a rotation \(\mathbf{S} = R \mathbf{\hat{S}} R^T\) where

\[
R = \begin{pmatrix}
-\sin \phi & -\cos \theta \cos \phi & \sin \theta \cos \phi \\
\cos \phi & -\cos \theta \sin \phi & \sin \theta \sin \phi \\
0 & \sin \theta & \cos \theta
\end{pmatrix} \quad \text{(B3)}
\]
with the Pauli matrices σ^x, σ^y, and σ^z, and we used the abbreviations $e^\pm = \frac{1}{\sqrt{2}} R(1, \pm i, 0)^T$ and $e^{\mp} = \frac{1}{\sqrt{2}} (\sigma^x \pm i \sigma^y)$. With the help of a Bogoliubov transformation we can compute the correction to the classical ground-state energy (B1). In order to elucidate the analytical structure, we concentrate on the contribution to this correction only of lowest order in the Kitaev interaction

$$\delta \epsilon_{\text{FM}} = - \frac{1}{4N} \sum_{k \in \text{BZ}} h_{11}(k) h_{12}(k) = -S \frac{J_k^2}{2N |J_H|} \sum_{k \in \text{BZ}} \left[\sum_{\gamma = x,y,z} (1 - \cos(k \cdot a_\gamma)) \right] \left[\sum_{\gamma = x,y,z} (1 - \cos(k \cdot a_\gamma)) \right].$$

(B6)

To evaluate this expression, we need the following integrals over the Brillouin zone:

$$\int_{1\text{BZ}} d^3k \left[\sum_{\gamma = x,y,z} (1 - \cos(k \cdot a_\gamma)) \right]^2 = \frac{8\pi^2}{\sqrt{3}} \delta_{ab} + \frac{5\pi - 6\sqrt{3}}{6\pi} (1 - \delta_{ab}).$$

(B7)

Here, we evaluated the integrals in the thermodynamic limit where the volume of the first Brillouin zone is given by $V_{1\text{BZ}} = \frac{8\pi^2}{\sqrt{3}}$ using the identities

$$(e^+_x e^+_y + e^+_y e^+_z)^2 + (e^+_z e^+_x)^2 = - (e^+_x e^-_y)^2 - (e^+_y e^-_z)^2 + (e^+_z e^-_x)^2 = \frac{1}{2} (1 + \Omega_4^x + \Omega_4^y + \Omega_4^z).$$

(B8)

The fluctuation correction to the energy in lowest order in the Kitaev interaction finally assumes the form given in Eq. (20).

Spin-orbit Physics of $j = \frac{1}{2}$ Mott ...