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The physics of spin-orbital entanglement in effective j = 1
2 Mott insulators, which have been experimentally

observed for various 5d transition-metal oxides, has sparked an interest in Heisenberg-Kitaev (HK) models
thought to capture their essential microscopic interactions. Here, we argue that the recently synthesized Ba3IrTi2O9

is a prime candidate for a microscopic realization of the triangular HK model, a conceptually interesting model for
its interplay of geometric and exchange frustration. We establish that an infinitesimal Kitaev exchange destabilizes
the 120◦ order of the quantum Heisenberg model. This results in the formation of an extended Z2-vortex crystal
phase in the parameter regime most likely relevant to the real material, which can be experimentally identified
with spherical neutron polarimetry. Moreover, using a combination of analytical and numerical techniques, we
map out the entire phase diagram of the model, which further includes various ordered phases as well as an
extended nematic phase around the antiferromagnetic Kitaev point.

DOI: 10.1103/PhysRevB.91.155135 PACS number(s): 75.10.Jm, 71.20.Be, 74.25.Uv

I. INTRODUCTION

The physics of transition-metal oxides with partially filled
5d shells is governed by a largely accidental balance of
electronic correlations, spin-orbit entanglement, and crystal-
field effects, with all three components coming up roughly
equal in strength. With different materials exhibiting slight tilts
towards one of the three effects, a remarkably broad variety of
quantum states has recently been suggested, which includes
exotic states such as Weyl semimetals, axion insulators,
or topological Mott insulators [1]. A particularly intriguing
scenario is the formation of Mott insulators in which the
local moments are spin-orbit entangled Kramers doublets. An
example are the j = 1

2 Mott insulators observed for various
iridates [2–4]. The iridium valence in the latter typically is
Ir4+ corresponding to a 5d5 electronic configuration. With the
crystal field of the octahedral IrO6 oxygen cage splitting off
the two eg levels, this puts five electrons with an effective
s = 1

2 magnetic moment into the t2g orbitals, which entangled
by strong spin-orbit coupling leaves the system with a fully
filled j = 3

2 band and a half-filled j = 1
2 band [2,3,5]. The

smaller bandwidth of the latter then allows for the opening
of a Mott gap even for the relatively moderate electronic
correlations of the 5d compounds. Interest in such j = 1

2 Mott
insulators has been sparked by the theoretical observation
[6–8] that the microscopic interaction between their spin-
orbit entangled local moments not only includes an isotropic
Heisenberg exchange, but also highly anisotropic interactions
whose easy axis depends on the spatial orientation of the
exchange path tracing back to the orbital contribution of
the moments [9]. In a hexagonal lattice geometry, as it is
found for the layered Na2IrO3 and α-Li2IrO3 compounds,
these anisotropic interactions provide an implementation of the
celebrated Kitaev model [10] known for its spin-liquid ground
states. A trove of experimental data [11], ab initio calculations
[12], and model simulations [13] for these hexagonal systems
has spurred an ongoing discourse illuminating the actual
spin-orbital ordering mechanism in these materials.

Much recent activity [14,15] has been targeted towards
the physics of j = 1

2 Mott insulators for lattice geometries

beyond the hexagonal lattice, triggered mainly by the synthesis
of novel iridate compounds, which includes, e.g., the sister
compounds β-Li2IrO3 [16] and γ -Li2IrO3 [17] that form
three-dimensional Ir lattice structures. In this paper, we
turn to the recently synthesized iridate Ba3IrTi2O9 [18] and
argue that it realizes a Heisenberg-Kitaev (HK) model on a
triangular lattice. This model is of deep conceptual interest as
it exhibits a subtle interplay of the two elementary sources of
frustration: geometric frustration arising from its nonbipartite
lattice structure as well as exchange frustration arising from
the Kitaev couplings. The ground states of the classical HK
model on the triangular lattice have been already addressed
by Rousochatzakis et al. [19]. With the help of Monte
Carlo simulations these authors demonstrated that a small
but finite Kitaev exchange in addition to an antiferromagnetic
Heisenberg interaction stabilizes a Z2-vortex crystal. The Z2

vortices can be viewed as defects of the SO(3) order parameter
associated with the 120◦ ordering of the antiferromagnetic
Heisenberg model. It is important to note that this physics plays
out near the Heisenberg limit of the HK model, the relevant
microscopic parameter regime for all iridates synthesized so
far. As such, Ba3IrTi2O9 is a prime candidate to observe this
exotic phase.

After a discussion of the material aspect of Ba3IrTi2O9

and a motivation of the HK model in Sec. II, we examine in
Sec. III the formation of aZ2-vortex crystal from the analytical
perspective of an expanded Luttinger-Tisza approximation and
quantitatively describe its experimental signatures in polarized
neutron scattering experiments. In Sec. IV, we address the full
phase diagram of the HK model and discuss the various phases
with the help of analytical as well as numerical methods.
Finally, in Sec. V we close with a summary.

II. MATERIAL PHYSICS OF Ba3IrTi2O9

Ba3IrTi2O9 forms layers of Ir4+ ions in a triangular
geometry, which are separated from each other by two layers of
Ti4+ ions. An important characteristic of the Ir layer geometry
illustrated in Figs. 1(a) and 1(b) is that it exhibits the two
necessary ingredients for Kitaev-type exchange couplings.
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FIG. 1. (Color online) (a) Crystal structure of Ba3IrTi2O9. (b) View of single iridium layers from two different perspectives. Within the
plane, the x, y, and z exchange paths are indicated by the gray planes. The planes labeled by x (y, z) are normal to the coordinate axis x̂ (ŷ, ẑ).
(c) The exchange between the iridium moments (blue) is mediated by two coplanar exchange paths.

First, every pair of iridium ions is coupled via two separate
exchange paths as indicated in Fig. 1(c) leading to a destructive
interference and subsequent suppression of the isotropic
Heisenberg exchange [6–8]. In comparison to the tricoordi-
nated iridates (Na,Li)2IrO3, which exhibit Ir-O-Ir exchange
paths, the triangular Ba3IrTi2O9 exhibits somewhat longer
Ir-O-O-Ir exchange paths, resulting in an overall lessening
of the magnetic exchange strength. Second, the three principal
bond directions of the triangular lattice structure cut through
three different edges of the IrO6 oxygen cages, resulting in
a distinct locking of the exchange easy axis along the three
directions [6–8] as illustrated in Fig. 1(a) and ultimately giving
rise to the three components of the Kitaev exchange. Note that
the Ir layer is normal to the (111) direction, hence, the three di-
rections are all equivalent. The description of the microscopic
physics is thus given in terms of a Heisenberg-Kitaev (HK)
Hamiltonian

HHK = JH

∑
〈ij 〉

Si · Sj + JK

∑
γ ‖〈ij〉

S
γ

i S
γ

j , (1)

where Si is a spin operator located on site i of the triangular
lattice spanned by the lattice vectors ax = (1,0)T , ay =
(−1/2,

√
3/2)T , and az = −ax − ay [see Fig. 2(a)]. Here

and in the following, we measure lengths in units of the
lattice constant a. The first term is the standard Heisenberg
coupling JH that describes an SU(2) invariant interaction
between the spin-orbit entangled j = 1

2 moments on nearest-
neighbor lattice sites. The Kitaev interaction JK , on the other
hand, explicitly breaks spin-rotation invariance and acts only
between single components Sγ of adjacent spins. The precise
component depends on the link between the lattice sites [see

FIG. 2. (Color online) (a) The triangular lattice with the three
lattice vectors aγ . Solid, dashed, and dotted bonds carry the three
distinct Kitaev interactions (see text). (b) First Brillouin zone of
the triangular lattice. The position and size of the colored dots indicate
the position and weight of Bragg peaks, respectively, expected
in the static spin structure factor for the Z2-vortex crystal. Each color
corresponds to a different spin component as listed in panel (a).

Fig. 2(a)]; for our particular choice here, the γ components of
spins interact via JK if sites are connected by a lattice vector
aγ with γ = x,y,z.

III. 120◦ ORDER AND Z2-VORTEX CRYSTAL

We will start our discussion of the ground states of Hamilto-
nian (1) by first elucidating the magnetic structure around the
antiferromagnetic Heisenberg point, where an extended Z2-
vortex crystal phase is found in agreement with Ref. [19]. The
ground state of the antiferromagnetic Heisenberg Hamiltonian
on the triangular lattice, which corresponds to couplings
JH > 0 and JK = 0 for Hamiltonian (1), is characterized
by a 120◦ ordering of spins [20]. At the classical level, this
ordering is captured by a spin orientation Si = S�̂(ri) with
the unit vector �̂120◦ (r) = e1 cos(Q · r) + e2 sin(Q · r) where
the commensurate wave vector Q connects the center with a
corner of the Brillouin zone Q = 4π

3 (1,0). The orthonormal
frame ei with i = 1,2,3 and e3 = e1 × e2 constitutes an SO(3)
order parameter. The energy per site for this classical state is
given by

ε120◦ = −S2 1
2 (3JH + JK ). (2)

Crucially, the 120◦ ordering possesses Z2 vortices [21] as
topologically stable point defects, which can be understood by
considering the first homotopy group of its order parameter
�1[SO(3)] = Z2.

A. Kitaev interaction destabilizes 120◦ ordering

For any finite JK , the 120◦ state becomes immediately
unstable with respect to fluctuations, which we demonstrate
in the following. We parametrize the fluctuations with the help
of two real fields π(r) = [π1(r),π2(r)]T :

�̂(r) = �̂120◦ (r)
√

1 − [π(r)]2 + π1(r)[−e1 sin(Q · r)

+ e2 cos(Q · r)] + π2(r)e3, (3)

so that �̂
2
(r) = 1 is maintained. Plugging this ansatz in

the Hamiltonian and expanding up to second order in the
fluctuation fields one obtains for the energy E = Nε120◦ + E (2)

with N denoting the number of lattice sites. The fluctuation
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part reads as

E (2) = −ε120◦
∑

i

[π (ri)]
2 − JHS2

2

∑
〈ij〉

(π1iπ1j − 2π2iπ2j ) + JKS2
∑

γ ‖〈ij〉

{
e
γ

3 e
γ

3 π2iπ2j + (
e
γ

1 e
γ

1 cos(Qri) cos(Qrj )

+ e
γ

2 e
γ

2 sin(Qri) sin(Qrj ) − e
γ

1 e
γ

2 sin[Q(ri + rj )]
)
π1iπ1j + [(−e

γ

1 sin(Qri) + e
γ

2 cos(Qri)
)
e
γ

3 π1iπ2j + (i ↔ j )
]}

, (4)

with the abbreviation πai = πa(ri) for a = 1,2. The fluctuation
eigenmodes are determined with the help of the Fourier
transform πa(ri) = 1√

N

∑
k∈1 BZ eikriπa(k). In the absence of

the Kitaev interaction JK = 0, one obtains

E (2)|JK=0 =JH S2

2

∑
k∈1 BZ
γ=x,y,z

[[1 − cos(kaγ )]π∗
1 (k)π1(k)

+ [1 + 2 cos(kaγ )]π∗
2 (k)π2(k)] (5)

with π∗
a (k) = πa(−k). Whereas the π1 mode becomes soft at

the center of the Brillouin zone, i.e., at k = 0, the energy
of the π2 mode vanishes at its edge, e.g., for momenta
k = ±Q. The zero modes π1(k = 0) and π2(±Q) thus identify
three Goldstone modes that correspond to a long-wavelength
rotation and tilting of the local orthogonal frame, respec-
tively. In particular, the energy dispersion of the tilting
mode εtilt

k |JK=0 = JHS2∑
γ=1,2,3[1 + 2 cos(k · aγ )] close to

momentum Q possesses the form εtilt
Q+k|JK=0 ≈ JHS2 3

8 k2.
Adding a finite Kitaev coupling JK immediately results

in a negative energy eigenvalue and, therefore, destabilizes
the 120◦ ground state. We can still diagonalize for the
eigenenergies perturbatively in JK . In lowest order and in the
long-wavelength limit, the zero modes do not hybridize, and
we obtain for the tilting mode a dispersion relation that is given
in the long-wavelength limit |k| � |Q| by

εtilt
Q+k ≈ JHS2 3

4
k2 − 2JKS2

∑
γ=x,y,z

k · aγ sin(Q · aγ )
(
e
γ

3

)2
.

(6)

It becomes maximally negative for a wave vector

kinst = JK

JH

4

3

∑
γ=x,y,z

aγ sin(Q · aγ )
(
e
γ

3

)2

= JK

JH

(
1√
3

[(
e
y

3

)2 + (
ez

3

)2 − 2
(
ex

3 )2
)]

,
(
ez

3

)2 − (
e
y

3

)2
)T

,

(7)

that can be expressed in terms of the normal e3. In the special
case where the spins of the 120◦ ordering are confined within
the x-y plane and e3 = ẑ, this wave vector is just given
by kinst = JK/JH (1/

√
3,1)T . So it is the tilting Goldstone

modes that trigger the instability of the 120◦ antiferromagnetic
ordering in the presence of a finite Kitaev interaction JK .

B. Incommensurate antiferromagnet: Z2-vortex crystal

Indeed, allowing for a slowly spatially varying orthogonal
frame ei(r) one finds in the limit |JK | � JH the effective

energy functional E = ∫
d2rL with

L = 3JH S2

4

∑
γ=x,y,z

e−
γ (r)[−∇2 − 2iqKaγ · ∇]e+

γ (r), (8)

where e± = (e1 ± ie2)/
√

2. The Kitaev interaction induces a
coupling qK = 2JK/(

√
3JH ) to constant gauge fields given

by the triangular lattice vectors aγ , that can be identified as
Lifshitz invariants as previously pointed out in Ref. [19]. The
magnetization can thus minimize its energy by allowing for
a spatial modulation of the SO(3) order parameter on large
length scales proportional to 1/qK ∝ JH /JK .

1. Luttinger-Tisza approximation

The character of this modulated classical ground state
can be obtained by minimizing the Hamiltonian treating the

orthonormal constraint ei · ej = δij or, equivalently, �̂
2 = 1,

within an improved Luttinger-Tisza approximation [22]. The
latter is a good approximation for large length scales qK |r| � 1
or, alternatively, for small momenta |q| � qK . Note that
this latter limit does not commute with JK → 0, and, as a
consequence, does not smoothly connect with the Heisenberg
point.

We start with the functional

E=JKS2
∑
〈ij〉

�̂i · �̂j + JKS2
∑

γ ‖〈ij 〉
	̂

γ

i 	̂
γ

j −
∑

i

λi

(
�̂

2
i − 1

)
.

(9)

The unit length of the vector �̂i is locally imposed with the
help of the Lagrange multipliers λi . Upon spatial Fourier
transformation, �̂(r) = ∑

q eiqr�̂q, the functional takes the
form

E/N =
∑

q

	̂α
−qJ αβ(q)	̂β

q +
∑
q,p

λ−q−p	̂
α
p	̂α

q − λ0, (10)

where λ0 = λq|q=0. The matrix J αβ possesses only diagonal
entries with

J αα(q) =JHS2(cos(ax · q) + cos(ay · q) + cos(az · q))

+ JKS2 cos(aα · q) (11)

and J αβ(q) = 0 for α �= β. At the Heisenberg point JK = 0,
the diagonal components of the matrix are minimal for
momenta at the corner of the Brillouin zone, e.g., q = Q,
thus leading to 120◦ ordering. A finite JK , however, favors in
general incommensurate order with wave vectors away from
Q as J αα(q) become minimal for momenta of the form q(1)

α =
Q − t aα with t ∈ R. On the other hand, Fourier components
	̂α

q(1)
α

of the spin with such incommensurate wave vectors

induce finite Fourier components λ±2q(1)
α

with α = 1,2,3 of
the Lagrange multiplier. Finite Lagrange multipliers λ±2q(1)

α
,
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in turn, induce two finite secondary Fourier components 	̂α

q(2)
α,β

with q(2)
α,β = Q − t (2aβ − aα) where β �= α and so on.

In the following, we discuss a Luttinger-Tisza approxima-
tion where we limit ourselves to the lowest finite Fourier com-
ponents 	̂α

q(1)
α

and 	̂α

q(2)
α,β

for the spin and λ0 and λ±2q(1)
α

for the

Lagrange multiplier; all higher Fourier modes are neglected. In
principle, this approximation can be systematically improved
by including higher-order modes. Minimizing the functional
(10) within this approximation, we obtain for the energy per
site

εLT(t) = − S2

9

[
JH

(
cos

π + 6t

3
+ 17 sin

π − 3t

6

+ 8 sin
π + 6t

6
+ sin

π + 15t

6

)

+ JK

(
cos

π + 6t

3
+ 8 sin

π + 6t

6

)]
, (12)

which still depends on the parameter t that quantifies the
distance of the primary Bragg peak from the corner of the
Brillouin zone q(1)

α = Q − t aα . The value of tmin identifying
the position of the minimum of the function (12) finally
determines the ground-state energy εLT(tmin). This analytical
estimate for the ground-state energy is found to be in excellent
agreement with numerical estimates obtained from Monte
Carlo simulations discussed in Sec. IV C.

The corresponding state is given by

Sγ (r) ≈ 4S

3
√

3
Re

⎧⎨
⎩eiφ

⎛
⎝ei(Q−taγ )·(r−r0)

+1

4

∑
η �=γ

ei[Q−t(2aη−aγ )]·(r−r0)

⎞
⎠
⎫⎬
⎭ , (13)

where Sγ is the γ component of the spin and the ground
state is obtained by setting t = tmin. The first term in Eq. (13)
is the most important, primary Fourier component which
also possesses the smallest deviation of momentum from
the corner of the Brillouin zone Q. The secondary Fourier
components have a smaller weight and are shifted further
away by −tmin(2aη − aγ ) with η �= γ . The resulting Bragg
peaks in the static structure factor are visualized in Fig. 2(b),
which nicely agrees with previous numerical findings for the
classical model [19]. The relative weights of secondary and
primary Bragg peaks are predicted to be 1/42 = 1/16 within
the above approximation. We find that the corresponding
energy is independent of the choice of origin r0 = (x0,y0)T

as well as the phase φ.
In the Luttinger-Tisza approximation, the length of the �̂

vector is compromised to differ from unity
∑3

α=1[	̂α
t (r)]2 �= 1.

Whereas the length |�̂t (r)| varies in space, it nevertheless
remains always finite so that the orientation of �̂t (r) is always
well defined. Note that in the limit JK → 0 the distance tmin →
0 and εLT(0) = −S23JH /2 recovers the exact ground-state
energy whereas the state itself 	̂α

t=0(r) does not reproduce
the 120◦ ordering as expected.

FIG. 3. (Color online) Z2-vortex crystal stabilized for JH > 0 in
the presence of a small but finite Kitaev interaction JK revealed by the
chirality vectors of Eq. (14) which were computed from the classical
ground state (13) in the Luttinger-Tisza approximation. The color
code shows the length of the chirality vector |κ(r)|, normalized to
one, that becomes minimal at the Z2-vortex cores. The arrows in the
closeup of the left panel correspond to projections of κ(r) onto the
x-y plane.

2. Vector chirality and Z2 vortices

It turns out that the approximate classical ground state (13)
corresponds to a triangular lattice of condensed Z2 vortices,
thus confirming the numerical results of Ref. [19]. This is best
seen by defining chirality vectors on upward-pointing triangles
of the lattice

κ(r)= 2

3
√

3

(
Sr × Sr+ax

+ Sr+ax
× Sr+ay

+ Sr+ay
× Sr

)
. (14)

The length of κ(r) measures the rigidity of the local 120◦

ordering and it vanishes at the center of each Z2 vortex [21].
The chirality vector profile, that derives from Eq. (13), is shown
in Fig. 3 and clearly reveals the Z2-vortex crystal.

Within our Luttinger-Tisza approximation, we find three
zero modes for the Z2-vortex crystal represented by the
phase φ and the vector r0. The latter are expected as the
vortex crystal spontaneously breaks translational symmetry
so that a constant shift of the origin r0 does not cost
any energy. The corresponding low-energy excitations are
just the effective acoustic phonon excitations of the vortex
crystal. If the coupling between the two-dimensional atomic
triangular lattice planes of Ba3IrTi2O9 is sufficiently small,
these low-energy modes will destroy true long-range order of
the Z2-vortex crystal at any finite temperature that will be
reflected in a characteristic broadening of the Bragg peaks in
the structure factor of Fig. 2(b).

C. Polarized neutron scattering

The structure factor of the Z2-vortex crystal possesses as a
hallmark of the Kitaev interaction a characteristic correlation
between the positions of the Bragg peaks and the associated
spin components [see Fig. 2(b)]. We suggest to resolve this
correlation with the help of spherical neutron polarimetry.

The probability that an incoming neutron with spin σin

is scattered into a spin state σout is given by the energy-
integrated scattering cross section σσout,σin (q), where q is the
transferred momentum. Consider a polarizer and analyzer
with an orientation specified by the unit vectors ein and eout,
respectively. The total probability and the relative probability
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that a neutron is detected with spin ±eout is then given by

σ (q,eout,ein) =
∑

τout=±1

στoutσout,σin (q), (15)

�σ (q,eout,ein) =
∑

τout=±1

τoutστoutσout,σin (q), (16)

respectively. The polarization is then defined by the ratio
P(q,eout,ein) = �σ (q,eout,ein)/σ (q,eout,ein). In the following,
we concentrate on the magnetically ordered phase when the
scattering probabilities are dominated by magnetic Bragg
scattering so that we can neglect all nuclear contributions.
For the particular choice that the axis of polarizer and analyzer
coincide, eout = ein ≡ e, but are orthogonal to the transferred
momentum e ⊥ q, the polarization attributed to magnetic
scattering simplifies to [23,24]

Pmag(q,e,e)|ê⊥q = 2
eiχij (q)ej

χkl(q)(δkl − q̂kq̂l)
− 1, (17)

where q̂ = q
|q| is the orientation of momentum and χij (q) =

χij (q,ω = 0) is the spin susceptibility at zero frequency

χij (q,ω) = i

∫ ∞

0
dt eiωt 〈[Si(q,t),Sj (−q,0)]〉. (18)

The magnetic structure factor of the Z2-vortex crystal, that
follows from Eq. (13), has only nonzero diagonal components
χii , which however differ from each other and, moreover,
possess different Bragg peak positions. For example, for
our choice of the Kitaev interaction, the χzz component is
expected to exhibit a primary Bragg peak at q(1) = Q − taz =
1
a

[ 4π
3 (1,0,0) − t(− 1

2 ,−
√

3
2 ),0] where a is the lattice constant

and we assumed for simplicity that the two-dimensional
triangular lattice lies in the x-y plane. Measuring at this
particular Bragg peak, one expects for e = ẑ the value Pmag =
1 in contrast to Pmag = −1 that is obtained for e in the
direction perpendicular to ẑ and q. A systematic variation
of the analyzer/polarizer orientation e should therefore allow,
in principle, to resolve the correlation between the diagonal
components χii and their Bragg peak position.

IV. FULL PHASE DIAGRAM

After a detailed discussion of the magnetic structure close to
the antiferromagnetic Heisenberg point in the previous section,
we now turn to the remaining part of the phase diagram.
It is represented in Fig. 4 by a circle with the help of the
parametrization (JH ,JK ) = (cos α, sin α).

Importantly, the HK model (1) exhibits a duality [6,25]
(also referred to as the Klein duality [14]) relating a pair
of interactions on the right-hand side of the circle to a pair
of interactions on the left-hand side, i.e., JH → −JH and
JK → 2JH + JK . The corresponding dual states are related
by a four-sublattice basis transformation (see Appendix A for
more explanations). As a consequence, the antiferromagnetic
α = 0, as well as the ferromagnetic Heisenberg point α = π ,
both possess a dual giving rise to four SU(2)-symmetric points
marked by red bars in Fig. 4. In particular, this maps the
ferromagnetic state for JH < 0 at α = π to a dual ferromagnet
at JH > 0 and JK < 0 consisting of alternating strips of up-

120◦ order

dual Z6 FM

dual O(3) FM

Z6 FM

nematic phase

Z2 vortex crystal

dual Z2
vortex crystal

FM

dual 120◦ order

FIG. 4. (Color online) Phase diagram of the Hamiltonian (1)
with parametrization (JH ,JK ) = (cos α, sin α) as obtained from exact
diagonalization data. Solid lines show the mapping between two
Klein-dual points. Red lines mark the location of the four SU(2)-
symmetric points. Yellow diamonds mark the two Kitaev points.

and down-pointing spins [see Fig. 5(a)]. Similarly, the 120◦

ordered state and its surrounding Z2-vortex crystal phase
around the JH > 0 Heisenberg point map to a dual phase
in the upper left quadrant with JH < 0 and JK > 0 with the
respective orderings illustrated in Figs. 5(b) and 5(c).

In the following, we first elaborate in Sec. IV A on the
ferromagnetic phase and the influence of a finite Kitaev
interaction on the order-parameter space. Second, in Sec. IV B
we examine the physics close to the Kitaev point α = π/2
where the classical ground-state manifold is macroscopically
degenerate so that quantum fluctuations have a profound effect.
Third, in Sec. IV C we finally discuss the ground-state energies
of the classical as well as of the quantum model that lead to
the phase diagram in Fig. 4.

A. Z6 ferromagnet

At the Heisenberg point JH < 0 and JK = 0, the exact
ground state of the Hamiltonian is the ferromagnetic spin

FM dual FM 120° dual 120°

Klein
duality

Z2 vortex crystal dual Z2 vortex crystal
(only one sublattice shown) (only one sublattice shown)

(a)

(c)

(b)

FIG. 5. (Color online) (a), (b) Spin configurations for the four
SU(2)-symmetric points of the HK model (1). The gray diamonds
indicate the unit cells of the order. (c) Snapshots of spin configurations
in the Z2-vortex crystal (left) and its dual Z2-vortex crystal (right).
For clarity, only one of the three sublattices of the triangular lattice
is shown. Yellow arrows point upwards out of the plane, while blue
arrows point downwards out of the plane.
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(a) (b)
0.006

0.000

z

x y

JK

FIG. 6. (Color online) (a) Ground-state energy of the quantum model for ferromagnetic JH < 0 in an external Zeeman field as a function
of the direction of the applied magnetic field B, where we have subtracted the ground-state energy for B = |B|ẑ. The Kitaev coupling strength
is JK/|JH | = tan(11π/10) ≈ 0.32. The energy is minimal when the magnetization is pinned along one of the three axes, and maximal when
pointing along the space diagonals. (b) The same results shown for the cut along the yellow line in (a). Each line in (b) corresponds to a different
value of JK/JH . While for JK = 0 the ground-state energy is independent of the direction of the magnetic field, the directional dependence
becomes increasingly pronounced upon increasing JK/|JH |. The dashed line is a fit of Eq. (20).

configuration where the order parameter is allowed to cover the
whole sphere S2, i.e., to point in any direction. In the presence
of a finite JK , however, fluctuations discriminate between the
various orientations of the ferromagnetic order parameter and
reduce the order-parameter space from the sphere to Z6, i.e.,
to only six points. A similar order-by-disorder mechanism has
recently been discussed [26] with regard to distortions in the
hexagonal HK model.

We concentrate here on the regime of the phase diagram
adjacent to the ferromagnetic Heisenberg point (dark blue
shaded in Fig. 4). With the help of the duality transformation,
analogous conclusions then apply to the dual ferromagnet
corresponding to the light blue shaded regime in Fig. 4.

1. Analytical arguments

The classical ferromagnetic ground state is given by a
constant, homogeneous spin configuration �̂(r) ≡ �̂ with

�̂
2 = 1. The corresponding classical energy per site is in-

dependent of the orientation of �̂ and reads as

εFM = S2(3JH + JK ). (19)

For JK = 0, this indeed corresponds to the exact ground-state
energy. Any finite JK , however, gives rise to fluctuation
corrections to the ground-state energy that also discriminate
between the various orientations of �̂. The leading 1/S

fluctuation correction to the energy is computed in Appendix B
and reads in lowest order in the Kitaev interaction JK as

δεFM = −S

2

J 2
K

|JH |
3(2

√
3 − π )

8π

(
1 + 	̂4

x + 	̂4
y + 	̂4

z

)
. (20)

This correction favors the vector �̂ to point along one of the
six equivalent 〈100〉 directions (as 2

√
3 − π > 0). Whereas

at the Heisenberg point, JK = 0, the ferromagnetic ground-
state manifold is the full sphere S2, a finite Kitaev interaction
reduces this manifold to only six points corresponding to a Z6

ferromagnetic order parameter.

2. Numerical evidence

To corroborate our analytical results for the reduced order-
parameter space for JK �= 0 around the ferromagnetic Heisen-

berg point, we performed exact diagonalization calculations on
small systems. We implemented lattice clusters with periodic
boundary conditions containing 12 sites, with a geometry that
preserves the C6 rotational symmetry of the triangular lattice.
By applying a small magnetic field B to each spin,

B = B

⎛
⎝cos(φ) sin(θ )

sin(φ) sin(θ )
cos(θ )

⎞
⎠, (21)

where φ ∈ [0,2π ) and θ ∈ [0,π ], the magnetization was
forced to point in different directions. Figure 6(a) shows results
for the change in the ground-state energy as a function of the
orientation of B with respect to the parallel alignment B ‖ ẑ
for a small finite Kitaev coupling JK/|JH | = tan(11π/10) ≈
0.32. In agreement with our analysis above, the ground-state
energy of the system is minimal when the magnetization points
along one of the six 〈100〉 directions. Scanning the orientation
of B along the yellow line shown in Fig. 6(a), we compare in
Fig. 6(b) the effect of different Kitaev couplings (solid lines).
While for JK = 0 the energy is independent of the orientation
of B, for any finite JK �= 0 the energy immediately acquires
an orientational dependence, that becomes more pronounced
as JK increases. The black dashed line in Fig. 6(b) is a fit of
Eq. (20), showing perfect agreement.

The same reduction of the order-parameter space is already
at work on the classical level. Figure 7 shows results of a
finite-temperature Monte Carlo simulation of the classical HK
model. Whereas for JK = 0 the order parameter covers the
S2 sphere uniformly as illustrated in Fig. 7(a), the thermal
fluctuations in the presence of a finite JK favor the alignment
of the order parameter along one of the six 〈100〉 directions as
shown in Fig. 7(b).

B. Nematic order close to the Kitaev point

In the classical limit, the Kitaev model on the triangular
lattice possesses a macroscopic ground-state degeneracy as
pointed out in Ref. [19]. The spins form antiferromagnetically
or ferromagnetically ordered Ising chains, for JK > 0 and
JK < 0, respectively, along one of the three lattice directions.
The Kitaev interaction, however, does not couple the ordering
of the individual chains, thus giving rise to a 3 × 2L-fold
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(a) (b)

FIG. 7. (Color online) Histogram of the spin expectation value
obtained with the help of finite-temperature Monte Carlo simulations
of the classical HK model close to the ferromagnetic Heisenberg
point. Whereas for JK = 0 in panel (a) the spin covers the full S2

sphere, thermal fluctuations in the presence of a finite JK �= 0 favor
the alignment along one of the six 〈100〉 directions.

subextensive ground-state degeneracy where L is the linear
system size. Each ground state breaks the combined symmetry
of the HK Hamiltonian of a C6 lattice rotation and a cyclic
spin exchange so that the ordering is that of a spin nematic.
While the ferromagnetic Kitaev point JK < 0 only separates
the ferromagnetic and the dual ferromagnetic order, which
is immediately stabilized for any finite JH , an extended
nematic phase arises close to the antiferromagnetic Kitaev
point JK > 0 [19]. For later reference, the energy per site of
the classical ground state close to the antiferromagnetic Kitaev
point is given by

εnematic = −S2(JH + JK ). (22)

In order to investigate this nematic ordering of the quantum
model, we calculated the energies of the ground state and the
first few excited states using the density matrix renormalization
group (DMRG) [27,28]. Once the ground state was found,
we targeted excited states by successively calculating states
of lowest energy that are orthogonal to all previously found
states. While the DMRG is highly successful for 1D systems,
it can also be extended to systems with a small finite width,
and we considered triangular lattice systems of width 3 and
4 and varying length with open boundary conditions. We ran
calculations at bond dimensions M = 600,800,1000 making
sure that the energies converged.

The geometry of the considered lattice clusters breaks
the C6 symmetry of the lattice and the spins order antifer-
romagnetically in the spin component corresponding to the
interaction term along the longer direction. In Fig. 8, we
show the energy differences between the lowest eight excited
states and the ground state, alongside spin-spin correlators.
The first three excited states collapse exponentially onto the
ground-state energy as the length of the system increases.
Likewise, the next four excited states collapse to the same
energy, however, growing linearly in system length. From
the calculated spin-spin correlators we can identify this
excitation to be given by a breaking of the antiferromagnetic
ordering between next-nearest-neighbor chains. Finally, the
eighth excited level corresponds to a local defect in a chain,
which is indicated by the vanishing spin correlation in the
center left corner of the lattice cluster. Figure 9 shows the
spin-spin correlations in the ground states for systems of

FIG. 8. (Color online) Energy gaps of a 3 × L triangular lattice
strip with open boundary conditions. All values are given in relation to
the ground-state energy E0, i.e., �E1 = E1 − E0. The figures on the
right show numerical results for 〈Sx

r0
Sx

r 〉 spin correlations, where the
black disk with the white dot indicates the position r0, the diameter
of the disks indicates the strength of the correlation, and the color
indicates the sign, with red corresponding to negative (antiferromag-
netic) and black to positive (ferromagnetic) correlations. For details,
see the main text.

width 3 and 4 at the antiferromagnetic Kitaev point (JH = 0).
While nearest-neighbor chains are uncorrelated, there is a clear
antiferromagnetic correlation between next-nearest-neighbor
chains in the spin component given by the chain direction.
This mechanism locks the spin alignment of next-nearest-
neighbor chains to each other and thus reduces the macroscopic
degeneracy of the ground state from 3 × 2L to the nonextensive
value 3 × 22. Other spin components show only very short-
ranged correlations as shown in the lower two panels of
Fig. 9. Upon including a nonvanishing Heisenberg interaction
correlations also form between nearest-neighbor chains further
lifting the degeneracy to 3 × 2 states (not shown), which
however preserve the nematic nature of the Kitaev point.

C. Phase boundaries and ground-state energies

The phase boundaries in Fig. 4 have been determined by
calculating the ground-state energy for clusters with N = 6 ×
4 = 24 lattice sites and periodic boundary conditions as well

3-leg ladder 4-leg ladder

FIG. 9. (Color online) Spin-spin correlations in the ground state
of the antiferromagnetic Kitaev model on the triangular lattice.
Black circles indicate positive correlations 〈Sγ

i S
γ

j 〉 > 0, whereas
the red circles denote negative correlations. The small white dot
indicates the position r0. The geometry of the lattice clusters lifts
the degeneracy of the lattice direction, favoring chains antiferro-
magnetically coupled with their x component along the x direction
while correlations along the y and z directions are suppressed.
Whereas adjacent chains remain uncoupled, next-nearest-neighbor
chains couple antiferromagnetically.
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(a) quantum model

(b) classical model

FIG. 10. (Color online) Upper panel (a): Ground-state energy E0 (black) and its second derivative −d2E0/dα2 (red) for the HK quantum
model obtained from exact diagonalization of small clusters. Peaks in the second derivative indicate the position of phase transitions. The black
and red arrows indicate the corresponding axis for each data set. Lower panel (b): Classical energies (gray dots, Monte Carlo) and quantum
energies (dashed, ED). The colored solid lines show analytical estimates for the classical ground-state energies of the respective ordered phases,
namely, Eq. (B1) for the Z6 ferromagnet and its dual, Eq. (12) after minimization for the Z2-vortex crystal and its dual, and Eq. (22) for the
nematic phase. The classical and quantum energies touch at the two fluctuation-free points: the Heisenberg FM at α/π = 1 and its dual point.
The upper and lower rings summarize in the spirit of Fig. 4 the extension of the various phases of the quantum and the classical models,
respectively.

as clusters with 27 lattice sites keeping the original C3 lattice
symmetry, with both clusters preserving the SU(2) symmetry
of the Heisenberg points under the Klein duality. Using
exact diagonalization (ED) techniques, we have determined
the phase boundaries by identifying the points where the
second derivative −d2E/dα2 appears to diverge (on these
finite systems) (see the upper panel of Fig. 10).

For completeness, we have also repeated the Monte Carlo
simulations of the classical model that were already performed
in Ref. [19]. The result for the classical ground-state energies is
shown in the lower panel of Fig. 10 together with a comparison
to the ground-state energies obtained from ED of the quantum
model. As expected, the two agree for the ferromagnetic
Heisenberg model and its dual point indicating the absence
of quantum fluctuations around their classical ground states.
We also compare the Monte Carlo data with the analytical
estimates for the classical ground-state energies (colored solid
lines), which approximate well the numerical result. It should
be noted that the phase diagram for the quantum HK model
closely mimics the one found for the classical HK model
[19], which is due to the mainly classical nature of the
various ordered phases. The exceptions are the Kitaev points
where quantum fluctuations have a profound effect and lift the
macroscopic degeneracy of the ground state.

V. CONCLUSIONS

To summarize, we propose that a Z2-vortex crystal phase
might be observed in the recently synthesized Ba3IrTi2O9 [18].

The latter forms a j = 1
2 Mott insulator, whose low-energy

physics we argue to be captured by a Heisenberg-Kitaev model
on a triangular lattice. We reemphasize that theZ2-vortex crys-
tal arises in the vicinity of the antiferromagnetic Heisenberg
model, i.e., in the limit of small Kitaev interactions, and thus in
the experimentally most relevant parameter regime, as revealed
by numerous microscopic studies [12,13] of the honeycomb
iridates indicating the presence of Kitaev-type interactions
only in addition to a dominant Heisenberg exchange. Initial
samples of Ba3IrTi2O9 [18] appear to suffer from significant
Ir-Ti site inversion obscuring the formation of any ordered
phase, but better samples should exhibit a distinct signature
in polarized neutron scattering as we have discussed in detail.
The physics of the triangular HK model is also relevant to
the honeycomb iridates, for which it has been argued that
a next-nearest-neighbor exchange (along the two triangular
sublattices of the honeycomb lattice) is indeed present in the
actual materials [29–32]. Finally, we have left it to future
research to explore whether theZ2-vortex crystal also plays out
in the bilayer triangular lattice material Ba3TiIr2O9 [33], which
is closely related to the Ba3IrTi2O9 compound by replacing the
role of Ir and Ti.
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JH

JK

α

(a) (b)

id
x
y
z

FIG. 11. (Color online) (a) 24-site cluster with periodic boundary
conditions containing all symmetries except for the rotational C3

symmetry. The different symbols for the lattice sites indicate the four
sublattices needed in the basis transformation underlying the Klein
duality (A1). (b) Circle parametrization of the Heisenberg-Kitaev
interactions JH = J cos α and JK = J sin α with the magenta lines
indicating points on the left- and right-hand sides of the circle related
by the Klein duality (A1). The filled yellow and green circles indicate
the points at which the Hamiltonian (1) is SU(2) symmetric.

performed on the CHEOPS cluster at RRZK Cologne. Some
of the figures were created using the Mayavi library [35] and
VESTA [36], respectively.

APPENDIX A: KLEIN-DUALITY TRANSFORMATION

We review the Klein-duality relating couplings on the
left and right-hand sides of the circle phase diagram [see
Fig. 11(b)]. Under this transformation, the Heisenberg-Kitaev
Hamiltonian retains the same structure but the coupling
parameters change as

JH → −JH , JK → 2JH + JK. (A1)

The transformation is performed by dividing the triangular
lattice into four sublattices as illustrated in Fig. 11(a).
Subsequently, each spin is subjected to a basis rotation, where
the spins on the sublattice labeled “id” are not changed.
For the three remaining sublattices, each spin is rotated by
π around the spin axis according to the sublattice labeling.
Since a π rotation around one spin axis effectively inverses
the sign of the two other components, we can write the full

transformation as

id : (Sx,Sy,Sz) → (Sx, Sy, Sz),

x : (Sx,Sy,Sz) → (Sx,−Sy,−Sz),
(A2a)

y : (Sx,Sy,Sz) → (−Sx, Sy,−Sz),

z : (Sx,Sy,Sz) → (−Sx,−Sy,Sz).

Since this transformation is a simple local rotation of
the spin basis, the original Hamiltonian and its counter-
part after the transformation effectively describe the same
physics, albeit for a resized unit cell. Interestingly, this
transformation maps the SU(2)-symmetric ferromagnetic and
antiferromagnetic Hamiltonians at JK = 0 and JH = ±1 onto
Heisenberg-Kitaev Hamiltonians with JK = −2JH , revealing
two more SU(2)-symmetric points in the phase diagram. These
points and their corresponding phases are termed the “stripy”
(anti)ferromagnets, due to the magnetic order after the basis
rotation. The spin configurations at these points are illustrated
in Fig. 5.

APPENDIX B: FLUCTUATION CORRECTION TO THE
FERROMAGNETIC GROUND-STATE ENERGY

The classical ferromagnetic ground state is given by a
constant, homogeneous spin configuration �̂(r) ≡ �̂ with

�̂
2 = 1. The corresponding classical energy per site is in-

dependent of the orientation of �̂ and reads as

εFM = S2(3JH + JK ). (B1)

For JK = 0, this indeed corresponds to the exact ground-state
energy. Any finite JK , however, gives rise to fluctuation
corrections to the ground state that also discriminate between
the various orientations of �̂. Performing a standard Holstein-
Primakoff transformation, the spin operator along the local z

axis, here defined by the classical vector �̂, can be expressed
as S̃z

i = S − a
†
i ai where ai is a bosonic annihilation operator

at the site i. Moreover,

S̃+
i =

√
2S − a

†
i ai ai, S̃−

i = a
†
i

√
2S − a

†
i ai, (B2)

where S̃±
i = S̃x

i ± iS̃y

i . The spin operator S within the labora-
tory frame is related to S̃ by a rotation S = RS̃ where

R =
⎛
⎝− sin φ − cos θ cos φ sin θ cos φ

cos φ − cos θ sin φ sin θ sin φ

0 sin θ cos θ

⎞
⎠ (B3)

and �̂ = R(0,0,1)T . Expanding the Hamiltonian in second order in the bosonic operators, one obtains H = NεFM + H(2) with

H(2) = 1

2

∑
k∈1 BZ

(a†
k a−k)h(k)

(
ak

a
†
−k

)
− S

2

∑
k∈1 BZ

[
2JH

∑
γ=x,y,z

[cos(k · aγ ) − 1] + JK

∑
γ=x,y,z

[cos(k · aγ ) − 1]
(
1 − 	̂2

γ

)]
, (B4)

where

h(k) = S

⎡
⎣2JH

∑
γ=x,y,z

[cos(k · aγ ) − 1]1 + 2JK{[cos(k · ax) − 1](e+
x e−

x 1 + (e+
x )2σ+ + (e−

x )2σ−)

+[cos(k · ay) − 1](e+
y e−

y 1 + (e+
y )2σ+ + (e−

y )2σ−) + [cos(k · az) − 1]e+
z e−

z (1 − σx)}
⎤
⎦ (B5)
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with the Pauli matrices σx , σy , and σ z, and we used the abbreviations e± = 1√
2
R(1,±i,0)T and σ± = 1

2 (σx ± iσ y). With the
help of a Bogoliubov transformation we can compute the correction to the classical ground-state energy (B1). In order to elucidate
the analytical structure, we concentrate on the contribution to this correction only of lowest order in the Kitaev interaction

δεFM=− 1

4N

∑
k∈1 BZ

h21(k)h12(k)

h11(k)|JK=0
= − S

2N

J 2
K

|JH |
∑

k∈1 BZ

|[cos(k · ax)−1](e+
x )2 + [cos(k · ay)−1](e+

y )2 − [cos(k · az) − 1]e+
z e−

z |2∑
γ=x,y,z[1 − cos(k · aγ )]

.

(B6)

To evaluate this expression, we need the following integrals over the Brillouin zone:

1

N

∑
k∈1 BZ

[cos(k · aα) − 1][cos(k · aβ) − 1]∑
γ=x,y,z[1 − cos(k · aγ )]

N→∞−→ 1

V1 BZ

∫
1 BZ

dk
[cos(k · aα) − 1][cos(k · aβ) − 1]∑

γ=x,y,z[1 − cos(k · aγ )]

= 6
√

3 − 2π

3π
δαβ + 5π − 6

√
3

6π
(1 − δαβ). (B7)

Here, we evaluated the integrals in the thermodynamic limit where the volume of the first Brillouin zone is given by V1 BZ = 8π2√
3

using the identities

(e+
x e−

x )2+(e+
y e−

y )2+(e+
z e−

z )2= − (e+
x e−

y )2 − (e+
y e−

x )2 + [(e+
x )2 + (e+

y )2]e+
z e−

z + e+
z e−

z [(e−
x )2 + (e−

y )2] = 1
4

(
1 + 	̂4

x + 	̂4
y + 	̂4

z

)
.

(B8)

The fluctuation correction to the energy in lowest order in the Kitaev interaction finally assumes the form given in Eq. (20).
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