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The pseudofermion functional renormalization group (pf-FRG) has been put forward as a semianalytical
scheme that, for a given microscopic spin model, allows to discriminate whether the low-temperature states
exhibit magnetic ordering or a tendency toward the formation of quantum spin liquids. However, the precise
nature of the putative spin-liquid ground state has remained hard to infer from the original (single-site) pf-FRG
scheme. Here, we introduce a cluster pf-FRG approach, which allows for a more stringent connection between
a microscopic spin model and its low-temperature spin-liquid ground states. In particular, it allows to calculate
spatially structured fermion bilinear expectation values on spatial clusters, which are formed by splitting the
original lattice into several sublattices, thereby allowing for the positive identification of a family of bilinear
spin-liquid states. As an application of this cluster pf-FRG approach, we consider the J1-J2 SU(N) Heisenberg
model on a square lattice, which is a paradigmatic example for a frustrated quantum magnet exhibiting quantum
spin-liquid behavior for intermediate coupling strengths. In the well-established large-N limit of this model, we
show that our approach correctly captures the emergence of the π -flux spin-liquid state at low temperatures. For
small N , where the precise nature of the ground state remains controversial, we focus on the widely studied case
of N = 2, for which we determine the low-temperature phase diagram near the strongly frustrated regime after
implementing the fermion-number constraint by the flowing Popov-Fedotov method. Our results suggest that the
J1-J2 Heisenberg model does not support the formation of a fermion bilinear spin-liquid state.
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I. INTRODUCTION

Quantum magnets are host to an astounding range of fas-
cinating phenomena which go beyond the realm of classical
magnetism. This includes the formation of multipolar order,
such as spin nematic states, or more generally topological
order, along with the appearance of fractionalized excitations
and long-range entanglement [1]. The latter are hallmarks of
quantum spin liquids (QSLs) [2], which have been widely
studied in the context of frustrated magnets. Substantial
progress in the understanding of the emergence of such QSLs
has been achieved through the seminal work by Kitaev [3],
providing an exactly solvable microscopic model with various
QSL ground states. Aside from this particular model system,
it remains, however, notoriously difficult to establish reliable
connections between microscopic spin Hamiltonians and their
possible QSL ground states.

A paradigmatic example for the challenges to be met is
the J1-J2 Heisenberg model. Here, spins on a two-dimensional
square lattice interact antiferromagnetically with their near-
est and next-to-nearest neighbors with couplings J1 and J2,
respectively, and the level of frustration can be tuned by
the ratio of the couplings J2/J1. The apparent simplicity of
this model combined with an early finding [4] of a low-
temperature nonmagnetic phase in the strongly frustrated
intermediate coupling regime has drawn the attention of re-
searchers for over three decades now. Many methods have
been developed and applied to clarify the precise nature of the
frustrated ground state, including exact diagonalization [5–9],
density matrix renormalization group [10–12], tensor network

techniques [13–16], variational approaches [17,18], different
expansion schemes [4,19,20], and others [21–25]. For the
ground state, gapped [10] and gapless [12,13,18,24,25] spin
liquids have been found as well as different types of va-
lence bond solids [7,8,11,15,19–21,23], but the results are
widespread and not congruent within or across the applied
approaches, leaving a rather unsatisfactory situation.

The large range of incompatible results on the ground state
of the frustrated J1-J2 Heisenberg model suggests that it is
rather sensitive to any bias introduced by an approximate
approach. The goal of this work is to avoid any such bias by
construction. We employ and expand renormalization group
techniques, which have successfully been used in diverse
physical contexts to systematically study effective low-energy
models of microscopic theories. A particular realization, the
pseudofermion functional renormalization group (pf-FRG),
has the capacity to deal with strongly correlated spin systems
and many works have proven its ability to accurately char-
acterize quantum magnets in complicated lattice geometries
with respect to ordering patterns as well as critical tempera-
tures and couplings [26–33].

Until recently, a central drawback of the pf-FRG approach
has been that the occurrence of magnetized and even certain
types of QSL ground states leads to an instability in the renor-
malization group flow. While this instability itself represents
a hallmark of ordering, it prevents a continuation of the flow
toward the low-energy regime. Therefore, the precise nature of
the ground state or even competing orders remained elusive.
In Refs. [34,35] it was demonstrated, that the pf-FRG can be
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properly regularized such that the occurrence of an instability
does not lead to a breakdown of the description itself anymore.
Since this result can be achieved with arbitrarily small (initial)
bias, it can be used to positively identify and characterize spin-
liquid phases that can be represented by expectation values of
pseudofermion bilinears [36], which we refer to as bilinearly
ordered spin liquids in the following.

In this work, we substantially extend this regularized pf-
FRG approach by working with multisite clusters in lieu
of the single-site perspective employed hitherto. Importantly,
this allows to map part of the spatial structure of spin-liquid
order parameters onto the pseudofermion representation it-
self. This, in turn, enables us to systematically include more
spin-liquid ordering patterns in the characterization of the
low-energy physics. Employing this cluster pf-FRG approach
to the J1-J2 SU(N ) Heisenberg model on the square lattice,
we show that benchmark calculations for the large-N case
indeed exhibit the expected emergence of a π -flux spin-liquid
state in the low-energy regime. This reveals the true power
of the cluster pf-FRG approach: the RG flow automatically
and reliably chooses the energetically most favorable ordering
pattern available at the given level of approximation. This
distinct feature of the approach can not only be used to sys-
tematically improve the quality of predictions for spin-liquid
phases, but statements about their very existence are found
to be independent of the level of approximation employed
for the spatial structure. Taking into account the full set of
nonmagnetic bilinear ordering patterns, the cluster pf-FRG
approach thus allows us to obtain definite statements on the
existence of magnetically ordered or spin-liquid phases in the
finite-temperature phase diagram of the J1-J2 model.

Line of arguments and overview of results

We develop a generalization of the pf-FRG method to the
J1-J2 Heisenberg model at zero and finite temperatures, aim-
ing at a clarification of whether the frustrated regime can be
described by a bilinear spin liquid. First, in order to establish a
well-controlled limit without having to deal with complicated
fermion-number constraints, we revisit the SU(N) symmetric
model at large N . We show that our generalization correctly
captures the emergence of the π -flux spin-liquid state at low
energies (cf. Sec. III) by introducing a splitting of the square
lattice into four sublattices (cf. Sec. II B) and an appropriate
set of order parameters. In particular, we show that the RG
flow automatically selects the energetically favored ground
state. This analysis corroborates the suitability of our ap-
proach to detect any (nonmagnetic) bilinearly ordered spin-
liquid states despite the employed approximations. Moreover,
we clearly exhibit that the spin-liquid behavior at large N
results from the renormalization group flow of the four-
fermion function and is not related to a frequency-dependent
self-energy (Sec. IV D). Introducing an artificial damping
into the self-energy causes an unphysical shift of the critical
temperature and order parameter. With this knowledge, we
turn to the physically relevant case of N = 2, where we first
carefully implement the fermion-number constraint in terms
of a flowing Popov-Fedotov method (Sec. IV A) and then
calculate the low-temperature phase diagram as a function of
the ratio J2/J1 (Sec. IV). We find that our approach predicts

the appearance of magnetic instabilities through the full range
of J2/J1 with only a moderate suppression in the strongly
frustrated regime. In view of the insight on the role of fre-
quency dependencies, this suggests that the J1-J2 Heisenberg
model does not support the formation of a bilinearly ordered
spin-liquid state. Conclusions and future prospects are given
in Sec. V.

II. MODEL AND IMPLEMENTATION

The goal of our analysis is to characterize the ground state
of the Heisenberg Hamiltonian

H = J1

N

∑
〈i j〉

Si · S j + J2

N

∑
〈〈i j〉〉

Si · S j, (1)

implemented on a two-dimensional square lattice. The
nearest- (J1) and next-to-nearest- (J2) neighbor couplings are
positive and thus favor antiferromagnetic correlations. Their
ratio g = J2/J1 is an important quantity, encoding the frustra-
tion of the system.

A. Pseudofermion FRG

Our tool of choice is the pseudofermion formulation of
functional renormalization group (FRG). At its heart lies the
functional differential Wetterich equation [37]

∂��� = 1

2

∫
τ

∑
i

f †∂�P� f + 1

2
STr

[
∂�P�

�
(2)
�

]
(2)

for the running effective action �� with multiplicative regu-
larization [38]. Here, { f †, f } are anticommuting Grassmann
numbers. At the initial scale � → �UV, �� is given by the
microscopic action corresponding to the Hamiltonian (1).
After choosing a regulator function by which to multiply
the free propagator P�, solving the flow equation (2) in
principle yields the full effective action ��→0 from which
thermodynamic properties can be read off.

Practically, two prerequisites are needed to actually per-
form this procedure. First, the Hamiltonian operator (1) needs
to be recast in a form that is amenable to our chosen formula-
tion of the FRG flow equation (2). To that end, we choose the
pseudofermion representation of spin operators [39]

Sμ
i = f †

iαT μ
αβ fiβ, (3)

where T μ are matrices of the underlying spin symmetry
group. Thus, T μ = 1

2σμ for the physical SU(2) symmetry
with σμ being Pauli matrices, and generalized Gell-Mann
matrices for general SU(N). To eliminate unphysical degrees
of freedom, the (pseudo)fermions are also subject to the local
constraint on the particle number

f †
iα fiα = N

2
∀ i. (4)

Making use of commutation relations between the T μ and ap-
plying the constraint to eliminate particle-number operators,
the Hamiltonian (1) can be recast into an action that serves as
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initial condition for the flow equation

S =
∫

τ

⎡
⎣∑

i

f †
iα∂τ fiα − J1

N

∑
〈i j〉

f †
iα f jα f †

jβ fiβ

− J2

N

∑
〈〈i j〉〉

f †
iα f jα f †

jβ fiβ

⎤
⎦, (5)

where, in the following, the explicit spin indices will often be
suppressed for better readability.

We note that the flow equation (2) can usually not be solved
without an approximate Ansatz for ��. The choice of this
Ansatz is crucial since all structures relevant to the physics of
interest need to be included, while keeping the computational
cost manageable. Systematic development and benchmarking
of this truncation for �� is a central objective of our analysis
in the forthcoming sections.

B. Sublattice representation: Spatially structured orders

The inclusion of explicit flowing order parameters in the
pf-FRG scheme by construction reduces the symmetry of
the problem and thus increases computational complexity.
For this reason, a pointlike momentum-space projection was
applied in Ref. [35] instead of the conventional spatially
resolved pf-FRG schemes [26]. In this projection scheme, J1,2

does not depend on frequency or momentum. This approach
trades spatiotemporal resolution for explicit information on
ordering tendencies and access to the physically relevant low-
energy regime. Consequently, only a spatially homogeneous
Baskaran-Zou-Anderson (BZA) phase could be detected in
the large-N analysis so far, while it is known [40,41] that
(spatially structured) π -flux or even Peierls phases are ener-
getically preferred.

For the analysis of possible spin-liquid phases in the J1-J2

model, this seems too restrictive, as it would exclude the
majority of possible spin-liquid ordering patterns [36]. Fur-
thermore, the next-to-nearest-neighbor interaction ∼J2 needs
to be included and discriminated from the ∼J1 structure. In
order to discriminate the J1- and J2-coupling structures or
different spatially structured ordering, one could abandon the
simple pointlike projection in momentum space in favor of an
actual, finite discretization of the Brillouin zone. This would
increase computational cost to a degree approaching or even
exceeding that of the conventional pf-FRG scheme.

We develop a different approach here, where the pointlike
projection scheme is kept and discrimination between struc-
tures on different bonds can be performed algebraically. When
representing the nearest-neighbor structure of the J1 interac-
tion, it is natural to artificially split the original square lattice
into two equivalent sublattices A and B, defining the interac-
tion on the links between them [41]. We perpetuate this idea
by moving to four artificial sublattices (see Fig. 1). Spinors
can now be defined on the corresponding four-dimensional
space:


† = ( f †,A, f †,B) → 
† = ( f †,A, f †,B, f †,C, f †,D). (6)

FIG. 1. Four-sublattice representation of the 2D square lattice
with inequivalent order parameters (link variables) Q(1...4). a and b
are the lattice constants of the original and the enlarged unit cells,
respectively.

By properly choosing 4 × 4 matrices ηX/Y , the general inter-
action structure in frequency-momentum space

Jn

N

∫
p1...p4∈TZ

(

†

p1
ηX

n 
p2

)(

†

p3
ηY

n 
p4

)
× f (p1, p2, p3, p4)δp1 p2 p3 p4 (7)

can now be restricted to nearest or next-to-nearest neighbors.
Note that we have suppressed Matsubara labels. Further, TZ
defines the “tiny zone,” corresponding to one quarter of the
Brillouin zone of the original lattice. The geometry-induced
momentum structure is represented by f (p1, p2, p3, p4) and
δp1 p2 p3 p4 is a momentum-conserving δ function.

Using the representation in Eq. (7) it is possible to resolve
spatial patterns of intermediate range in a simple algebraic and
systematic way without having to consider the explicit mo-
mentum dependence of interaction vertices and self-energies.
One can, in principle, always increase the number of artificial
sublattices to increase spatial range. Furthermore, this strategy
can be generalized to other lattice geometries. For example, a
two-dimensional (2D) kagome lattice may be described as a
triangular lattice, split into four sublattices, one of which is
eliminated [42]. This will be the subject of future work. We
also note that the present scheme allows for a comparatively
simple algebraic analysis of spatial symmetry-breaking pat-
terns. This aspect will be discussed in detail in Sec. III B.

The interaction structure given by the Hamiltonian (1)
with respect to the sublattice definition from Eq. (6) can
now be described uniquely by the nonvanishing entries of the
respective ηX/Y matrices (see Table I).

TABLE I. Momentum structure and nonvanishing entries of the
sublattice-space matrices ηX/Y for the initial interaction of the J1-J2

model.

Coupling ηX ηY f (p1, p2, p3, p4)

J1,� 13 31 cos(p2,x − p3,x )
J1,� 14 41 cos(p2,y − p3,y )
J1,� 23 32 cos(p2,y − p3,y )
J1,� 24 42 cos(p2,x − p3,x )
J2,� 12 21 cos(p2,x − p3,x ) cos(p2,y − p3,y )
J2,� 34 43 cos(p2,x − p3,x ) cos(p2,y − p3,y )
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TABLE II. Momentum structure and nonvanishing entries of the
sublattice-space matrix ηX for density-type order parameters.

Order parameter ηX f (p)

Q(1) {13,31} cos(px )
Q(2) {14,41} cos(py )
Q(3) {23,32} cos(py )
Q(4) {24,42} cos(px )
Q(5) {12,21} cos(px ) cos(py )
Q(6) {34,43} cos(px ) cos(py )

The geometric momentum structure follows directly from
the spatial information contained in the ηX/Y matrices. Here,
we exclusively consider couplings between the nearest avail-
able sublattice sites for a given ηX/Y matrix. This amounts to
an approximation, which will be discussed in Sec. IV B, since
for finite N , longer-ranged contributions to the respective
vertices are generated. We disregard those to keep the system
of RG equations closed.

III. LARGE-N ANALYSIS

As a first step toward a systematic study of the full model,
Eq. (1), we perform a large-N analysis. This provides useful
hints on the character of a possible spin-liquid phase in the
frustrated regime and guides the more intricate search at
the physical value of N = 2. Furthermore, for large N , it is
sufficient to implement the fermion-number constraint (4) on
average only [41], which greatly simplifies the analysis.

We consider the well-understood limit J2 = 0 first: To
regularize divergences in the RG flow of the running coupling
J1,�, we introduce bilinear density-type symmetry-breaking
order parameters Q(1...4). These may now be addressed in a
manner analogous to Eq. (7):

Q(n)
∫

p∈TZ

(

†

pη
X
n 
p

)
f (p). (8)

Possible order parameters compatible with four sublattices are
given by their matrix structure in Table II.

At large N , pairing-type order parameters  are suppressed
and will therefore not be considered here. When we proceed to
N = 2 below, we will take them into account, though. More-
over, since we are primarily interested in identifying spin-
liquid states, we will not introduce magnetic order parameters
∼M (n)
†

αταβηX 
β where ταβ �= δαβ in spin space, neither for
N = 2 nor for large N . This encompasses all possible bilinear
order parameters. Magnetic phases will therefore be signaled
by a divergence of the RG flow. In contrast, bilinearly ordered
spin-liquid states are identified by a regular RG flow with a
finite order parameter in the infrared.

Due to the presence of the symmetry-breaking order pa-
rameters, new interaction structures aside from the initial ones
in Table I are generated during the flow. In the space of
four sublattices, up to 42 × 42 = 256 different structures can
in principle occur and may be discriminated algebraically.
However, not all of these are finite in the present setup. It can
be shown that only matrices ηX/Y which are already present in
the initial ��→�UV are available for combination among them-
selves at N → ∞ (cf. Appendix A for details). This reduces
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FIG. 2. Absolute values of the order parameter Q and magnetic
susceptibility χmag from mean field (solid/dashed lines) and four-
sublattice pf-FRG (crosses/boxes). The deviations at low tempera-
ture are due to the limited number of Matsubara frequencies taken
into account.

the number of newly generated interaction structures down
to 36. Some of theses are related by Hermitian conjugation,
which can be used to further reduce the number of differential
equations. The resulting 40 coupled differential equations
are rather complex. We therefore refrain from writing them
explicitly. Determining potentially nonvanishing couplings as
well as the construction of the flow equations themselves
follows a set of comparatively simple and straightforward
rules. Both problems are therefore amenable to automated
and/or numerical analysis.

A. Staggered-flux spin-liquid ground state

For large N , the mean-field approach to the SU(N) Heisen-
berg model becomes exact and a staggered- or π -flux spin-
liquid phase arises as the ground state [36,40]. The large-
N FRG flow equations are known to exactly reproduce the
mean-field results if the Katanin scheme [43] is employed,
as shown previously [35,44]. Initializing the Q(1...4) with
small [O(10−4)], generally complex, random numbers, we
find excellent agreement for the absolute value of the order
parameters as well as the magnetic susceptibility χmag with
the mean-field solution (see Fig. 2). The specific values
of the individual order parameters themselves do depend
on the initial values (see Fig. 3 for an example), in the sense
that different but equivalent configurations arise: Except for
one special configuration (see Sec. III B), we always find an
overall phase of π around each plaquette as expected. The RG
flow thus automatically selects the appropriate state.

We conclude that the sublattice splitting is indeed a suitable
method to systematically capture spatial structures of spin-
liquid phases. A splitting into eight sublattices should give
access to the true large-N ground state which is known to be
a Peierls phase [40]. We refrain from pursuing this, here, and
focus on the N = 2 case, in the following.

B. Algebraic ordering analysis

Wen’s symmetry-based classification of spin-liquid states
relies on a decoupling of fermion bilinears in terms of
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FIG. 3. Link-dependent values of the order parameter (cf.
Table II) of a random set of real initial values for the Q(1...4)

�→�UV
.

Up to numerical inaccuracies their infrared values are Q(1) = Q(2) =
Q(3) = −Q(4). Therefore, the complex phase between the four vari-
ables surrounding one plaquette is ±π . The inset shows that the
π -flux structure is enforced by the RG flow although the employed
set of initial values for Q(1...4)

� is strictly positive.

order-parameter-like mean fields [36] which could, in prin-
ciple, be related to the fermionic interaction by a Hubbard-
Stratonovich transformation. In our fermionic RG formulation
of spin models, such ordering tendencies manifest themselves
in a divergence of the fermionic couplings [34,45], unless
regularized. This divergence is crucial for our approach, as
it guarantees that this type of bilinear ordering cannot be
missed. However, an order parameter which regularizes the
fermionic RG flow, allowing for its continuation toward the
infrared, may still not reflect the true symmetry-breaking
pattern of the ground state. For instance, including the ho-
mogeneous BZA state in a simple two-sublattice setup leads
to a convergent RG flow and no sign of something being
amiss could be discerned. On the other hand, the ground
state of the system is better described by the π -flux phase,
as described in the previous section, which is characterized
by an additional breaking of translation invariance. The dif-
ference between the two states lies in the spatial structure
of the bilinear expectation value Qi j ∼ 〈 f †

i f j 〉, serving as an
order parameter for translational/rotational symmetry break-
ing. The occurrence of this spatial structure by itself is not
a priori related to a diverging coupling and can thus be
missed by a naïve implementation. Considering the impor-
tance of additional breaking of discrete as well as noncompact
symmetries for the classification of spin-liquid states [36],
this is an issue that will therefore be addressed in the
following.

Employing the cluster pf-FRG introduced above, this sit-
uation is remedied in a systematic way. The square-lattice
Heisenberg model is symmetric under primitive translations
with respect to the lattice spacing a along 
ex and 
ey and a
number of other symmetries, forming a discrete subgroup of
the noncompact Galilei group associated with nonrelativis-
tic continuum systems. When introducing a number M of
sublattices, part of this group is mapped onto a subgroup

of the compact SU(M)1 that transforms the spinor 
 from
Eq. (6) where, for instance, M = 4. Moving from sublattice
A to B would be described by a matrix η12 ∈ SU(4) instead
of an element of the Galilei group. The latter is reduced to
describe translations with twice the original lattice spacing
b = 2a. Consequently, translational symmetry breaking on the
scale of single plaquettes is now characterized by spontaneous
breaking of the subgroup of SU(4) that is compatible with the
initial interaction given in Table I.

Let us make this more explicit for the present situation. The
compact Lie group SU(4) is generated by a set of 15 gener-
alized Gell-Mann matrices {λ̂1, . . . , λ̂15} (see Appendix B for
an explicit representation). The initial interaction, given by the
contributions ∼J1,� in Table I, is invariant under a subgroup,
generated by seven of these,

GenSU(4) = {λ̂1, λ̂6, λ̂7, λ̂12, λ̂13, λ̂14}. (9)

All of these generators may in principle be subject to sponta-
neous breaking. Consider now a homogeneous Ansatz for the
order parameter, i.e., the one corresponding to the BZA phase,
in the four-sublattice description

Q̂BZA
�→�UV

= QUV

(
0 12 + σx

12 + σx 0

)
. (10)

This Ansatz does not commute with any of the generators
given in Eq. (9), separately. However, the combination

λ̂π = λ̂1 + λ̂6 (11)

leaves the interaction as well as the order parameter (10)
invariant. It thus generates an unbroken subgroup.

Indeed, when implementing the special configuration (10),
corresponding to Q(1) = Q(2) = Q(3) = Q(4), as an initial con-
dition for the RG flow equations, one finds that the divergence
is not regularized and solving the flow all the way through
� → 0 is not possible. The conclusion is that the physics
of the J1 Heisenberg model requires the subgroup generated
by λπ to be broken as well. To find an appropriate order
parameter, all one has to do is to find generators of SU(4) that
do not commute with λπ and add at least one of them to the
Ansatz from Eq. (10). Eligible candidates are the Gell-Mann
matrices

Genflux,R = {λ̂2, λ̂3, λ̂4, λ̂5} and (12a)

Genflux,I = {λ̂8, λ̂9, λ̂10, λ̂11}. (12b)

Not surprisingly, they correspond to modifications of the
real or imaginary parts of the initial values of Q(1...4), respec-
tively. Thus, each Ansatz with expansion coefficients Qi ∈ R

Q̂BZA
�UV

+
∑

i

Qiλ̂i, λ̂i ∈ {
Genflux,R ∪ Genflux,I

}
(13)

1As long as no pairing order parameters  ∼ fiα fiβεαβ are intro-
duced, the action may even be invariant under U(M ). The generator
14×4 is, however, not associated with spatial symmetry breaking. We
therefore do not take it into account and consider SU(M ) as our
starting group instead.
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leads to a maximally broken phase where the RG flow can
be expected to converge and (almost) any random Ansatz
generates a valid flow in the infrared, as observed in Sec. II B.

In order to understand the physical meaning of the gener-
ators [Eq. (12)], recall that the initial interaction [Eq. (1)] in
the pseudofermion formulation is invariant under an artificial
local U(1) symmetry. One finds that the generators λ̂i inside
of the fermionic order-parameter structure


†λ̂i
, λ̂i ∈ {
Genflux,R ∪ Genflux,I

}
, (14)

can be converted into each other by such gauge transforma-
tions. The notion of translational symmetry breaking in this
context should therefore always be understood modulo the
application of such local transformations [46].

From the algebraic considerations alone, it is not obvious
why the very general Ansatz (13) should always lead to a
π -flux phase in the infrared. This must indeed be shown
by actually solving the flow equations. However, two im-
portant conclusions can be drawn already: First, the sublat-
tice Ansatz allows to detect finite-ranged spatial symmetry-
breaking patterns by the familiar divergences. The range
can be extended systematically by using larger numbers of
sublattices. Second, the (non)occurrence of divergences for
specific symmetry breaking or preserving Ansätze conveys
information about which state is energetically preferred and
thus closer to the actual ground state of the system. It thus
makes a direct comparison of free energies unnecessary. To
emphasize this key feature of our FRG approach, we reiterate
that solving the flow equations therefore automatically selects
the symmetry-breaking pattern and identifies the energetically
favored ground state. The reliability of our approach strongly
benefits from this particular finding, as our present truncation
scheme is not specifically tailored to compute precise values
of the free energy.

C. Frustration at large N

We now include magnetic frustration and consider the J1-J2

model for a broad range of the ratio g = J2
J1

. To that end, we
take into account the full initial action and order-parameter
structure given in Tables I and II. The number of couplings
generated during the flow increases, too, summing up to
48 differential equations to be solved. The resulting finite-
temperature phase diagram is shown in Fig. 4. For sufficiently
low temperature, an ordered phase is found for all g. While
Q(1...4) dominate for g < 1, finite Q(5,6) become mandatory
to describe the phase at g > 1. The former exhibits π -flux
characteristics, while Q(5,6) do not entail a complex phase
for next-nearest-neighbor plaquettes. This particular finding
is most likely due to our limited spatial range: with four
sublattices, no next-to-nearest-neighbor π -flux phase can be
described. We would expect to find such a flux phase for
g > 1 as well, provided the number of sublattices would be
sufficiently increased. Since the critical temperature does not
depend on the spatial structure of the order parameter in this
system [40,41], we can still expect to obtain qualitatively
correct results.

For g > 1 and low temperatures, we find a regime of coex-
istence and a competition of ordering tendencies is indicated
(cf. Figs. 4 and 5), by the suppression of the critical tempera-

FIG. 4. Finite-temperature phase diagram of the J1-J2 model at
large N . A nearest-neighbor π -flux phase (dark shading) is found
for all temperatures and g < 1. For g > 1, next-to-nearest-neighbor
order parameters become finite, while there is an extended coexis-
tence phase (striped shading) at low temperatures, separated from
the high-T normal phase by a next-to-nearest-neighbor BZA phase.
The blue (dashed) line designates the parameter range of Fig. 5.

ture or the order parameter in the coexistence region. Indeed,
frustration is expected to occur due to a finite J2. However,
it does not seem sensible to directly relate this finding to the
suspected spin-liquid regime of the physical model at N = 2:
First, it is widely agreed [4–25] that the latter is situated at
about 0.4 � g � 0.6 which does not even overlap with the
large-N coexistence region. Second, it is doubtful whether
frustration is an appropriate term to describe the mechanism
behind this coexistence. At N → ∞, substantial contributions
of the interactions are suppressed [34], notably those being
responsible for magnetic ordering tendencies [32]. Those very
interactions, commonly referred to as large-S enhanced, are
known to facilitate frustration [4]. In our case, instead of being
canceled by (geometrically) competing spin-spin interactions,
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FIG. 5. Absolute values of nearest- (solid line) and next-to-
nearest- (dotted line) neighbor order parameters for T = 0.2 in the
coexistence region (Q(1...4) �= 0 and Q(5,6) �= 0) (see Fig. 4).
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magnetic ordering is thus suppressed artificially, giving way
to a competition between spin-liquid phases instead.

If the mechanism behind the putative spin-liquid phase at
N = 2 is indeed a suppression of magnetic ordering due to
frustration and large-N results become a good approximation
in this regime, we would therefore expect a nearest-neighbor-
dominated spin-liquid phase like a π -flux phase to occur.

IV. PHASE DIAGRAM AT N = 2

At N = 2, additional fluctuations occur which are absent in
the large-N limit. After discussing the implementation of the
fermion-number constraint, we therefore extend the truncation
by taking into account further order-parameter structures and
newly generated four-fermion interactions. Then, we calculate
the phase diagram of the J1-J2 model for g ∈ [0, 1] with our
approach and exhibit the suppression of magnetic correlations
upon inclusion of a minimal frequency-dependent self-energy
�(γ ). In fact, we show how �(γ ) leads to a phase diagram
which is consistent with the results from previous pf-FRG
studies. To improve the understanding of the role of �(γ ),
we briefly revisit the large-N case and show that, here, the
spin-liquid state distinctly originates from the flow of the
four-fermion vertex and not from a frequency-dependent self-
energy. Including an artificial �(γ ) at large N leads to a
strong suppression of the spin-liquid state, too. Based on this
consideration, we return to N = 2 and argue that the inclusion
of frequency-dependent self-energy induces a damping of
both magnetic as well as bilinearly ordered spin-liquid states,
and therefore does not support the formation of the latter.

A. Fermion-number constraint

For large N , it is sufficient to implement the fermion-
number constraint (4) on average [41], which greatly simpli-
fies the analysis. Moving to N = 2, the problem has to be dealt
with more carefully. There are at least two viable options on
how to faithfully implement the constraint in this situation.

The first and probably better known one is to make use
of an artificial local SU(2) symmetry of the model (1), intro-
duced due to the pseudofermion formulation [46]. The con-
straint as expressed in Eq. (4) explicitly breaks this symmetry
down to a local U(1). However, implementing the constraint
in the form of a Lagrange multiplier field 
A restores the
local SU(2) (see Ref. [46] for details). Moreover, the local
SU(2) now becomes a true gauge symmetry as the Lagrange
multiplier plays the role of a gauge field. The confinement
physics associated with this gauge field is often taken as a
hallmark of spin-liquid behavior [47]. Although the predictive
power associated with the gauge field is persuasive, it entails
technical challenges that are beyond the scope of this work.2

Instead, we follow a different approach here.

2Dealing with (non-Abelian) gauge fields in general is not a easy
task within the FRG formalism. It could at best be done in an
approximate way and it is not clear in which way a given approx-
imation scheme would influence the fulfillment of the constraint and
thus the physics outcome. Furthermore, the field 
A is expected to
acquire its own dynamics during the flow. Since we are considering
a lattice system, such a gauge field is generally compact and a proper

The other realization of the constraint was put forward
by Popov and Fedotov [50], who showed that equipping
the pseudofermion Hamiltonian with an imaginary chemical
potential

μPF = i
πT

2
(15)

leads to an exact cancellation of all unphysical contributions
in the partition function. The constraint is thus implemented
exactly on the level of the microscopic action (5). This pro-
cedure is suitable for our FRG approach and the Ansatz for
the bilinear part of the effective average action �

(2
)
� without

order parameters becomes

�
(2
)
� =

∑
n

∫
p∈TZ

[

†

p

(
iωnϑ

−1
� + μ�

)
1
p

]
, (16)

with μ�UV = μPF. Here, ϑ−1
� is the formal inverse of the

multiplicative regulator function [51]

ϑ� =

⎧⎪⎨
⎪⎩

0, |ωn| < � − πT,

1
2 + |ωn|−�

2πT , � − πT � |ωn| � � + πT,

1, � + πT � |ωn|.
(17)

There are a number of things to be observed about this way
of implementing the constraint. First, it is not equivalent
to a functional δ function enforcing Eq. (4) as in the case
of the Lagrange multiplier. Hence, it is not permissible to
simply replace any f †

iα fiα with the number 1 in the action.
Consequently, the structure of the initial interaction is now
more complicated than the one given in Eq. (5) because

Sμ
i Sμ

j = − 1
2 f †

iα f jα f †
jβ fiβ − 1

4 f †
iα fiα f †

jβ f jβ, (18)

and the last term on the right-hand side, corresponding to a
density-density interaction, cannot be neglected anymore.

Second, the imaginary chemical potential in the
Ansatz (16) is equipped with an explicit � dependence, its
initial value set to μPF. This may seem odd at first glance since
the constraint (4) is an exact relation that does not seem to
lend itself to a continuous RG flow. One should note, however,
that the proof of μPF implementing the constraint was given
for the microscopic Hamiltonian, i.e., at the scale � = �UV.
The value of the partition function does, of course, not
change under an (exact) RG transformation, but the shape of
the Hamiltonian or the action does. Physically, this means
that the f (†) fields are systematically dressed. To fulfill the
constraint at scales � �= �UV, it is therefore mandatory to let
μ� evolve with the rest of the effective average action.

Our approach to the solution of the FRG equation (2) is
approximate and so is the renormalization of μ�. Therefore,
the implementation of the constraint is not exact for any � <

�UV, just as for a hypothetical gauge field realization. On the
other hand, we do have better control about the approximation
error since we keep the truncation exactly at the same level as

description might have to include vortex or monopole degrees of
freedom. Although there is work in this direction in the context of
BKT transitions [48,49], this represents a formidable task on its own
and is therefore beyond the scope of this paper.
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TABLE III. Full interaction structure of the symmetric two-
sublattice J1 model. Matrix definitions are σ± = 1

2 (σ x ± σ y ) and
σ ou = 1

2 (1 ± σ z ) with the usual definitions of the Pauli matrices
σ x/y/z.

Coupling ηX ηY f (p1, p2, p3, p4)

J� σ+ σ− cos(p2,x − p3,x ) + cos(p2,y − p3,y )
L� σ o σ u cos(p3,x − p4,x ) + cos(p3,y − p4,y )
X� σ o σ o 1
X� σ u σ u 1

for the rest of the action. Let us illustrate this point with a
toy model of our system. Consider N = 2 in the limit J2 = 0
without initial order parameters on two sublattices, i.e., 


is a two-dimensional spinor. The latter is necessary for an
algebraic discrimination between the two contributions to the
right-hand side of Eq. (18) in momentum space. The four-
fermion terms that are present initially or will be generated
during the flow are shown in Table III.

The flow equations for the couplings J�, L�, X�, and μ�

can be found in Appendix C. Depending on the temperature,
the flow is intercepted by a divergence at some scale �div.
While this scale itself does not bear direct physical meaning,
its existence signals the onset of ordering [45]. The highest
temperature where �div > 0 will be dubbed instability tem-
perature. In Fig. 6, the value of �div is plotted for a number
of different approximation schemes: no constraint (μ� = 0,
dotted line), static chemical potential (μ� = μPF, dashed
line), running chemical potential with (solid line) or without
(dotted-dashed line) Katanin feedback of μ� on the four-
fermion couplings. The impact of these approximations on
the instability temperature is quite dramatic and it is therefore
vital to include μ� into a consistent approximation scheme.3

In light of the numerical findings for the different levels
of truncations when including the Popov-Fedotov chemical
potential (cf. Fig. 6), we advocate that the complete Katanin
scheme (represented by the solid line in Fig. 6) appears to
provide the most faithful description and will be used in the
following.

One last remark is due to the zero-temperature limit of the
problem. By definition in Eq. (15), μPF vanishes for T → 0.
It is not obvious whether this limit commutes with the path
integral, i.e., the computation of the partition function. At
least in our toy model, this seems to be the case, though.
For all approximations, �div smoothly approaches the naïve
zero-temperature value.

B. Extended truncation

In the frustrated regime of the N = 2 case, it is insufficient
to consider only the order parameters Q(1...4) and Q(5,6) due to
the presence of additional fluctuations away from the large-
N limit. Therefore, we have to introduce additional pairing

3In previous work [35] we suggested a scheme that would corre-
spond to the case of a static μ�. In light of the present findings,
we now rather advocate the complete Katanin scheme (solid line in
Fig. 6) as the latter is used for the flow with order parameters as well.
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FIG. 6. Divergence scale �div as function of temperature for
different approximation schemes of the toy model in Table III. See
main text for details.

order parameters , allowing us to investigate more classes
of possible spin-liquid phases. Our Ansatz for the bilinear part
�

(2
)
� of the effective average action becomes

�
(2
)
� =

∑
n,αβ

∫
p∈TZ

[

†

pα

(
iωnϑ

−1
� + μ�

)
1δαβ
pβ

+
6∑

i=1


†
pα

(
Q(i)

� ηi + Q(i),∗
� ηT

i

)
δαβQ(p)
pβ

+
6∑

j=1

( j),∗
†
pαηT

j 
∗
−pβεαβD(p)

+
6∑

j=1

( j)
T
pαη j
−pβεαβD(p)

]
. (19)

Here, Q(p) and D(p) are the respective geometric momentum
structures. The pairing order parameters are associated with a
nontrivial structure ∼εαβ in spin space preserving the global
SU(2) symmetry. Instead of the totally antisymmetric tensor
εαβ , Pauli matrices σ x,z

αβ or linear combinations would be
permissible as well. Due to SU(2) symmetry, however, this
does not change the structure of the flow equations.

Introducing the new order parameters has consequences for
the four-fermion sector of the model as well. For ( j) = 0,
Eq. (7) is the only possible interaction structure, different
combinations of ηX/Y determining the number of couplings to
be taken into account. Once any ( j) > 0, there are five new
structures that can and generally will be generated during the
flow (see Table IV). Note that, SU(2) symmetry keeps the spin
structure of the interactions simple in the sense that δαβ and
εαβ are associated to fixed Nambu sectors during the entire
RG flow.

As opposed to the large-N case, all combinations of ηX/Y

matrices can now contribute to the RG flow. Taking into
account all of these combinations for all Grassmann structures
would correspond to a total of 1536 couplings in the four-
fermion sector. There are, however, a number of symmetries
that can be exploited: for instance, the two mixed Grassmann
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TABLE IV. New interaction structures due to finite-pairing order
parameters. Spin space is represented by the diagonal matrix δ and
the totally antisymmetric matrix ε. The geometric structure fk is
given in Eq. (20).

Type Grassmann structure Momentum structure

Original (
†ηX δ
)(
†ηY δ
) fk (1,−1, 1)

(
†ηX ε
∗)(
†ηY δ
) fk (−1, −1, 1)Mixed
(
T ηX ε
)(
†ηY δ
) fk (1,−1, 1)

(
†ηX ε
∗)(
†ηY ε
∗) fk (1, 1, 1)

Pairing (
T ηX ε
)(
T ηY ε
) fk (1, 1, 1)

(
†ηX ε
∗)(
T ηY ε
) fk (1, −1, −1)

structures are Hermitian conjugates of each other and thus do
not contain independent information. Furthermore, the choice
of the ηX/Y matrices themselves is constrained by Hermiticity
as well. Taking all of this into account reduces the number
of independent (complex) couplings from the four-fermion
sector down to 624. The flow equations for these are then
solved by step-size-controlled numerical integration.

When translating the initial action (5) into momentum
space, the definition of nearest- or next-nearest-neighbor
coupling guarantees a unique representation of the vertex’
momentum structure with respect to the choice of sublat-
tices. In contrast to the large-N case, this structure is not
invariant under the RG flow at N = 2 anymore. Longer-
ranged interactions are generated. Whenever the range of such
an interaction exceeds the enlarged unit cell given by the
sublattice representation, the momentum structure is altered.
In order to properly account for this effect, projection onto
the momentum structure itself would be required. Here, we
strictly truncate our interaction vertices to take into account
the nearest-possible-neighbor sites only. In practice, this cor-
responds to the following generic momentum structure:

fk (i, j, l ) = cos(iaxk2 + jbxk3 + lcxk4)

× cos(iayk2 + jbyk3 + lcyk4). (20)

The ki are the momenta of the vertex’ fields. {ax/y, bx/y, cx/y}
are determined by ηX/Y , i.e., the geometry of the vertex
and {i, j, k} vary with the Grassmann sector considered (see
Table IV). For N → ∞, we recover the momentum structures
employed in Sec. II B.

We do not expect this truncation to interfere with the
regularization of the RG flow through emergent spin-liquid
order. This is in analogy to the analysis presented in Sec. III B:
there, we showed that, in the two-sublattice parametrization,
the uniform BZA state regularizes the flow, but in the four-
sublattice parametrization the additional translational symme-
try breaking of the π -flux state is exhibited. The level of
truncation was equivalent to Eq. (20) in both instances. We
expect this mechanism to extend to parametrizations with
more sublattices. We note that in the N → ∞ limit, the
spin-liquid phases are generated in the small unit cell by the
nearest-neighbor interactions and conclude that their appear-
ance for N = 2 is enabled even if longer-ranged interactions
are truncated. Therefore, while we cannot entirely rule out that
long-range-interaction effects do occur in the RG flow, we
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FIG. 7. Critical temperatures Tc/J1 for magnetic ordering for
different values of the artificial damping constant γ at N = 2.

expect that for N = 2 the onset of a divergence is primarily
observable in the short-ranged interactions.

C. Phase diagram and frequency dependence

We first discuss our numerical findings for J2 = 0. In this
case, a Néel-ordered magnetic phase is expected to occur
at sufficiently low temperatures [52]. To compute infrared
properties of such a phase in our approach, one would
have to introduce magnetic order parameters, i.e., terms
∼M (n)
†

αταβηX 
β where ταβ �= δαβ in spin space. Here, we
are not interested in magnetic orders and we refrain from tak-
ing them into account. This greatly reduces the numerical cost.
For T/J1 < 0.82 we find a divergence of the four-fermion
couplings that does not trigger a commensurate growth of
any of the viable bilinear spin-singlet orders Q(i)

� or 
( j)
� .

Therefore, the divergence indicates a spontaneous breaking of
the global SU(2) and hence magnetic ordering.

Considering J2 > 0, the phase diagram in Fig. (7) ensues
(solid line), where magnetic ordering occurs for all g = J2/J1

with just a little reduction of the critical temperature around
the suspected regime of frustration g ∼ 0.5. This gross over-
estimation of magnetic ordering tendencies is expected in
the presented static approximation, where explicit frequency
dependencies of the four-fermion vertices or self-energy con-
tributions have been neglected: properly taking frequency
dependence into account within the pf-FRG scheme [26] leads
to a magnetic phase diagram which is well compatible with
the bulk of the literature, in particular with regard to the
existence of a nonmagnetized regime for 0.4 � g � 0.6.

Here, we shed light on the mechanism behind the sup-
pression of magnetic ordering aiming at a better char-
acterization of the spin-liquid behavior that is facilitated
instead: in Ref. [26] it was shown that the phenomenolog-
ical consequences of frequency dependence, such as finite
pseudofermion lifetime, can be reproduced within the static
approximation if an ad hoc self-energy

�
(γ )
� =

∑
n

∫
p∈TZ

iγ
†
psign(ωn)1
p (21)
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FIG. 8. Diagrammatic contributions to the RG flow. {i, j, k} are
site indices and {α, β, γ } are general SU(N) spin indices. (a) Two-
loop self-energy diagram responsible for the imaginary contribution
in Eq. (21). Its contribution is suppressed for N → ∞. (b) Particle-
hole contribution to the interaction vertices, dominant at large N .
(c) RPA-type contribution to the interaction vertices.

is added to the Ansatz for the effective average action. Being
associated to an odd frequency structure, γ is not renormal-
ized as long as the vertex functions remain frequency inde-
pendent [26]. By choosing larger values for γ , magnetic order
is more and more suppressed until, eventually, the regime
around g ∼ 0.5 is indeed free of magnetic instabilities all the
way down to T = 0 (cf. Fig. 7).

D. Large-N spin liquid and frequency dependence

To assess the influence of frequency dependence on pos-
sible spin-liquid phases, let us return for a moment to the
large-N situation: There, no change of the critical tempera-
ture is found when comparing a fully frequency-dependent
pf-FRG scheme to the simplified one at hand [34,35]. The
reason for this behavior can be understood from perturba-
tive diagrammatics. An imaginary self-energy like (21) can
naturally not occur from a one-loop diagram as the initial
value for the four-fermion vertex is frequency independent.
At two-loop order, the diagram given in Fig. 8(a) accounts for
a nontrivial renormalization of the frequency dependence of
the self-energy. In our FRG flow, it is effectively generated by
a dressed vertex that is fed into the flow of the self-energy.
Since only one of the two loops contributes a factor of N
due to a freely summed spin index, the overall value of the
diagram is ∼ 1

N and thus suppressed for N → ∞. Thus, even if
the frequency dependence of vertices was taken into account,
no such dependence of the self-energy can be generated at
large N . It is therefore safe to say that in the present system,
the occurrence of spin-liquid phases at large N is solely
due to the peculiar structure of the four-fermion vertex flow:
only the diagram with a particle-hole loop [Fig. 8(b)] con-
tributes while, in particular, the RPA-type diagram [Fig. 8(c)],
which is typically associated with magnetic ordering, is
suppressed.

E. N = 2 case

Considering the case N = 2, both of these two-particle dia-
gram types and the self-energy (21) become important. We do
know the effect of finite damping γ > 0 on magnetic ordering
(see Fig. 7), but its impact on potential spin-liquid phases is
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still unclear, yet of utmost importance for the understanding
of the highly frustrated g ∼ 0.5 regime. To shed light on this
question, we need to investigate the interplay of �

(γ )
� and

spin-liquid favoring fluctuations represented by the diagram
in Fig. 8(b). To this end, we artificially introduce the self-
energy (21) into the large-N flow equations of the J1 model
for two sublattices, which are by construction dominated
by this type of fluctuations. This gives us a handle on the
influence of γ > 0 on spin-liquid ordering tendencies also
beyond the large-N limit. The so-obtained results are shown
in Fig. 9.

We find that bilinear spin-liquid ordering is suppressed
upon introduction of an artificial damping γ as well. In fact,
at a value of γ = 0.3, no such phase could be discerned
anymore. This is particularly noteworthy since, for γ = 0.3,
the suspected spin-liquid regime around g ∼ 0.5 at N = 2
(cf. Fig. 7, dotted line) is still occupied by magnetic phases.
Running the complete N = 2 flow equations again results in
a divergence, no matter if the order parameters from Eq. (19)
are present or not.

We draw two conclusions from these results. First, fre-
quency dependence alters quantitative features such as the
values of critical temperatures or the position of phase bound-
aries. However, since damping as its main consequence affects
both conventional (magnetic) as well as bilinear spin-liquid
ordering, we do not expect the appearance of physical spin-
liquid phases which are not present in the static FRG approxi-
mation. This solidifies the reliability of our approach. Second,
the primary goal of this work was to shed some further light
on the nature of the frustrated regime around g ∼ 0.5. Impor-
tantly, we can conclude that our approach does not support
the emergence of any particular type of bilinearly ordered spin
liquid since we included all possible bilinear order parameters
that do not break the global SU(2) symmetry. This indicates
that bilinear spin-liquid order is not an appropriate description
of the physical phenomena occurring in the J1-J2 model in the
regime 0.4 � g � 0.6.

By construction, our approach is sensitive to the occurrence
of any bilinear order parameter, signaled by a divergence
in the four-fermion sector of the effective average action.
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However, ordering tendencies that need to be described by
expectation values of more fermion fields are not seen at the
given truncation level. The results presented, here, therefore
strongly hint toward such a more complicated structure of the
spin-liquid phase. Possible candidates are dimer valence bond
solids [15,19,23] (involving four-fermion fields) or a four-spin
(eight-fermion) plaquette order [7,8,11,20].

V. CONCLUSIONS AND OUTLOOK

To summarize, we have introduced a cluster pf-FRG ap-
proach and applied it to the J1-J2 Heisenberg model on the
square lattice. First, a large-N analysis indicated the ne-
cessity to incorporate spatially structured order parameters
by means of the cluster extension. Moving to the physical
case at N = 2, we carefully analyzed the implementation of
the fermion-number constraint using an imaginary chemical
potential according to the Popov-Fedotov method. We added
a minimal frequency-dependent self-energy to our truncation
to incorporate the effects of finite pseudofermion lifetime. By
doing so we were able to reproduce the nonmagnetic phase at
intermediate coupling ratio 0.4 � g � 0.6. However, no signs
of bilinear spin-liquid order emerged in this regime. In fact,
any instability encountered in this model could reliably be
related to magnetic ordering tendencies instead. This suggests
that the low-temperature regime of the strongly frustrated
J1-J2 Heisenberg model is occupied by a state that needs to be
characterized by the expectation value of at least four fermion
fields, the simplest incarnation of which includes valence
bond solid or plaquette ordered states, but also more complex
spin-liquid states.

There are multiple directions for future work. As indicated
in Sec. II B, the sublattice representation opens up our method
for further, more complicated lattice geometries. A natural
next step is to perform an analogous analysis for the Kitaev
model on the honeycomb lattice. While the exact solution is
formulated in terms of Majorana fermions [3], it has been
shown that an equivalent pseudofermion representation ex-
ists [53]. In this case, the QSL phase is indeed character-
ized by the order parameters introduced in Eq. (19). Having
reproduced these findings, one should be able to analyze
extensions of the Kitaev model with only minor additional
effort.
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APPENDIX A: LARGE-N STRUCTURE OF THE
FLUCTUATION MATRIX

The right-hand side of the flow equation (2) is determined
by the second functional derivative of the effective average
action �

(2)
� = P� + F�. Here, F� is the field-dependent part

of �
(2)
� , called fluctuation matrix. Applying the pointlike pro-

jection 
α,ωm−νn,p−q = 
αδm,nδ(p − q), its value with respect
to the generic interaction (7) is given by

F� = Jn

N
δm,nδ(p − q)

(
A B

C D

)
, (A1)

where

A = −(
†
γ ηX )T (
†

δ η
Y ) f (0,−p, 0, p)

− (
†
γ ηY )T (
†

δ η
X ) f (0, p, 0,−p), (A2a)

B = (
†
γ ηX )T (ηY 
δ )T f (0,−p,−p, 0)

+ (
†
γ ηY )T (ηX 
δ )T f (−p, 0, 0,−p)

− ηX T
δγ δ (
†

αηY 
α ) f (−p,−p, 0, 0)

− ηBT
δγ δ (
†

αηX 
α ) f (0, 0,−p,−p), (A2b)

C = (ηX 
γ )(
†
δ η

Y ) f (p, 0, 0, p)

+ (ηY 
γ )(
†
δ η

X ) f (0, p, p, 0)

+ ηAδγ δ (
†
αηY 
α ) f (p, p, 0, 0)

+ ηY δγ δ (
†
αηX 
α ) f (0, 0, p, p), (A2c)

D = −(ηX 
γ )(ηY 
δ )T f (p, 0,−p, 0)

− (ηY 
γ )(ηX 
δ )T f (−p, 0, p, 0). (A2d)

The flow equation (2) may be expanded in powers of F�.
The quadratic contribution

∼Tr
[
P−1

� F�P−1
� F�

]
(A3)

of this expansion determines the flow of the fermionic interac-
tion terms themselves. Thus, any ∂�Jn ∼ 1

N . Only terms where
the trace operation on the right-hand side of the Wetterich
equation contributes an extra factor of N avoid being sup-
pressed in the limit N → ∞. By construction, P� is diagonal
in the spin indices. To achieve an overall N = Tr[δγ δ], only
components ∼δγ δ in Eq. (A2) can contribute. These are given
in the second lines of Eqs. (A2b) and (A2c). Multiplying those
terms according to Eq. (A3) can never result in any product
of matrices σ x · ηY sandwiched between 
†, 
. Since this is
the only way to generate new matrix structures aside from the
existing ηX/Y , it can be concluded that no such new structures
can be generated at large N .
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APPENDIX B: GELL-MANN MATRICES OF SU(4)

For definiteness, we here list the generators of SU(4) in the fundamental representation as used in Sec. III B:

λ̂1 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, λ̂2 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠, λ̂3 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠, λ̂4 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠, (B1)

λ̂5 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠, λ̂6 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, λ̂7 =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, λ̂8 =

⎛
⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎠, (B2)

λ̂9 =

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠, λ̂10 =

⎛
⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎠, λ̂11 =

⎛
⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎠, λ̂12 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠, (B3)

λ̂13 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, λ̂14 = 1√

3

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎠, λ̂15 = 1√

6

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎠. (B4)

APPENDIX C: FLOW EQUATIONS OF THE TOY MODEL

Employing the regulator (17) the flow equations for the toy model of Sec. IV A are given by

∂�μ� = − 2

π

ω2
�ϑ̃�μ�(

ω2
� + ϑ̃2

�μ2
�

)2 (4L� + X� − 2J�), (C1a)

∂�J� = 2

π

[
3ϑ̃3

�μ2
�ω2

� − ϑ̃�ω4
�(

ϑ̃2
�μ2

� + ω2
�

)3

(
J2
� − J�L� − 2J�X�

) − J�L�ϑ̃�ω2
�(

ϑ̃2
�μ2

� + ω2
�

)2

]

+ 2T
∑

n

(∂�μ�)ϑ4
�μ�

[
ϑ2

�μ2
� − 3ω2

n(
ω2

n + ϑ2
�μ2

�

)3

(
J2
� − J�L� − 2J�X�

) − J�L�(
ω2

n + ϑ2
�μ2

�

)2

]
, (C1b)

∂�L� = 1

π

[
3ϑ̃3

�μ2
�ω2

� − ϑ̃�ω4
�(

ϑ̃2
�μ2

� + ω2
�

)3

(
4L�X� − L2

� − 4J�X�

) −
(
J2
� + L2

�

)
ϑ̃�ω2

�(
ϑ̃2

�μ2
� + ω2

�

)2

]

+ T
∑

n

(∂�μ�)ϑ4
�μ�

[
ϑ2

�μ2
� − 3ω2

n(
ω2

n + ϑ2
�μ2

�

)3

(
4L�X� − L2

� − 4J�X�

) − J2
� + L2

�(
ω2

n + ϑ2
�μ2

�

)2

]
, (C1c)

∂�X� = 2

π

[
3ϑ̃3

�μ2
�ω2

� − ϑ̃�ω4
�(

ϑ̃2
�μ2

� + ω2
�

)3

(
8L2

� − 4J2
� − X 2

� − 8J�L�

) − X 2
�ϑ̃�ω2

�(
ϑ̃2

�μ2
� + ω2

�

)2

]

+ 2T
∑

n

(∂�μ�)ϑ4
�μ�

[
ϑ2

�μ2
� − 3ω2

n(
ω2

n + ϑ2
�μ2

�

)3

(
8L2

� − 4J2
� − X 2

� − 8J�L�

) − X 2
�(

ω2
n + ϑ2

�μ2
�

)2

]
, (C1d)

where

ϑ̃� = 1 +
⌊

�

2πT

⌋
− �

2πT
(C2)

and

ω� = πT

(
2

⌊
�

2πT

⌋
+ 1

)
. (C3)
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In the limit T → 0, μ� vanishes. The flow equations thus simplify dramatically, yielding

∂�J� = −J2
� − 2J�X�

π�2
, (C4a)

∂�L� = −4L�X� − 4J�X� + J2
�

2π�2
, (C4b)

∂�X� = −8L2
� − 4J2

� − 8J�L�

π�2
, (C4c)

We use these equations to compute the T = 0 data point in Fig. 6.
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