
Disentangling and machine learning the  
many-fermion problem

Peter Bröcker
Dissertation



Disentangling and machine learning the 
many-fermion problem

Inaugural-Disserta8on

zur 

Erlangung des Doktorgrades 
der Mathema4sch-Naturwissenscha:lichen Fakultät der Universität 

zu Köln 
vorgelegt von 

Peter Bröcker geb. Boertz

aus Münster

Köln, 2018



Berichterstatter Prof. Dr. Simon Trebst

Prof. Dr. David Gross

Tag der mündlichen Prüfung: 16.4.2018



Contents
I. Monte Carlomethods for themany-body problem 7
1. TheMonte Carlomethod 8

1.1. Fundamentals of the Monte Carlo method in physics . . . . . . . . . . . 8
1.1.1. Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2. Moving along Markov chains . . . . . . . . . . . . . . . . . . . 9

1.2. Analysis of Monte Carlo data . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1. Calculating mean values and their error bars . . . . . . . . . . . . 10
1.2.2. Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3. Functions of observables . . . . . . . . . . . . . . . . . . . . . . 12

2. Determinant QuantumMonte Carlo 13
2.1. Theoretical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1. Finite temperature simulations . . . . . . . . . . . . . . . . . . . 15
2.1.2. Projective formulation . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. The Hubbard-Stratonovich transformation . . . . . . . . . . . . . . . . . 18
2.3. Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Stochastic Series Expansion 25
3.1. Formulation of the Monte Carlo procedure . . . . . . . . . . . . . . . . . 25
3.2. Sampling operator sequences . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3. Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. The sign problem 31
4.1. Monte Carlo calculations with sign problem . . . . . . . . . . . . . . . . 31
4.2. The physical origin of the sign problem . . . . . . . . . . . . . . . . . . 32
4.3. Circumventing the sign problem . . . . . . . . . . . . . . . . . . . . . . 33

II. Disentangling and learning 35
5. Entanglement 36

5.1. Entanglement and its use in condensed matter . . . . . . . . . . . . . . . 36
5.2. Entanglement entropies from Monte Carlo simulations . . . . . . . . . . 38
5.3. Determinant QMC and the replica trick . . . . . . . . . . . . . . . . . . 39

5.3.1. Implementation of the replica trick in DQMC . . . . . . . . . . . 39
5.4. The Hubbard chain as a test case . . . . . . . . . . . . . . . . . . . . . . 44

5.4.1. Zero-temperature physics . . . . . . . . . . . . . . . . . . . . . . 44
5.4.2. Thermal crossover of the entanglement . . . . . . . . . . . . . . 45

5.5. Comparison to the free fermion decomposition method . . . . . . . . . . 47

1



Contents

5.6. Stabilization of the ground state algorithm . . . . . . . . . . . . . . . . . 50
5.6.1. Invertibility of the matrix products in the replica scheme . . . . . 50
5.6.2. Stable calculation of the Green’s function . . . . . . . . . . . . . 51
5.6.3. Choice of Hubbard-Stratonovich transformation . . . . . . . . . . 53
5.6.4. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7. Application to the bilayer Hubbard model . . . . . . . . . . . . . . . . . 56
5.8. Entanglement and the sign problem . . . . . . . . . . . . . . . . . . . . 59

5.8.1. Entanglement entropies for models with sign problem . . . . . . 60
5.8.2. Spinless Dirac fermions on the honeycomb lattice . . . . . . . . . 60
5.8.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9. Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6. Machine Learning 67
6.1. Artificial Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1. Training neural networks . . . . . . . . . . . . . . . . . . . . . . 69
6.1.2. Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.3. Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4. Dropout filters and regularization of hyperparameters . . . . . . . 74

6.2. Supervised approach to the discrimination of phases of matter . . . . . . 74
6.2.1. Learning the characteristics of a phase . . . . . . . . . . . . . . . 75
6.2.2. Network architecture . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.3. Finding the correct input . . . . . . . . . . . . . . . . . . . . . . 76
6.2.4. Machine learning a fermionic quantum phase transition . . . . . . 79

6.3. Unsupervised approach to mapping out phase diagrams . . . . . . . . . . 80
6.3.1. Turning supervised into unsupervised . . . . . . . . . . . . . . . 80
6.3.2. Application to hard-core bosons . . . . . . . . . . . . . . . . . . 81
6.3.3. Fermions and topological order . . . . . . . . . . . . . . . . . . 83

6.4. Sign-problematic many-fermion systems . . . . . . . . . . . . . . . . . . 85
6.4.1. Identifying phase boundaries . . . . . . . . . . . . . . . . . . . . 86
6.4.2. Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.3. On the validity of the machine learning approach to sign-problematic

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5. Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7. Conclusion and outlook 92
A. Determinant QuantumMonte Carlo 94

A.1. Slater determinant calculus . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.1.1. Representation as matrices . . . . . . . . . . . . . . . . . . . . . 94
A.1.2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.1.3. Deriving an expression for the Green’s function . . . . . . . . . . 97

2



Introduction
One of the most intriguing areas of physics is the study of strongly correlated many-body
systems. In these kinds of systems, a large number of particles interacts via interactions
that are strong enough to play a major role in determining the properties of the system,
which is particularly interesting when multiple interaction terms compete and cannot be
satisfied simultaneously. Examples of phases they realize range from simple magnetism
to puzzling phenomena such as superconductivity or topological order. Of special interest
in condensed matter are fermionic models which have an extra layer of complexity added
by the possibly intricate sign structure of the wave function.

However, exactly solvable models that exhibit the sought-after phenomena are scarce and
Hamiltonians that are supposed to model experiments often elude analytical solutions
precisely due to the strong interactions. Numerical methods are thus essential to gain
insight into these systems and provide an important link between theoretical models and
real world experiments. There are many different methods that in principle allow solving a
problem numerically exact, most prominently exact diagonalization, tensor network based
methods such as DMRG and (quantum) Monte Carlo. Exact diagonalization is certainly
the most straightforward technique which allows measuring any observable of interest
but its application to interacting models is severely limited by the exponential growth of
the Hilbert space with the system size which only allows studying rather small systems.
Tensor network methods excel in the study of gapped, one-dimensional systems and while
they have shown some impressive results for two-dimensional systems, they need a lot of
fine tuning and careful analysis to be considered reliable in this very important domain.
Quantum Monte Carlo, on the other hand, is in principle neither limited by the size of
the Hilbert space nor by the strength of the interactions and has thus been a tremendously
important tool for studying condensed matter systems which is why it is the focus of this
thesis.

It is necessary to continuously advance existing and develop new techniques to keep up
with theoretical as well as with experimental progress. In this thesis, new methods to
identify and characterize conventional and novel phases of matter within quantum Monte
Carlo are developed and tested on archetypical models of condensed matter.

In the first part of this thesis, a method to study entanglement properties of strongly inter-
acting fermionic models in quantum Monte Carlo is presented. Measurements of this kind
are needed because some characteristics of a system remain hidden from conventional
approaches based on the calculation of correlation functions. Prime examples are sys-
tems that realize so-called topological order entailing long-range entanglement that can
be positively diagnosed using entanglement techniques. Realizing such measurements
in a concrete algorithm is not straightforward for fermions. A large section of this part
is thus devoted to developing a solution to the problem of implementing entanglement
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measurements and benchmarking the results against known data.

The second part is concerned with a truly novel and recent approach to the many-body
problem, namely the symbiosis of machine learning and quantum Monte Carlo tech-
niques. Out of the many different possibilities to combine the two, this part is concerned
with exploring ways in which machine learning can help to effortlessly explore phase
diagrams of hitherto unknown Hamiltonians.

Despite the power and versatility of quantum Monte Carlo techniques, it does suffer from
one significant weakness called the fermion sign problem. At its core related to the pe-
culiar exchange statistics of fermions, it is in principle merely a technical problem of the
Monte Carlo procedure but one that actually prohibits the use of Monte Carlo methods
for a large number of interesting problems. The sign problem has been known for a long
time but remains unsolved to this day. Thus, it is time to approach the problem from a
different perspective with the hope of learning something new that can either help to bet-
ter understand the problem itself or the properties of the models affected by it. Both of
the two major research areas, entanglement measures and machine learning, are capable
of providing such new perspectives and the sign problem will be revisited in more detail
in the context of each of them.
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Kurzzusammenfassung
Stark korrelierte Vielteilchensysteme gehören zu den faszinierendsten Bereichen der Phy-
sik. Für sie charakteristisch ist, dass eine große Anzahl Teilchen miteinander wechsel-
wirkt und diese Wechselwirkung so stark ist, dass sie die physikalischen Eigenschaften
entscheidend beeinflusst. Besonders interessant sind diese Systeme, wenn mehrere Wech-
selwirkungen konkurrieren und deren Energien nicht gleichzeitig minimiert werden kön-
nen. Beispiele von Phasen, die in wechselwirkenden Systemen realisiert werden, reichen
von einfachen magnetischen Phasen bis hin zu noch immer nicht vollständig verstandenen
Phasen wie Supraleitung oder topologisch geordneten Phasen. Von besonderem Interesse
in der kondensierten Materie sind fermionische Modelle, die aufgrund der möglicherwei-
se komplizierten Vorzeichenstruktur der Wellenfunktion eine weitere Komplexititätsebe-
ne aufweisen.

Exakt lösbare Modelle sind allerdings schwer zu finden und Hamiltonians, die experimen-
tell untersuchte Materialien modellieren entziehen sich oft analytischen Studien genau
wegen der starken Wechselwirkung, die sie erst interessant macht. Numerische Metho-
den sind deswegen essentiell, um Erkenntnisse über diese Art von Systemen zu gewinnen
und stellen eine wichtige Verbindung zwischen theoretischen Modellen und tatsächlichen
Experimenten dar. Es gibt eine Reihe von verschiedenen Methoden, die prinzipiell erlau-
ben ein Vielteilchenproblem numerisch exakt zu lösen, wie zum Beispiel exakte Diago-
nalisierung, Tensornetzwerkmethoden wie DMRG oder (Quanten) Monte Carlo. Exakte
Diagonalisierung wäre sicherlich die Methode der Wahl, da sie erlaubt alle gewünschten
Observablen zu bestimmt. Allerdings ist ihre Anwendung deutlich limitiert, weil mit dem
Hilbertraum auch der numerische Aufwand in der Systemgröße exponentiell wächst und
man daher nur relativ kleine Systeme untersuchen kann. Tensornetzwerkmethoden wie
DMRG sind hervorragend geeignet, um eindimensionale, gegappte Systeme zu studie-
ren. Obwohl es einige vielversprechende Resultate für zweidimensionale Systeme gibt,
benötigt diese Art von Simulationen weiterhin eine genaue Überwachung und viel Fein-
tuning, um die Konvergenz zum korrekten Ergebnis zu gewährleisten. Quanten Monte
Carlo Algorithmen haben den Vorteil, dass sie im Prinzip weder durch die Größe des
Hilbertraums, noch durch die Stärke der Wechselwirkung limitiert sind, weshalb sie sich
zu einem der wichtigsten Werkzeuge in der kondensierten Materie entwickelt haben und
auch Hauptforschungsgegenstand dieser Arbeit sind.

Es ist überaus wichtig fortwährend bestehende Techniken zu verbessern sowie neue An-
sätze zu entwickeln, um mit den aktuellen theoretischen und experimentellen Entwicklun-
gen Schritt zu halten. Dies wird im Rahmen dieser Arbeit getan, indem neue Methoden
entwickelt werden um konventionelle und neue, exotische Phasen mit Quanten Monte
Carlo zu identifizieren und zu charakterisieren, was anhand von archetypischen Beispie-
len demonstriert wird.
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Im ersten Teil dieser Arbeit wird dabei eine Methode präsentiert, mithilfe derer man die
Verschränkungseigenschaften von wechselwirkenden fermionischen Modellen studieren
kann. Messungen dieser Art sind notwendig, weil einige Eigenschaften eines Systems sich
nicht über konventionelle Messungen mit Korrelationsfunktionen bestimmen lassen. Eine
Paradebeispiel ist die sogenannte topologische Ordnung, die mit langreichweitiger Ver-
schränkung einher geht und durch Messung der Verschränkungseigenschaften einwand-
frei diagnostiziert werden kann. Wie man einen Algorithmus fermionisches System im-
plementiert, ist allerdings nicht offensichtlich. Ein großer Teil des entsprechenden Kapi-
tels ist der Entwicklung einer Lösung dieses Problems sowie dem Vergleich mit bekannten
Referenzdaten gewidmet.

Der zweite Teil befasst sich mit einem neuartigen und erst kürzlich entwickelten Ansatz,
nämlich der Symbiose von Machine Learning und Quanten Monte Carlo Techniken. Aus
der großen Anzahl möglicher Varianten diese beiden Themen zu kombinieren, wurde für
dieses Kapitel die Frage gewählt, inwiefern Machine Learning helfen kann das Phasendia-
gramm eines unbekannten Hamiltonians mit möglichst geringem Aufwand zu bestimmen.

Trotz der vielfältigen Anwendbarkeit von Quanten Monte Carlo Techniken besitzen sie
eine große Schwäche, nämlich das sogenannte Vorzeichenproblem. Der Ursprung des
Vorzeichenproblems liegt in der speziellen Austauschstatistik von Fermionen und ist im
Grunde nur ein technisches Problem des Monte Carlo Verfahrens. Allerdings sind die
Auswirkungen so signifikant, dass es die Anwendung von Monte Carlo Methoden für eine
große Anzahl interessanter Probleme verhindert. Obwohl das Vorzeichenproblem bereits
seit Jahrzehnten bekannt ist, wurde bislang noch keine vollständige Lösung gefunden. Es
ist deshalb an der Zeit das Problem von einer anderen Perspektive zu betrachten – in der
Hoffnung so zu neuen Erkenntnissen zu kommen, die helfen entweder etwas über das
Vorzeichenproblem selbst oder zumindest über die betroffenen Modelle und Algorithmen
zu lernen. Beide der oben kurz dargestellten Fragestellungen erlauben es eine solch neue
Perspektive auf das Vorzeichenproblem zu gewinnen, weshalb es im jeweiligen themati-
schen Kontext detailliert diskutiert wird.
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Part I.
Monte Carlomethods for the

many-body problem
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1. TheMonte Carlomethod
Monte Carlo methods comprise a class of algorithms which use random numbers and
statistical sampling to solve problems that are in principle deterministic in nature. It was
originally conceived by Stanislaw Ulam and put to practice in collaboration with John
von Neumann at Los Alamos laboratories in the 1940s [1]. Since then, it has found many
applications in diverse contexts from virtually all of the natural sciences to finance and
even some of the humanities. Monte Carlo methods often excel in many-dimensional
problems that cannot be factored into simple products of lower dimensional ones. An
obvious drawback is that because a problem is solved by statistical sampling, a statistical
error in introduced which can, however, be systematically reduced.

This chapter briefly explores the fundamentals of Monte Carlo simulations and how they
are employed in the context of condensed matter physics. Detailed explanations of the
particular Monte Carlo algorithms used in this thesis can be found in chapter 2 and chap-
ter 3. Even more information about the Monte Carlo technique is available in the respec-
tive literature [2, 3, 4, 5] on which this chapter relies as well.

1.1. Fundamentals of theMonte Carlomethod in
physics

The Monte Carlo algorithms used in this thesis aim at drawing random samples from
a given probability distribution whose normalization is unknown. These random sam-
ples are then used to calculate other quantities, such as the value of an integral (whose
integrand defines the probability distribution) or the expectation values of physical ob-
servables, when the probability distribution is given by a partition function or the overlap
of two trial wavefunctions. In practice, this is achieved by setting up a Markov Chain
on the configuration space of possible states that converges in distribution to the desired
probability distribution, which is why this procedure is also often referred to as Markov
Chain Monte Carlo (MCMC).

1.1.1. Markov chains
Markov chains are stochastic models that generate sequences of events, called states and
denoted by σ , with the important property that whatever state is generated only depends
on the current state and is independent of any earlier states. This is precisely what is
done when sampling the configuration space of a physical model. New configurations
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1. The Monte Carlo method

σ ′ are iteratively proposed and, depending only on the currently active configuration σ ,
accepted or rejected as the next state of the Markov chain. The decision to accept or
reject a proposed state is made based on the elements of a transition matrix Wσ ,σ ′ that
enumerates all the probabilities of moving from one configuration to any other possible
configuration.

In order for the Markov chain to properly model the desired probability distribution, it
can be shown that three conditions have to be imposed on the transition probability from
one state σ to another σ ′:

1. The probability of moving from a configuration σ to a configuration σ ′ is positive.

Wσ ,σ ′ ≥ 0 (1.1)

2. It has to be possible to move from any given state σ to any other possible state σ ′

in a finite number of steps n.
(W n)

σ ,σ ′ 6= 0 (1.2)

If this condition is fulfilled, the process is called ergodic.

3. The sum probabilities of moving from a configuration σ to any configuration add
up to 1.

∑
σ

Wσ ,σ ′ = 1 (1.3)

4. The probability Pσ ′ to realize a state σ ′ in the target probability distribution P is
obtained when all transition probabilities to σ ′ from a state σ are multiplied by the
probability to reach the respective initial state Pσ .

∑
σ

PσWσ ,σ ′ = Pσ ′ (1.4)

This condition can also be written as P ·W = P which emphasizes that the target
probability distribution P is an eigenvector with eigenvalue 1 of the transition prob-
ability matrix W . Alternatively, the condition can also be stated as:

PσWσ ,σ ′ = Pσ ′Wσ ′,σ (1.5)

In this form, the condition is also known as detailed balance. It can be shown to be
equivalent to the previous form by summing over σ on both sides and evoking the
second condition.

The Markov chain represents the probability distribution in the sense that the frequency
with which a state is visited is proportional to the probability of realizing it in the actual
distribution.

1.1.2. Moving alongMarkov chains
The rules laid out above make no precise statement about how to propose new states
and decide whether they should be added to the Markov chain or not. This is done by
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1. The Monte Carlo method

employing the Metropolis-Hastings algorithm [6, 7] which states that the decision should
be made by considering the ratio r of the weights of the proposed configuration and the
current configuration and compare this to a random p. The proposed configuration is then
accepted if

p≤min(1,r) . (1.6)

In practice, the more interesting question is how a new configuration σ is proposed.
Broadly speaking, there are two ways of doing so: One may either propose a small pertur-
bation, often a local change, to the configuration such as flipping a single spin. Another
way is to attempt a non-local change that affects many degrees of freedom at the same
time. The latter variant is typically the more effective as it allows exploring a “larger” area
of the configuration space in the same time because the configurations are less correlated.
Such algorithms are also called cluster algorithms. They are also a highly effective in
overcoming a problem called critical slowing [8] which appears in the vicinity of second
order phase transitions. In such a setting, the correlation length diverges and it typically
becomes highly unlikely to change a sufficient number of individual degrees of freedom
using only local updates to achieve a significant change in the overall configuration. As a
result, the Monte Carlo simulation has to be run for longer and longer times to generate
independent samples. Unfortunately, cluster algorithms are not available for all models
and they usually have to be constructed with a specific model or at least Monte Carlo
flavor in mind [9].

1.2. Analysis ofMonte Carlo data
1.2.1. Calculatingmean values and their error bars
In the course of a Monte Carlo calculation, a sequence of N configurations {c1, . . .cN}
is generated which can be used to calculate the values of observables of interest for each
configuration. If it is possible to evaluate the full probability distribution p(c), the expec-
tation value of an observable X is estimated via

〈X〉= ∑
c∈C

X(c)p(c) . (1.7)

In a Monte Carlo simulation on the other hand, this true mean is approximated by mean
values obtained from averaging observable values along the Markov chain:

x =
1
N

N

∑
i

xi . (1.8)

As was already mentioned previously, the role of the probability of a configuration p(c)
is played by the frequency that a particular configuration is visited relative to the other
configurations. It is important to distinguish the true but unknown expectation value 〈X〉
and the mean value x obtained from a single Monte Carlo run. To assess the quality
of a Monte Carlo simulation, it is necessary to quantify the distance between the true
expectation value and the Monte Carlo mean value. At first sight he standard deviation σ ,
defined as the square root of the variance σ2

X

σ
2
X := ∑

c∈C
(X(c)−〈X(c)〉)2 p(c) , (1.9)
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1. The Monte Carlo method

appears to be a suitable candidate. However, the variance only makes a statement about
the spread of X relative to its mean which does not decrease as one increases the number
of samples N and does not indicate how close the calculated mean is from the true mean.
Another possibility is to consider the variance of multiple instances of the mean value σ2

x ,
given by

σ
2
x =

1
N2

N

∑
i, j=1

〈
xix j
〉
− 1

N2

N

∑
i, j=1
〈xi〉
〈
x j
〉

=
1

N2

N

∑
i=1

(〈
x2

i
〉
−〈xi〉2

)
+

1
N2

N

∑
i 6= j

(〈
xix j
〉
−〈xi〉

〈
x j
〉)

. (1.10)

Assuming at first that the measurements xi and x j are uncorrelated, the second term
in (1.10) vanishes, which leads to

σ
2
x =

1
N2

N

∑
i=1

(〈
x2

i
〉
−〈xi〉2

)
=

σ2
X

N
. (1.11)

The variance of the means of the Monte Carlo measurements is proportional to the vari-
ance of the underlying probability distribution but inversely proportional to the number of
measurements in the Markov chain. It thus fulfills the requirement of becoming smaller
with increasing number of Monte Carlo samples. Another aspect that qualifies this quan-
tity for estimating the Monte Carlo error, is that the probability distribution of the means
x is fully defined by its mean and its variance. This fact is rooted in the central limit
theorem, which states that the distribution of the properly normalized sum of independent
identically distributed random variables tends towards a normal distribution regardless of
the underlying distribution of the original random variables. The conditions for the appli-
cation of the central limit theorem are fulfilled by the Monte Carlo procedure if one splits
the sequence of measurements into several subsequences, called bins, that each have their
own mean value. For sufficiently many subsequences, each of sufficient length, the cen-
tral limit theorem applies and the distribution is solely governed by the mean value of the
means 〈x〉 and the variance σ2

x . By splitting a given sequence of measurements, one is not
required to average over several distinct Markov chains. The subsequences can be used to
calculate another estimate for the error via a resampling technique called jackknife [4, 5].

1.2.2. Autocorrelation
In the derivation of (1.11), off-diagonal terms were ignored on the assumption that the
samples are uncorrelated. In general, this is, however, not true and the term may not
be discarded. The expression can be simplified by exchanging the indices i and j and
exploiting the supposed invariance in simulation time

σ
2
x =

1
N

σ
2
X

[
1+2

N

∑
k=1

A(k)
(

1− k
N

)]
, (1.12)

with the normalized autocorrelation function

A(k) =
〈x1xk〉−〈x1〉〈xk〉

σ2
X

. (1.13)
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1. The Monte Carlo method

The resulting correction factor to (1.11)

τX ,int ≡ 1+2
N

∑
k=1

A(k)
(

1− k
N

)
(1.14)

is called the integrated autocorrelation time. It enlarges the variance and thus the error of
the observable of interest. Because consecutive configurations are correlated and thus not
independent, they cannot reduce the error as much as truly independent samples would.

In principle, the autocorrelation time can be estimated from the above equation. Another
way to determine the autocorrelation time is to use the fact that in the limit of k→ ∞ the
autocorrelation function is expected to decay exponentially

A(k) ∝ exp
(
− k

τX ,exp

)
, (1.15)

with the exponential autocorrelation time τX ,exp setting the time scale of the decay. Af-
ter performing τX ,exp Monte Carlo steps, one can speak about truly independent samples
amenable to ordinary statistical analysis. Only if the subsequent error analysis is per-
formed with these truly independent samples is it possible to obtain sensible error bars.

1.2.3. Functions of observables
Often, one is interested in combinations of more fundamental observables such as Binder
cumulants of the form

g(A,B)≡ g(X2,X4) ∝
〈
X4〉

2〈X2〉 (1.16)

Such combinations are more difficult to evaluate correctly because the expressions in the
numerator and the denominator are calculated from the same time series and are thus cor-
related. Working out the correct formula for the error in a similar fashion to the previous
calculation is a tedious task involving the covariance and derivatives of g [5]. Instead,
it is possible to use the aforementioned jackknife technique even for a combination of
observables [4, 5] which allows for an easy estimation of the error.
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2. Determinant QuantumMonte
Carlo

The Determinant Quantum Monte Carlo (DQMC) method was first conceived to study
field theories with bosonic and fermionic degrees of freedom at finite temperatures [10,
11]. As will be shown, the origin of the name is rooted in the fact an interacting fermion
system is transformed into a non-interacting system such that fermionic degrees of free-
dom can be integrated out from the partition sum ultimately generating the eponymous
determinant. Following a slight modification, the algorithm can also be turned into a pro-
jective method for the study of ground state properties [12, 13]. The details of both vari-
ants are described in this chapter, which first discusses the basic idea of how the algorithm
is set up and how updates are performed. Next, the Hubbard-Stratonovich transformation
used to decouple the system is discussed, including some numerical aspects. The remain-
ing part of the chapter is devoted to the numerical implementation of the algorithm. The
description of the algorithm in this chapter is based on a number of general introductions
to quantum Monte Carlo algorithms and DQMC in particular [14, 15, 5].

2.1. Theoretical formulation
For the sake of concreteness the well known one band Hubbard model [16]

H =− ∑
i, j∈L, σ=±1

ti j c†
i,σ c j,σ +U ∑

i
ni,↑ n j,↓ (2.1)

is used as a model system for the discussion of the algorithm. The Hubbard model de-
scribes spinful fermions on an arbitrary lattice L that are allowed to hop between sites
i and j with an amplitude ti j and which interact with an interaction strength of U when
present on the same site. The DQMC method has played a big role in elucidating many
properties of this model and its many variants, which is why it is well suited to be used in
the following discussion.

In the finite temperature simulation of DQMC, the goal is to sample from the partition
function

Z = Tre−β Ĥ (2.2)

while the ground state algorithm employs a projective procedure to sample from the
ground state wave function:

|ψ〉= e−θ Ĥ |ψT 〉 . (2.3)

In the latter approach, a large number of exponentials of the Hamiltonian is applied to a
trial wave function which projects out all excited states and leaves only the ground state.
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2. Determinant Quantum Monte Carlo

Technically, the only condition a trial wave function must fulfill is that it is non-orthogonal
to the true ground state wave function. However, the details of how the trial wave function
is set up may greatly influence certain properties of the simulation, in particular how long
it takes to converge [17, 18].

Both variants of the DQMC algorithm have in common that the exponential of the Hamil-
tonian operator is a central object. Regarding the concrete implementation, this means
that some of the core concepts can be applied to both variants and thus the following
discussion is valid for both approaches unless indicated otherwise. The prefactor of the
Hamiltonian operator in the exponential represents the inverse temperature in the finite
temperature approach and the projection time in the ground state approach, respectively.
In the following, it will be denoted as β and referred to as imaginary time in both cases.

The exponential cannot be readily evaluated when the Hamiltonian is not quadratic as is
the case for the Hubbard Hamiltonian (2.1) because of the quartic interaction term. To
tackle this problem, the first step is to perform a Trotter-Suzuki decomposition, discretiz-
ing imaginary time into

Nτ = β/∆τ (2.4)

time steps of width ∆τ . The Hubbard Hamiltonian is of the form Ĥ = K̂ + V̂ with the
quadratic hopping part K̂ and the quartic interaction term V̂ , respectively. Applying the
Baker-Campbell-Hausdorff formula, the exponential of the sum is split into a product of
exponentials keeping only the lowest order term:

e−∆τĤ = e−∆τK̂e−∆τV̂ +O(∆τ
2) . (2.5)

Ignoring higher order terms introduces an error which can be considered negligible if ∆τ

is chosen sufficiently small. What exactly constitutes sufficiently small depends on the
model and the choice of parameters of the Hamiltonian but can be found out by perform-
ing simulations on small lattices for several values of ∆τ and observing the convergence
behavior of the observables of interest.

In a second step, the quartic term is transformed into a quadratic term by virtue of a
Hubbard-Stratonovich transformation [19, 20] at the cost of introducing an auxiliary field.
This auxiliary field is of dimension (Ni,Nτ) where Ni is the number of quartic terms in
the interaction operator and thus the transformed interaction term V̂ (s,τ) depends on the
auxiliary field configuration s and the imaginary time slice τ . Both the kinetic operator
K̂ and the decoupled interaction operator V̂ (s,τ) are now quartic and can therefore be
represented as matrices in the single particle basis which are denoted by K and V(s,τ),
respectively:

e−∆τĤ(s,τ) = e−∆τ c†
i Ki jc j e−∆τ c†

i Vi j(s,τ)c j . (2.6)

This transformed expression can now be used to evaluate the partition sum or to calculate
the projected wave function, either case requiring the additional sum over all possible
auxiliary field configurations. The fermion states in the trace of the partition sum and the
trial wave function are represented by a Slater determinant and thus one has to determine
how (2.6) acts on such Slater determinants. It turns out that applying one of the discretized
exponential operators to the Slater determinant results in another Slater determinant with
the matrix exponential of the single particle operators,

e−∆τ Ki je−∆τ Vi j(s,τ) ,
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2. Determinant Quantum Monte Carlo

as its prefactor. Due to the length of the calculation, the derivation is deferred to the
appendix.

As a shorthand, the product of matrix representations for a given imaginary time slice will
be denoted by

B(s,τ) = e−∆τ Ki je−∆τ Vi j(s,τ) . (2.7)

Further simplifying the notation, the auxiliary field argument s is dropped unless explicitly
needed and it shall be understood that each instance of B(τ) also depends on a particular
auxiliary field configuration. A partial product of slice matrices starting at time slice τ

and ending at time slice τ ′ will be denoted as

B(τ ′,τ) =
τ ′

∏
i=τ

B(i) . (2.8)

Finally, the full product of all time slices is denoted as

B(τ = 1) =
Nτ

∏
i=1
B(i) . (2.9)

The label τ in B(τ = 1) indicates the starting point for the matrix product, i.e. which time
slice the leftmost matrix represents. If τ 6= 1, the corresponding matrix product should
simply be viewed as cyclically permuted by τ−1 elements. Objects like that are required
later when accessing equal-time Green’s functions at different imaginary time slices.

2.1.1. Finite temperature simulations
Continuing with the specifics of the finite temperature approach, the partition sum can
now be rewritten in the following concise way

Z = ∑
{s(τ, j)}

Tr B(τ = 1) . (2.10)

At this point, there is a sum over all auxiliary field configurations s(τ, j) and the trace over
all fermion states and the problem is apparently more complex than it was initially. How-
ever, after the Hubbard-Stratonovich transformation, the fermions are non-interacting and
thus the expectation value can be evaluated for each of the Hubbard-Stratonovich field
configurations and each of the fermion configurations, resulting in a determinant for each
pair. In fact, it is shown in the appendix that the sum over all of these determinants, i.e.
the trace over all fermion states, results in yet another determinant which depends solely
on the auxiliary field configuration and eliminates the need to evaluate the fermion trace
in a Monte Carlo calculation. This core identity not only gives the algorithm its name but
is also a crucial ingredient for the algorithm because the evaluation of the fermionic trace
would be prohibitively slow. Finally, the partition sum takes the form

Z = ∑
{s(τ, j)}

det(1+B(τ)) , (2.11)

where only the auxiliary field configurations have to be sampled via a Monte Carlo cal-
culation.
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2. Determinant Quantum Monte Carlo

Sampling auxiliary field configurations

The sampling of the auxiliary fields configurations is performed within a Metropolis-
Hastings scheme, as discussed in the previous chapter. A central question is how to cal-
culate the ratio of the statistical weights r of two configurations, denoted as w and w ′,
respectively, in order to accept or reject proposed updates:

r =
w ′

w
=

det(1+B ′(τ))
det(1+B(τ)) . (2.12)

Again, the explicit evaluation of the determinant at each step would be too costly and
thus one has to find an alternative way. In the appendix, it is shown that the matrices
whose determinants are the weights of the corresponding auxiliary field configurations
are related to the equal times Green’s function given by

G≡ (1+B(τ))−1 . (2.13)

If an auxiliary spin is updated on imaginary time slice τ , the product of time slices with
the updated spin, B ′(τ), can be expressed in terms of the original product B(τ) as

B ′(τ) = B(τ)B−1(t)B ′(t) . (2.14)

Using both of these shorthand notation, (2.12) can be rewritten as

r = det(G) det
(
(1+B ′(τ))

)

= det
(
G(1+B ′(τ))

)

= det
(

G(1+B ′(τ)B−1(t)B ′(t))

= det
(

G(1+(G−1−1)B−1(t)B ′(t))

= det
(
(G+(1−G)B−1(t)B ′(t))

= det
(
(1+(1−G)(B−1(t)B ′(t)−1)

)

= det((1+(1−G)∆) . (2.15)

The matrix ∆ is often sparse or can at least be approximated as being so which simplifies
the calculation tremendously and allows quickly evaluating the remaining determinant. Its
exact form always depends on the model at hand and the choice of Hubbard-Stratonovich
transformation. Some concrete examples are provided later when the Hubbard-Stratonovich
transformation is discussed in detail. It has to be emphasized that the update ratio depends
solely on the matrix ∆, which is calculated for a single time slice, and the Green’s func-
tion G which depends on the entire product of slice matrices.

Updating the Green’s function

Upon changing one of the auxiliary spins, the Green’s function G = (1+B(τ))−1 has to
be updated, since it depends on the product of slice matrices B which changes with each
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update. Instead of recalculatingB and G from scratch, the Shermann-Morrison-Woodbury
formula can be used to express the change in G as:

G′ =
(
1+B′(τ)

)−1

=
(

1+B(τ)B−1B′)−1

=
(

1+(G−1−1)B−1B′)−1

=
(

1+(1−G)(B−1B′−1)
)−1

G

= (1+(1−G)∆)−1 G

=
(
1+uvT)−1

G

=
(

1+u
(
1+vTu

)−1
vT
)

G (2.16)

Again, the concrete form of the row and column matrices u and vT depends on the choice
of Hubbard-Stratonovich transformation.

2.1.2. Projective formulation
For the projective formulation, it is not immediately obvious how the sampling procedure
should be carried out. The objective is to evaluate observables A using the projected trial
wave function:

〈ψT |e−θHAe−θH |ψT 〉
〈ψT |e−θHe−θH |ψT 〉

=∑
{si}

det
(
P†Bl(2θ ,τ)Br(τ,0)P

)

∑{si} det(P†Bl(2θ ,τ)Br(τ,0)P)
· 〈ψT |e−θHAe−θH |ψT 〉
〈ψT |e−θHe−θH |ψT 〉

=∑
{si}

Ps〈A〉s . (2.17)

In going from the first to the second line, the summation over auxiliary fields in the nu-
merator and denominator was written out explicitly (B depends on it) and the fraction was
expanded by another overlap of the function evaluated for the same auxiliary field config-
uration as the numerator. Note that each projected wave function, the bra 〈ψ| and the ket
|ψ〉, contribute one projection of magnitude θ , and therefore each come with their own
product of slice matrices. Writing the expectation value of an arbitrary operator in this
way allows separating the measurement of said operator from the statistical weight factor
and thus provides a prescription for the Monte Carlo procedure which samples auxiliary
field configurations based on the strength of the overlap between the two projected wave
functions.

Sampling auxiliary field configurations

Starting from the ratio of two determinants with matrices B that differ in their auxiliary
field configuration on time slice τ (which belongs to the bra), the weight ratio r can be
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written as

r =
det
(
P†B′l(2θ ,τ)Br(τ,0)P

)

det(P†Bl(2θ ,τ)Br(τ,0)P)

=
det
(
P†Bl(2θ ,τ)(1+∆)Br(τ,0)P

)

det(P†Bl(2θ ,τ)Br(τ,0)P)

= det
(
Ψl (1+∆)Ψr (ΨlΨr)

−1
)

= det
(

1+∆Ψr (ΨlΨr)
−1Ψl

)

= det(1+∆(1−G))

= det(1+(1−G)∆) , (2.18)

which turns out to be exactly the same expression as in the finite temperature case, except
that the equal time Green’s function is defined differently in the context of the ground
state algorithm:

G = 1−Ψr (ΨlΨr)
−1Ψl . (2.19)

A proof of this statement can also be found in the appendix.

Updating the Green’s function

Although the Green’s function is computed from completely different formulas in the
finite temperature and the projective variant, the resulting equation will turn out to be the
same which is very convenient for actual simulations. The derivation the ground state
case goes as follows:

G′ = 1−Ψ′r
(
ΨlΨ

′
r
)−1

Ψl

= 1− (1+∆)Ψr (Ψl(1+∆)Ψr)
−1Ψl

= 1− (1+∆)Ψr (ΨlΨr +Ψl∆Ψr)
−1Ψl

= 1− (1+∆)Ψr

[
(ΨlΨr)

−1− (ΨlΨr)
−1u

(
1+vT (ΨlΨr)

−1u
)−1

vT (ΨlΨr)
−1
]
Ψl

=G−G
(

1+vT (ΨlΨr)
−1u

)−1
∆(1−G)

(2.20)

The calculation also uses the Sherman-Morrison-Woodbury formula to transform the ex-
pression in line three. Again, the precise form of the matrices u and vT depends on the
specific Hubbard-Stratonovich transformation employed.

2.2. The Hubbard-Stratonovich transformation
The preceding section showed that the Hubbard-Stratonovich transformation is an integral
part of the determinant quantum Monte Carlo method, allowing to replace the exponential
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2. Determinant Quantum Monte Carlo

of a squared operator A by an integral over the exponential of the operator coupled to a
newly introduced auxiliary field and the exponential of the square of the field variable:

e
1
2 A2

=
∫

ds e−sAe−
1
2 s2

. (2.21)

In the context of DQMC calculations, A typically corresponds to the quartic interaction
operator V that couples, for example, spins of opposite flavor on the same site for the
case of the spinful Hubbard model or electrons on neighboring sites as is the case for the
spinless t−V model. In both cases, one particular term of the interaction between two
particles takes the form

Vαβ =

(
nα −

1
2

)(
nβ −

1
2

)
(2.22)

where the index represents either a spin index in the spinful case or a site index in the
spinless case, respectively. In DQMC calculations, such a term appears in the exponential
as

e−
1
2 ∆τ(nα− 1

2)(nβ− 1
2) , (2.23)

which is not in the quadratic form required to apply the transformation (2.21). In practice,
one completes the square in one of the following ways:

nαnβ =−1
2
(nα −nβ )

2 +
1
2
(nα +nβ ) (2.24)

nαnβ =
1
2
(nα +nβ )

2− 1
2
(nα +nβ ) . (2.25)

Named after the quantity that the squared term represents, these two possibilities are said
to decouple in the magnetic and charge channel, respectively.

Applying the Hubbard-Stratonovich transformation (2.21) to the quadratic part yields

exp
[

1
2

∆τU(nα ±nβ )
2
]
=C

∫
ds exp

[
−s
√
±∆τU(nα ±nβ )

]
exp
(
−1

2
s2
)
. (2.26)

It turns out that the continuous, auxiliary variable s can be replaced by a discrete vari-
able [21], simplifying the simulation. For the repulsive Hubbard model (U < 0) of spinful
fermions one then proceeds as follows: Choosing the magnetic channel to decouple using
(2.24), yields

V =−1
2

∆τU(n↑−n↓)2 +U
1
4
, (2.27)

and thus A = ∆τU(n↑− n↓)2. To find a discretized version of the Hubbard-Stratonovich
transformation, one uses the ansatz

exp(−∆τV ) =C ∑
s=±1

exp
[
αs(n↑−n↓)

]
, (2.28)

where the constants C and α have to be determined such that the equation becomes a true
identity. This is done by evaluating the original operator n↑n↓ = n↑⊗n↓ on its four-state
Hilbert space

H= {|00〉 , |01〉 , |10〉 , |11〉} , (2.29)

which results in the expectation values listed in table 2.1. The parameters C and α are
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state e−∆τV C ∑
s=±1

eαs(n↑−n↓)

|00〉 exp(−∆τU/4) 2C
|01〉 exp(∆τU/4) 2C coshα

|10〉 exp(∆τU/4) 2C coshα

|11〉 exp(−∆τU/4) 2C

Table 2.1.: Determining the prefactor and the coupling constant of the Hubbard-Stratonovich transforma-
tion.

thus given by

C =
1
2

e−∆τU/4 and coshα = e∆τU/2 (2.30)

Using (2.33), the product B−1(t)B ′(t) which is relevant for determining the matrix ∆
becomes

B−1(t)B ′(t) = e∆τVe∆τKe−∆τKe−∆τV ′ = e∆τ(V−V ′) , (2.31)

and thus, the matrix e∆τ(V−V ′)−1 is non-zero only on the site index, k, of the auxiliary
spin s: (

e∆τ(V−V ′)−1
)

i, j
= eα(s−s ′)

δ i, j δ i,k . (2.32)

In this case, the ratio of determinants in (2.15) boils down to one number that can easily
be read off from the Green’s matrix.

Alternatively, (2.25) can be used to decouple in the charge channel. Proceeding with the
same ansatz as before gives

exp(−∆τV ) =C ∑
s=±1

exp
[
iαs(nα +nβ −1)

]
, (2.33)

where the constants are now determined by

C =
1
2

e∆τU/4 and cosα = e∆τU/2 . (2.34)

This decoupling scheme has the advantage of not breaking SU(2) symmetry, which was
shown to lead to shorter autocorrelation and thus short simulation times despite the fact
that one now has to deal with complex numbers because α is complex [22].

The Hubbard-Stratonovich transformations presented so far are exact transformations of
the quartic term. Since the algorithm itself suffers from a Trotter error, it is also permis-
sible to approximate the exponential’s Taylor expansion as long as the additional error is
of equal or smaller magnitude than the Trotter error. Technically, transformations of this
type are not Hubbard-Stratonovich transformations anymore because they are not exact.
They do, however, also introduce additional degrees of freedom that couple linearly to the
desired operator and thus look and work just like an actual transformation would. One
example of such an approximate transformation is the following one that preserves SU(N)
symmetry which can be used to simulate Hubbard models of SU(N) fermions:

e∆τλA2
= ∑

s=±1,±2
γ(s)e

√
∆τλη(s)A +O(∆τ

4) (2.35)
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Note that there are now two fields γ and η , which take values

γ(±1) = 1+
√

6/3, γ(±2) = 1−
√

6/3 (2.36)

η(±1) =±
√

2
(

3−
√

6
)
, η(±2) =±

√
2
(

3+
√

6
)

(2.37)

This more general scheme is not only used for the Hubbard model but also in a model
that features a transition from an antiferromagnet to a superconducting state [23]. The
validity of this approach can be verified by expanding both sides of (2.35) which agree up
to O(∆τ4).

These are the most common versions of Hubbard-Stratonovich transformations used for
Hubbard models. Although they all transform the same problem, each results in very
different simulations. Which transformation is best suited depends on the problem at
hand: On an algorithmic level, they may differ in autocorrelation times [22], data type
required, i.e. real or complex double, and they also play a major role in the stability of
the algorithm, in particular when calculating entanglement entropies, which is discussed
in chapter 5.

2.3. Numerical implementation
Any practical implementation of the DQMC algorithm faces the problem that calculating
the product of slice matrices is numerically unstable and produces an ill-conditioned ma-
trix [24]. This section describes how to circumvent this problem and how the resulting
product can be used to calculate the Monte Carlo weight and the Green’s function after
all.

Stabilizing the product of slicematrices

The key idea for stabilization is to perform only a certain number of direct multiplica-
tions m followed by either a rank revealing QR or a singular value decomposition (SVD).
This number m is typically chosen small enough such that the product of m matrices re-
mains exact up to machine precision. The decomposition recasts a given matrix M into a
product M =UDT , where U is typically unitary, D is a diagonal matrix that contains the
information about the inherent scales of the matrix (e.g. in the form of its singular value
spectrum), and T is either unitary (SVD) or triangular (QR decomposition). Independent
of the specific decomposition algorithm, the values of the diagonal matrix D will be called
singular values.

Applying this to the matrix product (2.9), the imaginary time interval is divided into Nm
groups of m time slices representing a segment of length ∆ = m · τ in imaginary time.
After the multiplication and subsequent decomposition of the first m matrices yielding
U1D1T1, the next set of matrices is then multiplied onto U1, before D1 is multiplied from
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Figure 2.1.: Illustrating the inherent instability of a product of many random matrices with entries in the
range of [0,1]. At each step, a singular value decomposition is performed and the log of the resulting
singular values are plotted in red. At every tenth step, a stabilization step is performed which yield the
stabilized singular values, plotted in blue.

the right and the resulting product is decomposed again, i.e.
((

2m

∏
i=m+1

B(i) ·U1

)
D1

)
T1 =U2D2(T T1) =U2D2T2 . (2.38)

This procedure is repeated until all slice matrices are incorporated into the UDT decom-
position. Note that all the intermediate results will be used at a later point so they are
stored in memory. This set of matrices, {{Ui},{Di},{Ti}}, will be referred to as the
stack. The effect of this procedure can be easily illustrated by comparing a long prod-
uct of random matrices multiplied in a simple manner one after the other to the same
product where a stabilization step has been performed at certain intervals. The result of
this experiment is shown in Fig. 2.1. As is known from the numerical details of the un-
derlying decomposition algorithms, the range of singular values is limited by the largest
singular value and the machine precision of the data type. Therefore, the spread of the
singular values of the simple product becomes larger as long as the singular values remain
in the range defined by the machine precision. Multiplying more matrices theoretically
increases this spread but the decomposition procedure is incapable of resolving the lower
lying eigenvalues correctly and, due to how the algorithm is set up, they increase along
with the largest eigenvalue. In contrast, when working with a stabilized product, the lower
lying eigenvalues are resolved correctly even when the condition number becomes very
large.

Calculation of theweight and the Green’s matrix

The weight and the Green’s matrix are calculated from the slice matrix product and thus
their precision is limited by the stability of slice matrix product. To achieve optimal
precision, one thus has to make use of the decomposed slice matrix product, which means
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that the determinant is given as

det(1+B(τ)) = det(1+UDT ) , (2.39)

and the equal-time Green’s function as

G(τ) = (1+B(τ))−1 = (1+UDT )−1 . (2.40)

The addition of the identity matrix, although seemingly simple, requires careful attention
to ensure an accurate calculation of the determinant and the Green’s function. This prob-
lem is solved by separating the diagonal matrix D from the auxiliary matrices U and T
before the resulting matrix is decomposed yet again:

(1+UDT ) =U
(
U−1T−1 +D

)
T =

(
UU ′

)
D ′
(
T ′T

)
. (2.41)

The weight, i.e. the determinant, can then easily be read off as the product of the diagonal
entries of D ′. It should be noted that in practice one would calculate the logarithm of the
determinant, a common procedure to avoid numerical overflow and rounding errors.

An efficient updating procedure

The Green’s matrix at a given imaginary time τ is a crucial component of the updating
procedure of the auxiliary field at time slice τ , which means that it is important to have
access to the Green’s function at each time slice. One option would be to recalculate
the Green’s function from scratch at every time slice which would be numerically very
expensive. Instead, one may propagate the Green’s function along imaginary time by
virtue of

G(τ +1) = B(τ)G(τ)B−1(τ) . (2.42)

This equation suggests that it would suffice to calculate the Green’s function only once,
e.g. at τ = 1, and then continue propagating the Green’s function along imaginary time
updating the appropriate auxiliary field degrees of freedom. However, the propagation
suffers from the same problem as the build-up of the matrix product (2.9) itself – it is
stable only for a few steps. Just like before, one can assume a number of stable prop-
agation steps Nprop that is equal to the number of safe multiplications of slice matrices
m. In general, this number can be determined by considering the difference between the
propagated Green’s function and the recalculated one after m propagations have taken
place. One possible metric by which to measure the stability is the element-wise relative
deviation

δi j = 2 ·

∣∣∣Grecalculated
i j −Gpropagated

i j

∣∣∣
∣∣∣Grecalculated

i j +Gpropagated
i j

∣∣∣
, (2.43)

between the two Green’s matrices. It should be small enough such that the update prob-
abilities and measurements which use the entries of the Green’s matrix are not seriously
affected. Therefore, one typically focuses on comparing only those matrix elements that
are used in the updating and measurement procedure.
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B(Nm�, (Nm � 1)�)
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Figure 2.2.: Flow diagram of the DQMC algorithm. Shaded in grey is the initial build-up of the stack of
decomposed matrix products. This is used to calculate the Green’s function which is subsequently updated
and propagated in imaginary time before updating the stack and recalculating the Green’s function from
the stack to ensure stability. The slice product B(∆,1) shaded in blue has to be recalculated from scratch
because it contains auxiliary field values that were updated in the Monte Carlo procedure. Subsequent
slice products will the respective preceding U matrix as a starting point for the recalculation. Figure first
appeared in [25].

Making use of the stack

For those imaginary time slices where the Green’s function has to be recalculated from
scratch, one can greatly facilitate its calculation by making use of the matrix products
saved in the stack. After building up the stack in an initial procedure, the last entry con-
tains the decomposed product over all slice matrices, the previous entry has all matrices
but the last m slices and so forth. Updates starting at the last slice, i.e. down from the
"top" of the stack. After m updates have been performed, the Green’s function has to be
recalculated at the same time slice. The stack already contains the decomposed product
of all matrices from τ = 1 up until the current time slice, called ULDLTL. Thus, only the
decomposed product for the sequence starting at the current time slice up until τ = β , de-
noted by URDRTR, is needed. The entire slice product is then given as ULDLTL URDRTR,
but it is not necessary to actually carry out the recombination. The product of left and
right decomposition can be directly used in equations (2.39) and (2.40) by making slight
changes to (2.41).

A summary and overview of the DQMC algorithm are presented in Fig. 2.2.
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3. Stochastic Series Expansion
Stochastic Series expansion (SSE) [26, 27] is a highly efficient Monte Carlo flavor mainly
used for the simulation of bosonic quantum mechanical systems. It can be formulated
in both a finite temperature and a ground state setting, which work almost identically.
This chapter aims to convey the basics of the finite temperature formulation which was
employed to collect some of the data presented in the later chapters. Similarly structured
as the preceding chapter 2, this chapter first introduces the basic idea of the SSE algorithm
and then proceeds to describe update and measurement schemes.

3.1. Formulation of theMonte Carlo procedure
The key idea of SSE is to rewrite the partition sum in its power series representation

Z = Tr exp(−βH) = ∑
|ψ〉
〈ψ|

∞

∑
n=0

β n

n!
(−H)n |ψ〉 . (3.1)

This approach is based on Handscomb’s method [28] but it had to reformulated to be
successfully applied to a variety of models [29, 30, 31, 32, 33]. For each power in the
expanded series, a resolution of unity |φi〉〈φi| is inserted to give

Z = ∑
|ψ〉

∞

∑
n=0

β n

n!
〈ψ|(−H)|φ1〉〈φ1|(−H)|φ2〉〈φ2| . . . |φn−1〉〈φn−1|(−H) |ψ〉 . (3.2)

Evaluating all of the expectation values for all combinations is impossible which moti-
vates the use of Monte Carlo to sample the terms that contribute most to the partition
sum. Each Hamiltonian operator is then broken up into smaller units, most often into
bond operators. In some cases, larger clusters are possible and sometimes advantageous
or even necessary to use [34, 35]. In any case, the Hamiltonian is then written as

H =−∑
t

∑
l

Ht,u . (3.3)

Each term is indexed by its operator type t, e.g. a diagonal Sz interaction or an off-
diagonal spin exchange, and by the index of the lattice unit u, e.g. the number of the
bond this operator acts on. To shorten the long multiplication that results when (3.3) is
inserted into (3.2), the many different combinations of operators are encoded in a new
object called operator sequence, denoted by Sn. This allows writing the partition function
in the following concise way:

Z = ∑
|ψ〉

∞

∑
n=0

∑
Sn

β n

n!

n

∏
i=1
〈φi−1|Hti,ui |φi〉 . (3.4)
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3. Stochastic Series Expansion

In this expression, the identification |ψ〉 ≡ |φ0〉 ≡ |φn〉 has been made in favor of a clearer
notation. Although there is a sum over all expansion orders n ∈ [0,∞], it turns out that
in practice there is an effective maximum expansion order M that suffices to capture all
relevant sequence lengths. Its precise value is determined dynamically in the course of
the simulation. In contrast to DQMC and other worldline techniques, there is, therefore,
no additional approximation error other than the statistical error from the Monte Carlo
sampling. Any sequence of shorter length n < M can be artificially enlarged to one of
size M by considering all possible arrangements of n operators on M places and filling
the remaining slots with identity operators. When writing the operator sequence in such
a way, the contribution of any shorter sequences their contribution to the final expression
has to be corrected by a factor (M−n)!/M! to avoid overcounting:

Z = ∑
|ψ〉

∑
SM

(M−n)!
M!

β n

n!

M

∏
i=1
〈φi−1|Hti,ui |φi〉 (3.5)

Note that β still comes with a power n because it depends on how many non-trivial ele-
ments are contained in the extended operator sequence.

3.2. Sampling operator sequences
Moving along the Markov chain and proposing new operator sequences follows a set
of well defined, general rules which are nevertheless easiest to illustrate on a concrete
example. For this purpose, the anisotropic Heisenberg model in a magnetic field is used
which will reappear in chapter 6. Its Hamiltonian is

H =−∑
〈i, j〉

(
S+i S−j +S−i S+j

)
+∆ ∑

〈i, j〉
Sz

i S
z
j +h∑

i
Sz

i , (3.6)

and the simulation is carried out in the Sz basis. The first term is a sum of off-diagonal
operators responsible for exchanging spins of opposite orientation. The second term is
diagonal in the simulation basis and simply measures the relative orientation of two spins,
while the third one compares the orientation of each individual spin to the direction of
the magnetic field. Following the rules for the formulation of the partition sum laid out
previously, each of the sums in the Hamiltonian is rewritten in terms of bond operators. In
fact, the first and the second term are already of the correct form, but the coupling to the
magnetic field requires a little work. To make it compatible with the bond formulation, its
contribution is distributed over the adjacent bonds of each site giving rise to a magnetic
field hB = h/4. Ultimately, there are thus only two possible types of operators, which are
the diagonal operator

Hdiag = ∆Sz
i S

z
j +hB(Sz

i +Sz
j) , (3.7)

and the off-diagonal operator

Hexchange =−
(

S+i S−j +S−i S+j
)
. (3.8)
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3. Stochastic Series Expansion

Figure 3.1.: Visualization of the propaga-
tion of degrees of freedom along operator
time as worldlines. worldlines can switch
places by virtue of off-diagonal operators.
Because of the periodic boundary condi-
tions imposed on the lattice, they can wrap
around the simulation cell. In addition, the
trace in the partition sum enforces periodic
boundary conditions in operator time.

These operators allow for three different non-trivial expectation values (and their respec-
tive versions with all spins flipped):

Hfe,↑ = 〈↑↑|Hdiag |↑↑〉= ∆/4+hB/2 (3.9)
Hfe,↓ = 〈↓↓|Hdiag |↓↓〉= ∆/4−hB/2 (3.10)

Haf = 〈↑↓|Hdiag |↑↓〉=−∆/4 (3.11)
Hod = 〈↓↑|Hexchange |↑↓〉=−1 (3.12)

Because these four expectation values enter with different prefactors, there is a trivial sign
problem which can be solved easily by subtracting a constant ∆/4+ hB/2+ ε from the
Hamiltonian which leads to the final set of weights

Hfe,↑ = 〈↑↑|Hdiag |↑↑〉=−ε (3.13)
Hfe,↓ = 〈↓↓|Hdiag |↓↓〉=−hB/2− ε (3.14)

Haf = 〈↑↓|Hdiag |↑↓〉=−∆/2−hB/2− ε (3.15)
Hod = 〈↓↑|Hexchange |↑↓〉=−1 (3.16)

The resulting simulation can be visualized as taking place in a two-dimensional plane
where one dimension represents the flattened spatial dimension of the lattice and the other
one represents the operator time. At each time slice, the current state is visualized in some
way, for example by marking sites occupied by a spin up by a black dot and leaving sites
occupied by a spin down empty. Along the operator time direction, the dots are then
connected to form so-called worldlines. Operators live between time slices and, for the
operators in this model, each has two entry legs and two exit legs. The trace in the partition
sum enforces the constraint that the spin state is the same on the bottom as it is on the top,
meaning that wherever a solid line starts on the bottom there has to be one with the same
spin state ending at the top.

Devising a valid update algorithm for moving from operator sequence to operator se-
quence requires thinking about how to ensure detailed balance and ergodicity, see chap-
ter 1. Historically, this problem was solved in three steps: At first, only local updates
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3. Stochastic Series Expansion

were used [26]. They are easy to construct such that detailed balance is respected, but
the ergodicity can often not be ensured. Especially moving between sectors of different
values of global quantities like winding numbers is often very difficult or even impossi-
ble with only local updates. Non-local, so-called loop updates [9, 30, 27] and their more
sophisticated version called directed loops [36, 37, 38] are often capable of efficiently
solving the problem of ergodicity. In this work, a simple loop update was sufficient to
obtain the desired results. For details about the directed loop algorithm, the interested
reader is referred to the respective literature.

One sweep using the loop algorithm generally consists of two steps: one diagonal update
step where diagonal operators are inserted and removed along the entire operator time
dimension, and an off-diagonal update step where a loop is built that changes operator
types from diagonal to off-diagonal and vice versa.

Diagonal update

Any diagonal operator can be inserted or removed at any time with a certain probability.
In the diagonal update, this is probed systematically by iterating over all operator time
slices from bottom to top. If there is no operator present, a pair of a random bond and
a random diagonal operator type is chosen based on their cumulative probability. If the
worldline configuration on the selected bond matches the requirements of the chosen op-
erator type, its insertion will be probed using the Metropolis criterion. The required ratio r
of weights is the ratio of the weight of the operator sequence before and after inserting the
proposed operator. Note that an off-diagonal operator cannot be inserted like this because
it requires two worldlines to trade places which is not allowed without an off-diagonal
operator present in the first place. This problem will be solved by the off-diagonal loop
update. In this model, the selection of bond and operator can be split into two separate
operations because the coupling is isotropic. Thus, one first selects one of the 2 ·L2 bonds
at random and then proceeds to choose between an antiferromagnetic or ferromagnetic
operator by comparing a random number to

ε

∆/2+hB/2+2ε
or

∆/2+hB/2+ ε

∆/2+hB/2+2ε
. (3.17)

The numerator is the matrix element of the respective operator calculated earlier in this
chapter and the denominator is the sum of all possible operator types.

Off-diagonal loop update

The off-diagonal update is capable of introducing off-diagonal operators into the oper-
ator string while respecting the periodic boundary conditions in operator time. This is
accomplished by randomly an operator and one of its legs at random and then flipping
the associated spin, creating a defect in the worldline. This defect, also called loop head,
is propagated through the space-time lattice by choosing one of the operator’s legs as its
exit and jumping to the next connected leg until the starting point is reached again and
the loop is closed. Which exit leg is chosen depends on the model, the type of opera-
tor, the incoming leg and some parameters of the loop algorithm all of which can greatly
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Figure 3.2.: The loop head arrives at a ferromagnetic operator and has four possible exits: It can bounce
and exit the same leg it entered, leaving the operator type unchanged. By going straight through and exiting
on leg 2, the operator is changed to a diagonal, antiferromagnetic operator. Exiting on leg 3 is forbidden in
this case because the spin states on the bottom (before) and the top (after) have zero overlap for any of the
possible operators. Lastly, the operator is replaced by an off-diagonal operator when the loop head exits on
leg 4.

influence the efficiency of the Monte Carlo simulation. For the simplest loop algorithm,
the rules are derived as follows: Figure 3.2 shows the situation where a loop head arrives
at an off-diagonal operator. Out of the four possible exit legs, only three have non-zero
weight because they leave the spins in a valid position. If the loop were to exit at leg 3,
flipping the worldline segments connected to leg 1 (the entrance) and 3 (the exit) would
result in a state that has zero overlap with the model Hamiltonian (3.6). The choice is
between the remaining legs, i.e. exiting leg 1 and thus bouncing, exiting leg 2 and turning
the operator into an antiferromagnetic operator or taking exit leg 4 which would turn the
operator into a ferromagnetic operator. A random number is drawn and compared to the
cumulative probability defined by

Hfe

Hfe +Haf +Hod
,

Hfe +Haf

Hfe +Haf +Hod
,

Hfe +Haf +Hod

Hfe +Haf +Hod
. (3.18)

The exit rules for the other types of operators are derived in exactly the same fashion.

For completeness, two properties of loops should be discussed. One is that this particu-
lar loop formulation is non-deterministic which simply means that the exit leg is chosen
at random for each operator encountered. Only very special cases such as the isotropic
Heisenberg model allow the construction of deterministic loops which offer particularly
efficient updates. In that case, the bounce and the ferromagnetic operator can be elimi-
nated completely leaving only two types of operators, the antiferromagnetic and the off-
diagonal one, which are converted into one another whenever a loop head arrives at a
given operator. The second property is that the loop does not branch, which simply means
that there is only one active loop head at any given time. However, branching loops with
multiple active heads are possible and, in fact, do occur for another seemingly simple
model, the transverse field Ising model [30].

What makes the directed loop algorithm [36, 37, 38] stand out in comparison to the one
described above is that it does not view each leg and each entrance direction as being
equal but instead assigns possibly different exit probabilities depending on the entrance
leg, operator type and exit leg. There are many different choices which all fulfill detailed
balance but may lead to drastically different autocorrelation times. The optimal set of
probabilities is the one that minimizes the autocorrelation time as well as the time needed
to build a loop.
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3. Stochastic Series Expansion

3.3. Measurements
In general, expressions for measurements have to be carefully derived from the expression

〈A〉=
∑
|ψ〉

∑
SM

〈A〉Wψ,SM

∑
|ψ〉

∑
SM

Wψ,SM

. (3.19)

There are some measurements which are particularly easy to make. One of the most
fundamental quantities in quantum Monte Carlo simulations is the energy E = 〈H〉 whose
expression is based on (3.5):

〈H〉= 1
Z

∞

∑
n=0

(−β )n

n! ∑
{φ}n

〈ψ|H |φ1〉 . . .〈φn−1|H |ψ〉

=
1
Z

∞

∑
n=1

(−β )n

n! ∑
{φ}n

〈ψ|H |φ1〉 . . .〈φn−1|H |ψ〉

=−〈n〉
β

. (3.20)

In going from the first to the second line, one of the expectation values in the product
is used to represent the measurement process. The first sum over all expansion orders
in the second line can safely be extended to start from n = 0 because that term does not
contribute at all. The result shows that the energy is directly proportional to the expansion
order of the model. The same expression is true for all terms that make up the Hamilto-
nian, i.e. if the Hamiltonian can be written as a sum of i terms Hi, then the expectation
value is proportional to the average number of occurrences of this operator in the op-
erator sequence. Another type of operator that can be measured with relative ease are
those that are diagonal in the basis used in the simulation. They can be measured on each
operator time slice and then averaged over the entire operator time direction. Winding
numbers for each worldline are calculated by starting at the bottom and, for each spatial
dimension, counting how off-diagonal operators are encountered that move the worldline
to a neighboring site. Of course, one has to define a positive and a negative direction for
each dimension. Dividing this number by the linear size of the system gives the winding
number which is used in the calculation of the helicity modulus or for machine learning
purposes as will be detailed later. Measuring off-diagonal operators is more involved and
requires more work. The interested reader is referred to [39] for more information.
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4. The sign problem
The power of Monte Carlo methods for evaluating highly dimensional integrals such as
the partition sum lies in the fact that the error of the desired quantity decreases with the
square root of Monte Carlo steps regardless of the dimensionality of the underlying in-
tegral, see (1.11). Another interpretation, in the spirit of its applications in physics, is
to say that Monte Carlo methods allow to explore the relevant parts of the exponentially
fast growing Hilbert in polynomial time. Unlike the absolute error, the relative error,
i.e. the ratio of the square root of the variance and the mean value, can show dramati-
cally different scaling behavior with the number of Monte Carlo steps which happens for
models that suffer from the so-called sign problem [40]. A model with sign problem has
statistical weights that are both positive and negative numbers preventing the straightfor-
ward application of Monte Carlo techniques because the weights cannot be interpreted
as probabilities by simple normalization. This chapter first shows the detrimental effects
the sign problem can have on the statistical error of Monte Carlo measurements and then
finishes with a discussion of the various approaches to solving and circumventing the sign
problem.

4.1. Monte Carlo calculations with sign problem
It is in principle known how to deal with Monte Carlo calculations of models with sign
problem: The goal is always to evaluate the expectation value of some observable O
along the Markov chain. To be able to propose new states for the Markov Chain, the pref-
actor of the weight is transferred to the observable, creating an auxiliary ensemble for the
configuration space where all weights are the absolute values of the original weights [41]:

〈O〉= ∑O(C)w(C)
∑w(C) =

∑O(C)σ(C)|w(C)|
∑σ(C)|w(C)| =

〈O ·σ〉abs
〈σ〉abs

. (4.1)

The subscript “abs” denotes that the averaging process takes place in the auxiliary ensem-
ble. The true expectation value of the observable 〈O〉 is thus reconstructed as the ratio
between the expectation value 〈. . .〉abs in the modified ensemble with absolute statistical
weights |w(C)| and the expectation value of the sign of the weight, which has now taken
on the role of an observable.

While this procedure is theoretically well-defined for any situation, it is often of little use
in practical simulations. The reason being that in general, the expectation value of the
sign 〈σ〉abs decreases exponentially [42] with the number of particles N, i.e. the system
size, and inverse temperature β :

〈σ〉abs = exp(−β N ∆ f ) . (4.2)
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Figure 4.1.: Illustration of the origin of the sign problem for a triangular plaquette of spins where each
exchange contributes one sign change along with its weight.

The additional factor ∆ f = ffermion− fabs is the difference in the free energy densities of
the original fermionic system and the one with absolute weights. Exponentially small
quantities with large variance (the sign takes values of ±1) are very difficult to measure.
The relative error of the sign can be estimated to be

∆σ

〈σ〉 ∝
exp(β N ∆ f )√

M
, (4.3)

which shows that for the relative error to become small enough to make any meaningful
statement, the number of sweeps M has to be of the order of the exponential is system
size and inverse temperature. For most physical systems of interest, it is unfeasible to be
able to realize this number of sweeps for any but the smallest system sizes and / or higher
temperatures.

4.2. The physical origin of the sign problem
The origin of the sign problem can be traced back to the exchange statistics of fermions
which causes a sign change every time two fermions are exchanged. This is very obvious
in worldline simulations of fermions but can also be shown to be the underlying cause
for bosons on frustrated lattices simulated within worldline techniques [40] and even for
Monte Carlo methods based on auxiliary fields [43]. As an example, consider a triangular
plaquette of spins that interact via an antiferromagnetic interaction, see Fig. 4.1. In the
worldline picture, the spins propagate through imaginary time and may change places.
Each of these exchanges is entailed by a change of sign of the weight. On bipartite lat-
tices, the number of exchanges is constrained to by the periodic boundary conditions in
imaginary time to be an even integer, whereas on frustrated lattices like the triangular lat-
tice this constraint is lifted. As illustrated in the figure, the periodic boundary conditions
in imaginary time can be respected by worldline configurations with either an odd number
of exchanges, or, if for example an exchange is undone right away, by worldlines with an
even number of exchanges.

Interestingly, this means that simulations of fermions and hardcore bosons are identical
up to the presence or absence of a sign change when two word-lines trade places. Here,
the fermion sign problem appears even on bipartite lattices because it is truly caused
by the exchange statistics of the fermions which requires to calculate the sign of the
permutation of the fermion state along operator time in order to distinguish bosons from
fermions. Similarly, antiferromagnetic spin systems are simulated by the same rules as
ferromagnetic ones and differ only by the fact that a sign change has to be introduced for
spin exchanges. Despite giving a good first impression on the origin of the fermion sign
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problem, this view is only strictly true for worldline approaches as will be discussed in
later chapters.

4.3. Circumventing the sign problem
Experience shows that many of the systems believed to exhibit some very intriguing phe-
nomena suffer from the sign problem, most prominently fermionic systems on frustrated
lattices. One thus has to wonder whether there is some way to circumvent the conse-
quences of the sign problem.

Ignoring the sign problem

The most attractive “solution” would be to ignore the sign problem altogether, i.e. sample
in the auxiliary ensemble but not take the signs into account. However, there is no justi-
fication for believing that evaluating observables while ignoring the sign problem should
yield valid results. This is due to the fact that the physical information is contained not
in the first but in the very last digits of the observables: Considering again (4.1), one can
rewrite that equation as

〈O〉= M
〈O〉+−〈O〉−

M+−M−
, (4.4)

where M± denotes the number of states visited during the Markov procedure with positive
and negative prefactor, respectively. It was shown previously that the expectation value
of the sign decreases exponentially fast, which implies that the number of configurations
with a negative prefactor approaches that with a positive prefactor. Because the expecta-
tion value of the operator remains finite on finite lattices, it has to show a similar scaling
behavior, which means in particular that the difference of the expectation values in the
two respective ensembles also decreases exponentially fast to ensure convergence. Ulti-
mately, the expectation values only differ further and further to the right of the decimal
point, which is where the physical information is contained. Therefore, there is no reason
to believe that the sign can simply be ignored and that the same information can be read
off from the first few digits. This was also famously illustrated in an early study on the
sign problem [42], where the superconducting properties of the doped Hubbard model
were studied. An adapted plot of the superconducting susceptibility versus the tempera-
ture is shown in Fig. 4.2. It illustrates clearly that simply ignoring the sign will lead to
wrong results for correlation functions.

Getting rid of the sign problem

If the sign problem cannot be ignored, the next best possibility of dealing with it is to find
a way of getting rid of it. In fact, this is always possible because the sign problem depends
on the simulation basis. In the energy eigenbasis, there is no sign problem because the
basis states are also eigenstates of the Hamiltonian. However, switching to this basis re-
quires the diagonalization of the full Hamiltonian which in itself is exponentially difficult
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Figure 4.2.: The detrimental effect of ig-
noring the sign problem is illustrated by
comparing the measurement of the super-
conducting susceptibility in a doped Hub-
bard model with repulsive interaction on a
small 4x4 square lattice with and without
including the sign problem. Figure adapted
from [42]

and would make the use of Monte Carlo methods obsolete anyway. There are other bases
which do not have a sign problem, but they are rare and their construction appears simple
only in hindsight [44, 45, 46, 47]. It is possible to explain why certain Monte Carlo fla-
vors can simulate certain models without suffering from the sign problem with the help
of group theory [48] but currently, this serves mostly as an a posteriori explanation rather
than as a helpful tool to construct interesting Hamiltonians. Note that even when a basis
without sign problem can be found, the simulation may still take exponentially long to
deliver converging results because the sign problem is at worst an NP-hard problem [40].

Alternative perspectives

Another option that lies somewhere in between the two extremes of ignoring the sign
problem and finding a sign problem free basis is to study effective models or designer
Hamiltonians that exhibit the desired characteristics of the full model while being sign
problem free. This approach has been used to study antiferromagnetism in metals [49], the
properties of certain types of phase transitions [50] and many other models with properties
of interest [51, 52]. This is a new perspective on the sign problem offering an interesting
route towards studying a host of new models. However, there are still open problems that
appear to be out of reach, as for example studying a system of fermions with emergent
topological properties that are not explicitly built-in to a sign problem free Hamiltonian.
These examples show that viewing the sign problem from a different perspective can be a
very fruitful endeavor that supplements the exact approach.

This thesis provides two additional, novel perspectives on the sign problem that shed new
light on the inner workings of the sign problem: Chapter 5 discusses the sign problem
from the entanglement perspective while chapter 6 uses machine learning as its reference
point.
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5. Entanglement
Entanglement is one of the most intriguing phenomena that separates the classical world
from the realm of quantum physics. Through entanglement, quantum mechanical objects
like photons, electrons, or spins can be interwoven into a collective state that can no longer
be described as a simple product state of single-particle wave functions, and is thus said
to be entangled [53].

In this chapter a novel method to quantify the entanglement in many-fermion systems is
developed which allows extracting physical properties that remain hidden to conventional,
correlator based measurements. The method brings about new numerical difficulties and
it is shown how to solve them. Following some benchmark results, the connection to the
sign problem described in the preceding chapter is explored. The key results have been
published in [54, 55, 25] from which this chapter was compiled.

5.1. Entanglement and its use in condensedmatter
The concept of entanglement is typically associated with the physics of only a handful of
quantum mechanical degrees of freedom as described in the seminal papers of Einstein,
Podolsky and Rosen [53] and Bell [56]. Their work challenged the very existence of
entanglement in quantum mechanics and paved the way for devising experiments that are
capable of answering this question, respectively. Being so crucial for the foundation of
quantum mechanics, these papers triggered enormous experimental efforts to realize the
so-called Bell experiment that confirmed with ever increasing certainty that entanglement
is part of our world [57, 58, 59, 60, 61, 62, 63, 64].

Beyond its conceptual relevance, entanglement has turned into a key resource in various
fields of modern physics: In quantum information theory, it is exploited for storing and
manipulating information in so-called qubits [65, 66, 67]. In condensed matter physics,
entanglement has become increasingly appreciated as a measure to classify different states
of quantum matter which cannot be distinguished by any local observable such as topo-
logically ordered states [68, 69, 70, 71]. The probably stunning realization that oftentimes
ground states of quantum many-body systems are often only lowly entangled has led to the
development of a novel class of variational (tensor network) algorithms[72, 73, 74, 75].

Exploring the significance of entanglement in quantum many-body systems requires novel
entanglement measures that allow dealing with an almost arbitrarily large number of in-
terwoven quantum mechanical degrees of freedom instead of just a few. The starting
point for such considerations are reduced density matrices, which can are calculated from
a bipartition of a quantum many-body system into two complementary parts A and B as
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A B Figure 5.1.: The bipartition of a quantum
many-body system into part A and its com-
plement B. Figure first appeared in [54].

illustrated in Fig. 5.1. Tracing out the degrees of freedom in one subsystem one can cal-
culate a reduced density matrix for the other part, e.g. ρA = TrB(|ψ〉〈ψ|). There are two
ways in which one can proceed. One is to view the reduced density matrix as stemming
from an actual Hamiltonian HA, the so-called entanglement Hamiltonian to which it is
related by [76]

ρA = e−HA . (5.1)

However, accessing this spectrum is very difficult in quantum Monte Carlo methods [77,
78, 79, 80], which is why one focusses on another, also powerful quantity called the en-
tanglement entropy. For its calculation, the information in the density matrix is condensed
into a single number, for example by calculating the von Neumann entropy [66]

S(A) =−Tr [ρA logρA] . (5.2)

The von Neumann entropy is the most prominent member of a more general family of
entanglement entropies, the so-called Renyi entropies [81] which are calculated from the
density matrix as

Sn(A) =
1

1−n
log(Tr(ρn

A)) , (5.3)

where the limit n→ 1 recovers the above von-Neumann entropy.

The strength of these entropic entanglement measures becomes apparent when consider-
ing the scaling of the entanglement entropy for varying sizes of the subsystem A [82]. In
contrast to conventional thermodynamic entropies the entanglement entropy is not exten-
sive, but rather scales with the length of the boundary between the two partitions – the
so-called boundary law [68] (which is often also referred to as area-law). Corrections to
this prevalent boundary law have received widespread attention for their ability to classify
different states of quantum matter [82]. For instance, it has been shown that the topolog-
ical character of non-local order present in a quantum ground-state wavefunction can be
revealed by a universal O(1) correction γ [70, 71] to the boundary law. Numerical simula-
tions of quantum spin systems have subsequently shown that such an identification is in-
deed feasible and unambiguously revealed the long conjectured topological order present
in ground states of certain frustrated quantum magnets [83, 84, 85]. Another important
subleading correction that scales with the length of the boundary is a logarithmic term
that reveals the presence of Goldstone modes in the system [86] or may allow studying
emerging low energy degrees of freedom at quantum critical points [87]. Finally, there
are multiplicative corrections to the boundary law, which may indicate the presence of a
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Figure 5.2.: Ensemble switching in a worldline picture. The left side shows the square of the regular
partition sum Z2 where all worldlines have to be β -periodic. The right side shows a configuration of
allowed worldlines in the Z[A,2,T ] partition sum, where 2β -periodicity is enforced in part A of the system
but part B remains β -periodic. Figure first appeared in [25].

Fermi surface [88, 89]. Devising a method to determine these corrections in interacting
many-fermion systems are the focus of the work presented in this chapter.

5.2. Entanglement entropies fromMonte Carlo
simulations

Monte Carlo methods mostly use an approach called the replica trick[90, 91] to cal-
culate entanglement entropies. One speaks of replicas because the calculation of the
Renyi entropy involves taking powers of the reduced density matrices which generates
copies of the system as will be demonstrated in the following. The first step is to deter-
mine the reduced density matrix ρA by tracing out the degrees of freedom in subsystem
B

ρA = Tr Bρ . (5.4)

The following deals mostly with calculating the second Renyi entropy as a concrete ex-
ample but Renyi entropies of higher order are determined in much the same fashion. For
n = 2, it takes the form

S2(A) =− log

(
Tr A

(
ρ2

A
)

N 2

)
. (5.5)

Note that in (5.5) the reduced density matrix ρA is squared before the remaining degrees
of freedom of subsystem A are traced out and that the density matrix has a normalization
factor N . This normalization factor enters as the square of the usual partition sum:

N 2 = (Trρ)2 = Z2 . (5.6)

The numerator can also be interpreted as a partition sum, albeit with a more complex
definition:

Tr A
(
ρ
′2
A
)
= ∑

A,A′,B,B′

〈
AB′

∣∣ρ ′
∣∣A′B′

〉〈
A′B

∣∣ρ ′ |AB〉

≡ Z[A,2,T ] , (5.7)
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The additional arguments indicate the subsystem, the order of the Renyi entropy and the
temperature for which it shall evaluated. To better understand the nature of the two respec-
tive partition sums, Z2 and Z[A,2,T ], they can be turned into their respective worldline
representations as illustrated in Fig. 5.2. On the left side, the worldline representation of
Z2 from the denominator in Eq. (5.5) is depicted with two sets of β -periodic worldlines
extending from 0 to β and from β to 2β , respectively. These arise from the squaring of the
partition sum in the denominator and the β -periodicity is due to the trace operator applied
to both partition sums separately. The right-hand side shows a worldline representation
for the partition function Z[A,2,T ] of the numerator of Eq. (5.5), where two replicas of
the system are partially connected in imaginary time because only part of the degrees of
freedom were traced out before taking the square.

The important question is how to numerically calculate these two partition functions, and
the answer depends on the particular flavor of Monte Carlo. In worldline based meth-
ods, implementing the respective imaginary time boundary conditions is fairly straight-
forward [91, 92]. Being based on partial traces of density matrices, the replica trick can
also be applied to ground state methods such as variational Monte Carlo which is also rel-
atively easily done [93] because the wave function is a central object in the Monte Carlo
procedure. Neither of those statements apply to the finite temperature or the projective
formulation of DQMC, respectively, requiring a reformulation of the replica trick as will
be shown now.

5.3. Determinant QMC and the replica trick
In the finite temperature variant of DQMC, the fermions and their respective worldlines
are traced out and the object of the Monte Carlo simulation is to sample auxiliary field
configurations. This creates a problem when implementing the replica scheme described
above because a crucial ingredient is the propagation of the worldlines in imaginary time
and the question of how they can be matched with the boundary conditions imposed by the
trace. Before delving into the details of how to modify the replica trick, it should be noted
that there is an alternative approach which relies on the fact that entanglement entropies
can be readily calculated for free fermions [94, 95]. This can be exploited because after
the Hubbard-Stratonovich transformation, the fermions are, in fact, free which allows one
to sample powers of the reduced density matrix [96]. It turned out and will be shown
later that this approach is unfortunately ridden with large sampling errors for all but the
smallest subsystems and weak interactions, severely limiting its applicability.

5.3.1. Implementation of the replica trick in DQMC
The implementation of the replica trick in DQMC begins with writing down an expression
for the density matrix in both the finite temperature and the projective formulation. At
zero temperature, the density matrix is given by

ρ =
|ψ〉〈ψ|
〈ψ|ψ〉 =

|ψ〉〈ψ|
N , (5.8)
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while at finite temperatures it takes the form

ρ =
exp(−βH)

Tr(exp(−βH)) =
exp(−βH)
N . (5.9)

Both expressions are explicitly normalized by the normalization constant N in the de-
nominator. This will play an important role in the following derivation of the algorithm.
The notation

ρ =
1
N ρ

′ (5.10)

will be used as a unifying notation where the choice for ρ ′ andN depends on the context.

Finite temperature formulation

In the finite temperature algorithm,the statistical weight W (s,ψ) for an arbitrary pair of
a fermion state ψ and an auxiliary field configuration s is given as the determinant of a
matrix:

W (s,ψ) = 〈ψ|B(s) |ψ〉 . (5.11)

A crucial step in the original formulation of the finite temperature algorithm was to realize
that the grand-canonical trace over these Slater determinants can be recast as a single
determinant

Tr 〈ψ|B(s) |ψ〉= det(1+B(s)) , (5.12)

allowing to sample only configurations of the auxiliary field. The importance of this
simplification cannot be overstated: Without rewriting the sum over fermion states in this
way, the sampling procedure would be numerically too involved to carry out. However, a
straightforward implementation of the partition function Z[A,2,T ] runs exactly into this
problem. Due to the two replicas in imaginary time, the weight is given as the product
two determinants which is cannot be reduced a single determinant or the product of two
determinants except for the special cases where the subsystem B contains no or all sites,
respectively:

Z[A,2,T ] = ∑
{s}

∑
A,A′,B,B′

〈
AB′

∣∣ρ ′
∣∣A′B′

〉〈
A′B

∣∣ρ ′ |AB〉

= ∑
{s}

∑
A,A′,B,B′

det
(
s,AB′|A′B′

)
det
(
s,A′B|AB

)
. (5.13)

For the sake of brevity the two determinants are denoted as det(s,AB′|A′B′) and det(s,A′B|AB).

The key idea is to modify the replica scheme in such a way that the statistical weights
can again be simplified to yield only a single Slater determinant thus allowing to take a
grand-canonical trace of the form (5.12).

This is achieved by artificially enlarging the system by considering an additional copy B′

of subsystem B, which will be used to selectively evolve subsystem B in imaginary time.
In particular, it will be shown that an imaginary-time dependent Hamiltonian of the form

H̃(τ) =HAB Θ(τ) Θ(β − τ)+HAB′ Θ(τ−β ) Θ(2β − τ) (5.14)
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Figure 5.3.: The enlarged simulation cell
used to port the replica trick to DQMC
simulations. Figure first appeared in [25].

will give direct access to the partition sum Z[A,2,T ]. If a subsystem does not appear in
the index of the two respective Hamiltonians, there are no operators acting on any of the
degrees of freedom in that particular subsystem, i.e. the first term contains no operators
with basis in B′ and the second term contains no operators with basis in B. A worldline
representation of this Hamiltonian is given in Fig. 5.3.

To proof this statement, (5.14) is regarded as a given model Hamiltonian whose physics
should be explored at an arbitrary temperature, suggestively written as 2β . A given basis
state is denoted by |ψ〉= |A,B,B′〉 leading to the partition sum

Z̃ = ∑
{A,B,B′}

〈
A,B,B′

∣∣exp
(
−βH̃

)∣∣A,B,B′
〉
.

Although there are two propagation operators, the weight of the system is still be given
as a single Slater determinant because only one expectation value has to be evaluated.
Inserting a resolution of unity in between the two exponential operators gives

Z̃ = ∑
{A,B,B′,C,D,D′}

〈
A,B,B′

∣∣exp(−βHAB′)
∣∣C,D,D′

〉〈
C,D,D′

∣∣exp(−βHAB)
∣∣A,B,B′

〉
.

(5.15)
In the right term, states of B′ do not appear in the Hamiltonian which requires B′ = D′
for any non-vanishing term contributing to this partition function. Similarly, the left term
enforces the constraint B = D. Further, if subsystems B and B′ do not appear in the
Hamiltonian for a given imaginary time interval they not only do not evolve, but also
remain completely decoupled from the rest of the system over this interval. As a result,
they will also not affect the statistical weight

〈
C,B,B′

∣∣exp(−βHAB)
∣∣A,B,B′

〉

=
(
〈C,B|⊗

〈
B′
∣∣) exp(−βHAB)

(
|A,B〉⊗

∣∣B′
〉)

= 〈C,B|exp(−βHAB) |A,B〉
and can safely be ignored. Finally, renaming C to A′ to match earlier notation the follow-
ing simplified expression is obtained:

Z̃ = ∑
A,A′,B,B′

〈
AB′

∣∣exp(−βHAB′)
∣∣A′B′

〉〈
A′B

∣∣exp(−βHAB) |AB〉= Z[A,2,T ] ,

(5.16)

This is precisely the expression for the sought-after partition function Z[A,2,T ] in a form
that relies only on single determinants thus allowing to take the grand-canonical trace
(5.12).
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Ground-state formulation

When considering the ground-state DQMC algorithm only minor modifications to the
above scheme have to be implemented. The normalization constant N introduced in
(5.10) is now given as

N = 〈ψ|ψ〉= ∑
|A〉
〈ψ|A〉〈A|ψ〉= Tr (|ψ〉〈ψ|) .

In chapter 2, it was shown that the ground-state wave function |ψ〉 is obtained by projec-
tion of a trial wave function

|ψ〉= lim
Θ→∞

e−ΘH |ψT 〉 . (5.17)

Inserting this projection into the definition of the Renyi entropy in Eq. (5.5), leads to
an expression for the canonical Trρ ′2A that looks very similar to the finite temperature
expression of the grand-canonical trace for Z̃ in Eq. (5.16) discussed above

Tr ρ
′2
A = lim

Θ→∞ ∑
A,A′,B,B′

〈
AB′

∣∣exp(−ΘH) |ψT 〉〈ψT |exp(−ΘH)
∣∣A′B′

〉
(5.18)

×
〈
A′B

∣∣exp(−ΘH) |ψT 〉〈ψT |exp(−ΘH) |AB〉 , (5.19)

where the only difference is the appearance of the density matrices |ψT 〉〈ψT |. However,
this comes in handily because it allows taking the grand-canonical trace to make use
of Eq. (5.12). The occurrence of these density matrices eliminates all states with an
occupation number different from the one of the trial wave function and thus, the sampling
is effectively done in the canonical ensemble as desired. This surprising simplification,
inserting density matrices at the right place, which turns a finite temperature algorithm
into a ground state algorithm comes at the cost of decreased stability of the algorithm.
This issue is discussed at length in a later section of this chapter.

Calculation of higher Renyi entropies

The above discussion is focussed on Renyi entropies of order 2, but the algorithm can
easily be extended to also compute higher Renyi entropies. For the calculation of the
n-th Renyi entropy via the replica trick, imaginary time has to be split into n segments
which would contribute one determinant each in Eq. (5.13). It would thus be necessary to
introduce n replicas of the subsystem B and work in an overall system of size NA +n ·NB.
This scheme was successfully implemented in [80] and used to calculate the entanglement
spectrum.

Ensemble switching

The replica scheme outlined above allows directly sampling partition functions of the
formZ[A,2,T ]. For the calculation of the Renyi entropy, however, one needs to determine
the ratio of the partition functionsZ[A,2,T ] andZ2 as given in Eq. (5.5). This ratio can be
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Figure 5.4.: Schematic illustration of the ensemble switching method to calculate the Renyi entropy of
Eq. (5.5). The random walk is started in one of the configuration spaces corresponding to the ensembles
appearing in the numerator and the denominator of Eq. (5.5), denoted by C(Z[A,2,T ]) and C(Z2), respec-
tively. Whenever a configuration that is admissible in both ensembles is encountered, the relative weights
are compared and the Metropolis criterion is used to decide in which ensemble the sampling process con-
tinues.

directly accessed [97] by cleverly switching between the two ensembles without explicitly
calculating the individual partition sums.

Imagine a two-state simulation, where the weight of two states is given by w1 and w2. For
any simulation fulfilling detailed balance, the random walk would spend N1 =w1/(w1 +w2)
steps in state 1 and N2 = w2/(w1 +w2) steps in state 2. Thus, the ratio of the weights
w1/w2 corresponds precisely to the relative time spent in the two respective states. This
statement is readily generalized [97] to a situation where a random walk switching back
and forth between two ensembles whose partition functions evaluate to what were previ-
ously the weights w1 = Z[A,2,T ] and w2 = Z2, respectively. The ratio of relative time
spent sampling each of the two ensembles can therefore be used to calculate the entangle-
ment entropy

S2(A) =− log
(Z[A,2,T ]

Z2

)
=− log

(
N1

N2

)
. (5.20)

In practical terms, the simulation is started in one of the two ensembles and after a fixed
number of Monte Carlo steps, the weight of the current configuration is calculated in both
ensembles and ensembles are switched according to Metropolis rules. When implement-
ing this ensemble switching method, one benefits from an additional advantage of the
DQMC framework. The configuration space of Z[A,2,T ] and Z2 is exactly the same and
the transition probabilities p1→2 and p2→1 are typically spread over the entire range (0,1].

To estimate the ratio (5.5) it actually suffices to measure the expectation values of 〈p1→2〉
and 〈p2→1〉, which are the probabilities to switch ensembles from ensemble 1 to 2 and
from ensemble 2 to 1, respectively. Using a Metropolis scheme, the probability to switch
ensembles for a given configuration c is given as

p1→2 = min
(

1,
W2(c)
W1(c)

)
,

where W1(c) and W2(c) are the weights in the respective ensembles. The configurations
c are configurations of the auxiliary field which each exist in both configuration spaces.
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Writing out the ratio of the expectation values for the switching operation gives

〈p1→2〉
〈p2→1〉

=
Z2

Z1
·

∑
c∈C(Z1)

min
(

1,
W2(c)
W1(c)

)
W1(c)

∑
c∈C(Z2)

min
(

1,
W1(c)
W2(c)

)
W2(c)

=
Z2

Z1
·

∑
W2(c)<W1(c)

W2(c)+ ∑
W1(c)<W2(c)

W1(c)

∑
W1(c)<W2(c)

W1(c)+ ∑
W2(c)<W1(c)

W2(c)

=
Z2

Z1
. (5.21)

Thus, the ratio of partition functions is estimated as the ratio of probabilities to switch
from one ensemble to the other. These numbers can be obtained from two separate simu-
lations.

It should further be noted that this approach does not require to iteratively build-up the
subsystem A from smaller blocks to achieve convergence [91], as it has been observed in
the context of worldline Monte Carlo approaches where the overlap between the ensem-
bles might become rather small. If needed, however, it would still be possible to conduct
such an iterative build-up.

5.4. The Hubbard chain as a test case
The one-dimensional Hubbard chain provides the perfect testing ground for the applica-
bility and numerical efficiency of the proposed implementation of the replica trick. This
model is well suited because besides not suffering from the sign problem, it can be studied
using MPS based algorithms which allow to generate high precision data for comparison.
Further, some zero temperature results are known exactly from the conformal field theory
description of the gapless theory governing the physics of the ground state of the Hub-
bard chain in the presence of a finite on-site interaction U . To test the finite temperature
algorithm, the crossover of the Renyi entropy the low-temperature entanglement entropy
to the high-temperature thermal entropy is studied.

5.4.1. Zero-temperature physics
In the presence of a repulsive on-site interaction U > 0 the ground state of the half-filled
Hubbard chain is well known to be a Mott insulator exhibiting quasi-long range anti-
ferromagnetic order. This means that at zero temperature charge fluctuations are frozen
out entirely for any U > 0, while the localized spin degrees of freedom interact via an
effective Heisenberg exchange of order t2/U thereby building up quasi-long range an-
tiferromagnetic order. The system thus remains gapless and can be described in terms
of a conformal field theory with a central charge c = 1 corresponding to the number of

44



5. Entanglement

0 10 20 30 40 50 60
block size lA

1.4

1.6

1.8

2.0

2.2

en
ta

ng
le

m
en

t e
nt

ro
py

 S
2
(l
A
)

odd lA
even lA
MPS

Figure 5.5.: The entanglement entropy S2 of a periodic, half-filled Hubbard chain with L = 64 sites in the
presence of a repulsive on-site interaction U/t = 2. Shown is the entanglement entropy versus the length of
the subsystem lA. The numerical data obtained with the zero-temperature DQMC algorithm (Θ = 10) is in
good agreement with DMRG reference data for the same system (open circles).

gapless modes. The entanglement entropy of such a gapless one-dimensional system
is known [98, 99] to exhibit a logarithmic correction to the boundary law, which for a
one-dimensional system simply states that the entanglement entropy is a constant for any
bipartition. The logarithmic correction, however, does reflect the relative size of the two
subsystems in the bipartition and for all Renyi entropies follows the general form [99]

Sn(lA) =
c

6η

(
1+

1
n

)
ln
[

ηL
π

sin
(

πlA
L

)]
+O(1) , (5.22)

where c is the central charge of the conformal field theory, L is the overall system length
and lA ≤ L is the length of subsystem A. Open and periodic boundary conditions corre-
spond to η = 2 and η = 1, respectively, and further subleading corrections of order O(1)
in the system size are neglected. Numerical results obtained with the zero-temperature
DQMC algorithm for an open chain of length L = 64 are shown in Fig. 5.5. The DQMC
data is generally in good agreement with quasi-exact results obtained using density matrix
renormalization group (DMRG) simulations. The slight underestimation of the DQMC
data hints at the fact that the projection time might not have been chosen sufficiently long.
Choosing it to be longer, however, proves to be difficult due to stability issues that will be
discussed later in more detail.

5.4.2. Thermal crossover of the entanglement
At finite temperatures, both quantum and thermal fluctuations contribute to all entropies
including the Renyi entropy of interest here. Upon increasing the temperature, the rel-
ative contributions of these two types of fluctuations of course change. As a result, the
Renyi entropy shows a crossover from a boundary law (with logarithmic corrections) at
zero temperature to a more conventional extensive behavior (i.e. a volume law) at high
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Figure 5.6.: The thermal crossover of
the entanglement entropy for a L =
32 site half-filled Hubbard chain with
U/t = 2. While at high temperatures
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temperatures of the form
S(lA) = lA · log4 , (5.23)

simply counting the number of possible states in the subsystem.

This thermal crossover of the Renyi entropy from the regime dominated by quantum fluc-
tuations to a thermal entropy at high temperatures can easily be observed in DQMC sim-
ulations. It is illustrated in Fig. 5.6 for a half-filled Hubbard chain of length L = 32 with
intermediate on-site interaction U/t = 2 in a temperature range 0.025≤ T ≤ 5 (for t = 1).
With increasing temperature the arc-like structure of the low-temperature entanglement
entropy disappears and gives way to the simple linear form of an extensive thermal en-
tropy. This thermal crossover is also reflected in Fig. 5.7 where the Renyi entropy S2(L/2)
of an equal-size bipartition of the chain for different system sizes is plotted versus the tem-
perature. In particular, it is possible to collapse high temperature data when rescaling the
calculated Renyi entropies by the respective system size, see the right panel of Fig. 5.7.

A suitable measure to quantitatively determine the crossover temperature T ∗, below which
a finite-sized system is effectively in its ground state is the so-called purity

P = exp(−S2(L)) , (5.24)

which becomes 1 for a quantum mechanical ground state, since the entropy S2(L) needs

46



5. Entanglement

temperature T
0.0

0.2

0.4

0.6

0.8

1.0

pu
ri

ty
P

U/t = 4.0 L = 16
L = 24
L = 32

temperature T
0.0

0.2

0.4

0.6

0.8

1.0

pu
ri

ty
P

U/t = 2.0 L = 16
L = 24
L = 32

0.05 0.10 0.15 0.20 0.25

temperature T

0.0

0.2

0.4

0.6

0.8

1.0

pu
ri

ty
P

U/t = 1.0 L = 8
L = 16
L = 24
L = 32

Figure 5.8.: The purity P for a
grand-canonical DMQC simulation
of a half-filled Hubbard chain ver-
sus temperature for varying on-site
interactions U/t and chains of vary-
ing length L. Figure first appeared
in [54].

to equal its complement S2( /0) and thus must vanish for any quantum mechanical ground
state. Indeed the purity sharply rises towards 1 as the temperature is lowered, see Fig. 5.8
which shows the purity as a function of temperature for different system sizes and a se-
quence of on-site interactions. On the one hand, for a fixed value of the on-site interaction
the crossover temperature decreases with system size in accordance with the fact that the
finite-size gap of the system also decreases with increasing system size. On the other
hand, for fixed system size the transition temperature T ∗ decreases as the on-site inter-
actions U is reduced reflecting the enhancement of charge fluctuations in this weakly
coupled regime.

5.5. Comparison to the free fermion decomposition
method

As mentioned earlier, there is an alternative method of calculating Renyi entropies from
DQMC simulations, which makes use of the fact that after the application of the Hubbard-
Stratonovich transformation, one deals with free fermions moving in an external poten-
tial [100].

For a fair comparison, the free fermion decomposition method was implemented using
the same algorithmic optimizations as for the replica switching technique whenever pos-
sible. Both codes were run on identical parameter sets logging the exact same CPU time.
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Figure first appeared in [54].

The replica method takes considerably fewer measurements because the matrices are of
size NA + 2 ·NB instead of NA +NB. For the largest cut, i.e. lA = 10, some 1300 mea-
surements were recorded, while for the smallest cut, i.e. lA = 1 there are only around 100
measurements.

Results from this comparison are summarized in Fig. 5.9 which shows results of both
approaches for the entanglement entropy of a half-filled 10-site Hubbard chain at fixed
temperature T = 0.025 (β = 40) for different values of the on-site interaction U/t ∈
{1,2,4}. While the free fermion decomposition method reproduces the arc-like structure
of the entanglement entropy for small on-site interaction U/t = 1, it shows deviations
from this behavior already for moderate values of the on-site interaction U/t = 2. In
contrast, the replica switching method nicely reproduces the exact diagonalization data up
to strong on-site interaction U/t = 4. The deviations increase with increasing subsystem
size and increasing on-site interaction U . A more detailed study for a fixed temperature
β = 40 is shown in Fig. 5.10.

In conclusion, the replica approach is significantly more efficient in capturing the entan-
glement properties in the interaction dominated regime of the Hubbard model.
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Figure 5.10.: Comparison of the spread of the raw data of DQMC runs for 16 independent runs us-
ing the replica switching (squares) and free fermion decomposition (circles) algorithms. Shown is the
Renyi entropy of a half-filled Hubbard chain with varying on-site interactions U/t at temperature T = 0.025
(β = 40). Figure first appeared in [54].
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5.6. Stabilization of the ground state algorithm
The ground state algorithm to calculate Renyi entropies suffers from more instabilities
than the conventional ground state algorithm. To overcome these difficulties, the nu-
merical stabilization requires a variety of algorithmic steps ranging from linear algebra
aspects such as the inversion of seemingly singular matrices and technical tricks such the
inclusion of an artificial chemical potential, which is shown to control the condition num-
bers of the underlying linear algebra algorithms, to more DQMC specific aspects such as
the optimal choice of Hubbard-Stratonovich transformation. These details are discussed
here including a detailed discussion of the convergence behavior. Finally, these techni-
cal improvements are used to provide an entanglement perspective on the quantum phase
transition between an antiferromagnetically ordered Mott insulator and a featureless band
insulator in the Hubbard model on the bilayer square lattice.

5.6.1. Invertibility of thematrix products in the replica scheme
A fundamental problem in the adoption of the finite-temperature algorithm for ground-
state properties is that the density matrix is typically singular, i.e. it is in general not
invertible. Numerically, this issue can be traced back to the fact that a trial wave function
is represented by a rectangular matrix which is only of full rank if the particle number
equals the number of total sites on the lattice which is the least interesting case. The
matrix is typically constructed by diagonalizing the quadratic part of the Hamiltonian and
then keeping only the first Np eigenvectors with the lowest eigenvalues. The trial wave
function is thus represented as a matrix ψT of dimension N×Np with orthogonal columns,
whereas the associated density matrix ρ of size N×N is constructed as ρ = ψT ψ

†
T . It is

thus apparent that the density matrix as the product of two non-square matrices must be
rank deficient and as such singular. As a consequence, the entire matrix product B(τ) and
its decomposed form (2.40) are not invertible, which ultimately prevents the computation
of the equal-time Green’s function and the associated Monte Carlo weights.

The central idea to elude this problem is to modify the matrices U,D, and T of the singular
value decomposition (2.39) such that they become invertible but leave the original matrix
unchanged up to machine precision, denoted by ε . Figure 5.11 illustrates how to do this in
practice: Any non-square matrix with orthogonal (unitary) columns (or rows) can be ex-
tended to a square, fully orthogonal (unitary) matrix by applying a Gram-Schmidt process.
To ensure that the original matrix, i.e. the one that results from remultiplying U DT , re-

mains unchanged, the diagonal matrix is extended by values that are at least 1/ε smaller
in magnitude than the smallest singular value found in the original D matrix. Numeri-
cally, this means that none of the additional columns or rows actually contribute because
they are weighted below numerical precision by the diagonal matrix. By multiplying the
modified matrices U×D×T , the original, singular square matrix B is recovered.
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Figure 5.11.: Inversion scheme as applica-
ble to SVD (top) and QR (bottom) based
Green’s function calculations. Shown here
is the example of the projected trial density
matrix B(τ,τ/2) |ψT 〉〈ψT |B(τ/2,0). Ma-
trices with orthogonal columns or rows that
form an incomplete basis are extended to a
full basis using a Gram-Schmidt process,
denoted here in blue. The singular value
vectors are extended by a vector of de-
creasing numbers clearly separated from
the smallest physical singular value by the
singular value gap ∆ here pictured in green.
For the case of the QR decomposition ma-
trices without orthogonal columns or rows
appear naturally which are extended by a
random matrix to match dimensions and
ensure invertibility (for example by LU de-
composition), pictured in orange. Figure
first appeared in [25].

5.6.2. Stable calculation of the Green’s function
The calculation of the equal-time Green’s function requires the inversion of the matrix
product B(τ), see Eq. (2.40), and therefore also sensitively depends on the matrix de-
composition discussed in the previous section. Despite having circumvented the prob-
lem of singularity, the calculation of the Green’s functions remains difficult because the
matrices of the decomposition typically remain ill-conditioned, i.e. they retain an ex-
tremely broad singular value spectrum resulting in a high condition number [101]. The
problem of calculating the Green’s function from ill-conditioned matrices in the finite-
temperature algorithm has long been known and was solved by Hirsch and Fye [102]
by using multiple consecutive matrix decompositions (instead of just one as given in
Eq. (2.40)). These multiple decompositions can be arranged in an enlarged matrix of size
(Nsites ·Ndecompositions)× (Nsites ·Ndecompositions), such that the determinant of this enlarged
matrix remains equal to that of the original one, but the equal-time Green’s function can
now be read off as a submatrix of the inverse of the enlarged matrix. The deeper reason
that this approach allows avoiding the ill-conditioned matrix problem above is found in
a considerably narrower singular value spectrum of the enlarged matrix. A maximum
matrix size for the enlarged matrix is reached when each of the slice matrices is used as
an input decomposition, i.e. Ndecompositions = Nτ . However, it is prohibitively expensive
to invert such a large matrix [103]. Fortunately, for the entanglement computations at
hand it typically suffices to choose just two or three consecutive decompositions for the
calculation of the Green’s function for a simulation cell with a complete cut and up to five
for the Green’s function for a simulation cell with a partial cut.

One more technical caveat in the entanglement computation that warrants attention arises
when inserting the density matrices |ψT 〉〈ψT | in the calculation of the trace over the re-
duced density matrix in Eq. (5.18). When building a matrix product like

B = B(θ ,θ/2)|ψT 〉〈ψt |B(θ/2,0) ,

one usually starts from the right and multiplies slice matrices B(i), applying the stabi-
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lization procedure using successive matrix decompositions, until the decomposition for
the slice matrix group B(θ/2,0) is built up. Up until this point in imaginary time, these
matrices are square and invertible but the insertion of the singular density matrix turns
the entire product into a singular matrix as well. Continuing to multiply slice matrices on
the left and decomposing the resulting matrices as was done before, would result in Np
non-zero singular values (corresponding to the particle number of the trial wave function)
and N−Np zero singular values – at least in theory. In practice, however, a decomposi-
tion algorithm like SVD or QR will typically find only the Np non-zero singular values to
high precision but the N−Np remaining singular values (again, strictly zero in theory) are
found to be zero only relative to the actual non-zero singular values [103, 101] with ma-
chine precision. These inaccuracies will accumulate as more slice groups are multiplied
which ultimately results in incorrect Green’s matrices.

This problem can be overcome by a modification of the stack structure. For the Green’s
function of the completely cut system, the modification looks as follows: There will be
three stacks to keep track of: one which is built from the bra version of the wave function
and includes decompositions obtained from matrices of the form 〈ψ|B(τ,τ ′), a second
one which is simply the ket version based on B(τ,τ ′) |ψ〉 and finally a third one that is used
as temporary storage and includes decompositions of the full slice matrix groups B(τ,τ ′)
without an added wave function. In combination, these three stacks allow calculating the
Green’s function for a given imaginary time slice. An example configuration of the three
stacks for imaginary time τ = n ·∆ looks as follows:

stack 1

. . .B2m · · · Bm+2Bm+1 | i Bm+1 | i

h | Bm h | BmBm�1 · · · Bi. . .

BiBi�1 · · · B1 B1. . .

stack 2

stack 3

These three stacks can be used to set up a 3 ·Nsites×3 ·Nsites matrix and to subsequently
calculate the Green’s function and the corresponding Monte Carlo weight. Alternatively,
if the condition numbers of the matrices allow it, it is possible to contract two or even all
of them for a faster calculation. In that case, one has to think about the order of the matrix
contractions. Naturally, the optimal choice is the one that keeps the condition numbers
for the resulting matrices as small as possible, thus ensuring the highest stability of the
following operations. Note that the number of contractions can vary for each recalculation
and should be chosen according to the magnitude of the relative error between propagated
and recalculated Green’s function as defined in Eq. (2.43).

These numerical refinements are incorporated in the modified flow diagram of the DQMC
algorithm in Fig. 5.12. As for the calculation of the Green’s function in the partially
cut system, one has to keep track of five individual stacks because the replicas are now
connected in imaginary time. The rest of the algorithm works exactly as just described
for G0.
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· · ·
build stacks

calculate initial Green’s function

update and propagate
G(⌧ + 1) = B(⌧)G(⌧)B�1(⌧)

after m slices, update stack and recalculate G

h T | B(Nm/2�, (Nm/2� 1)�) h T | B(Nm/2�, 0)

· · ·B(Nm �, (Nm/2 + 1)�) | T i B((Nm/2 + 2)�, (Nm/2 + 1)�) | T i

UrDrTr = h T | B(Nm/2�, 0)

UlDlTl = B(Nm �, (Nm/2 + 1)�) | T i

stack 3

UlDlTl = B(Nm �, (Nm/2 + 1)�) | T i

UrDrTr = h T | B(Nm/2�,�)

U D T = B(�, 0)

Figure 5.12.: Flow diagram of the
modified DQMC algorithm for the
simulation of the partition function
Z0 with complete cut in imaginary
time. Stacks are initialized starting
from the bra and ket version of the
wave function and subsequently used
to calculate an initial Green’s func-
tion. This Green’s function is then
used to update the auxiliary field time
slice by time slice and recalculated
after m time steps to retain numeri-
cal stability. Intermediate decompo-
sitions of slice matrix groups U,D,T
without wave function are stored in a
third stack, here highlighted by shad-
ing. Figure first appeared in [25].

5.6.3. Choice of Hubbard-Stratonovich transformation
At the heart of the DQMC approach is the decoupling of quartic terms in the Hamilto-
nian using a Hubbard-Stratonovich transformation. The particular choice of Hubbard-
Stratonovich transformation can greatly affect the numerical stability and convergence
of the DQMC approach. This can easily be illustrated by considering the example of a
density-density interaction of the general form

Ûαβ =Uαβ nαnβ , (5.25)

where the indices α and β may represent adjacent sites for a nearest-neighbor interaction
or different spin species for a given site, respectively. It was already shown that this type
of interaction can be decoupled in two different ways, leading to either real or complex
valued matrices.

At first look, one might expect that the real-valued Hubbard-Stratonovich transformation
leads to lower computational cost. However, in computations of the entanglement entropy,
it is the complex-valued Hubbard-Stratonovich transformation that should be used prefer-
ably. The reason for this preference is that the Hubbard-Stratonovich transformation also
greatly affects the singular value spectrum of the matrix decompositions discussed in the
previous subsection. To illustrate this point, Fig. 5.13 shows a comparison of the singular
value spectrum of the matrix B(Θ/2,0) |ψT 〉, i.e. the projected wave function, obtained
for real and complex Hubbard-Stratonovich transformations. The data is calculated for a
bilayer Hubbard model on a square lattice of size 4×4×2 at half filling and equal hop-
ping within and between the layers, i.e. t = t ′, but varying on-site interaction U , see also
section 5.7 for a more detailed discussion of this model. In the complex case, the range
of the singular values is seen to decrease as the interaction increases, hence reducing the
condition number and stabilizing the algorithm. In the real case, the behavior is found to
be exactly opposite with the condition number becoming worse as the interaction strength
increases.

As a consequence, the following simulations employed a complex-valued Hubbard-Stratonovich
transformation in the computation of Renyi entanglement entropies.
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Figure 5.13.: The singular value spectrum of the matrix B(Θ/2,0) |ψT 〉 i.e. the projected wave function, on
a logarithmic scale of base 10 for a real (left) and complex (right) Hubbard-Stratonovich transformation.The
projection time is θ = 10. Figure first appeared in [25].

5.6.4. Convergence
One key distinction between the zero-temperature entanglement calculations in the pro-
jective DQMC approach and the closely related finite-temperature algorithm is in the
type of simulated ensemble. While the finite-temperature algorithm samples states from
a grand canonical ensemble, the projective scheme samples a canonical ensemble of fixed
particle number (encoded in the trial wave function). This seemingly small modification
of the ensemble is found to have a rather large impact on the convergence properties of
the projective algorithm, in that it does not converge readily without additional work.
To ensure convergence, one has to resort to a technical trick by introducing an artificial
chemical potential in the Hamiltonian

H ′ = H +µa ∑
i

ni . (5.26)

Note that the inclusion of this artificial chemical potential µa does not alter the physics of
the original problem because it does not affect the particle number which is fixed by the
choice of the trial wave function.

On a technical level, such a term is represented by a diagonal matrix and has the ability to
significantly shift the singular value spectrum. This is displayed in Fig. 5.14, which plots
the smallest singular value of the unmodified matrix B(θ/2,0) |ψ〉 versus the projection
time θ . Clearly visible is the increase of the magnitude of the smallest singular value
with increasing θ and increasing chemical potential µa. The convergence of the entan-
glement entropy upon inclusion of this artificial chemical potential term is dramatically
improved even by a small additional potential dramatically as shown in Fig. 5.15. The
convergence rate eventually saturates when further increasing the artificial chemical po-
tential. In general, the optimal value of µa depends rather sensitively on the parameters
of the Hamiltonian and needs to be chosen with great care.

Closer inspection of the convergence properties of the entanglement DQMC algorithm
reveals that the added chemical potential (5.26) only affects the calculation of the Green’s
function of the partially cut system. This observation already hints at the origin of the
improved convergence. For the respective partition sum, all slice matrices are obtained
from the “unfolded" Hamiltonian (5.14), where subsystem B is duplicated as illustrated
in Fig. 5.3. The slice matrices include blocks of identity matrices and zero matrices to
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Figure 5.14.: Evolution of the small-
est singular value with projection
time Θ for various values for the ar-
tificial chemical potential µa shown
on a logarithmic scale with base 10.
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first appeared in [25].
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Figure 5.15.: Convergence of the
Renyi entanglement entropy S2 in the
projective DQMC algorithm versus
projection time for varying values of
the artificial chemical potential µa.
The Renyi entropy is calculated for
a half-filled Hubbard model on the
square lattice for U/t = 4 with an
equal-size bipartition of the lattice.
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appeared in [25].
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Figure 5.16.: Magnitude of the sin-
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peared in [25].
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accommodate the currently “inactive" subsystem B or B′, i.e. the one which is deacti-
vated by the Θ-function in the Hamiltonian (5.14). As demonstrated in Fig. 5.16 this
greatly affects the singular value spectrum by introducing NB singular values of unit value
(indicated by the magenta dataset) representing the said subsystem. A comparison of
Figs. 5.14 and 5.16 shows that once the difference between the smallest singular value of
the active subsystem becomes separated from the unit singular values corresponding to
the inactive subsystem, the simulation has a chance to converge. Thus, the requirement is
that this gap ∆s in the singular value spectrum has to be sufficiently large. It is empirically
found that ∆s ≈ 102 turns out to be a good choice which can be used to determine a value
for the artificial chemical potential µa.

5.7. Application to the bilayer Hubbardmodel
The discussed technical improvements now allow for stable computation of many models
such as the bilayer Hubbard model – a paradigmatic model that allows studying the transi-
tion between a Mott insulator and a band insulator. Whether these two insulating states are
fundamentally distinct or can in general be adiabatically connected into one another [104],
has been a question of debate [105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115].
This discussion mostly preceded the days of the topological insulator [116, 117] – a sec-
ond type of band insulator that can be clearly distinguished from the conventional “trivial"
band insulator by certain topological invariants [118, 119], while its fundamental distinc-
tion to correlated Mott insulators (possibly exhibiting topological order as well) is an open
question of much current interest [120]. This section adds the entanglement perspective
on the elementary phase diagram of the bilayer Hubbard model, whose Hamiltonian is
given as:

H =−t ∑
〈i, j〉,σ

c†
i,σ c j,σ − t ′ ∑

〈i, j〉′,σ
c†

i,σ c j,σ +U ∑
i

ni,↑ni,↓ . (5.27)

At its core, the model describes the competition between conventional (free-fermion)
band structures arising from hopping within and between the layer of a double-layer
square lattice (parametrized by hopping amplitudes t and t ′, respectively) and Mott physics
arising from an on-site Coulomb repulsion U . A schematic phase diagram for this model
in terms of the on-site interaction U and the interlayer hopping t ′ is given in Fig. 5.17.
For sufficiently large interlayer hopping strength t ′ and any value of U the system is a
featureless band insulator, while for sufficiently large U and small interlayer hopping
t ′ the system forms a Mott insulator with antiferromagnetic order. The phase transi-
tion from Mott to band insulator has been studied using a variety of methods in the
past [123, 124, 125, 126, 127, 128, 129, 121, 122]. In the absence of a Hubbard in-
teraction U and small interlayer hopping it is a metal. Whether this metallic state survives
for small Hubbard U (and small interlayer hopping t ′ ) or immediately gives way to Mott
physics is still under debate, with dynamical mean field theory (DMFT) [113] and finite-
temperature DQMC simulations [126, 121] pointing to an extended metallic phase, while
a functional renormalization group (FRG) analysis in combination with a ground state
DQMC simulation [122] and a variational Monte Carlo study [129] find an immediate
breakdown of the metallic phase upon inclusion of the Hubbard term.

With the help of the stabilization procedure presented in the previous section, the DQMC
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Figure 5.17.: Schematic phase diagram
for the bilayer Hubbard model at half fill-
ing, adapted from dynamical mean field
theory (DMFT) [113], DQMC simula-
tions [121], and functional renormalization
group (FRG) calculations [122]. It com-
prises two insulating phases, a band insu-
lator for sufficiently strong interlayer hop-
ping t ′ & 4, an antiferromagnetic insulator
for weak interlayer hopping strength and
large on-site Coulomb repulsion U . There
possibly is an extended metallic phase in
the regime of small Coulomb repulsion and
interlayer hopping as indicated in the phase
diagram, with DMFT and DQMC simula-
tions in favor of it [113, 121], while FRG
calculations point to an absence of a metal-
lic phase for any finite Coulomb repulsion
[122]. The inset depicts of the bilayer lat-
tice. The intralayer hoppings are indicated
by t, while t ′ denotes the interlayer hop-
pings. Figure first appeared in [25].

replica switching approach is ideally suited to compute Renyi entanglement entropies for
all parameters of interest, in particular for large values of the coupling U and the large
hopping amplitudes t, t ′. In the simulation, the system is partitioned into a strip of width
L/4×L× 2 and its complement, with upper and lower layer belonging to the same sub-
system. For this type of cut, the entanglement signature of the band insulator is expected
to be rather trivial: A singlet dimers forms on the rungs between the layers so that any cut
between the rungs will effectively see no significant entanglement contribution, similar to
the entanglement signature of an unentangled product state. Deep in the Mott regime the
prevalent entanglement signature of any entangled quantum many-body state – a finite en-
tanglement entropy that is subject to the famous boundary-law scaling is expected [130].
For any metallic state, an even stronger entanglement signature in the form of a logarith-
mic violation of the aforementioned boundary law [131, 132] should be observed.

The first step towards revealing the phase diagram is to scan parameter space for t ′ ∈
[0.5,5.3] and Uin [1,10] and plot the absolute value of the Renyi entropy for a system of
4×4×2 sites. In this phase diagram, several distinct regimes of almost constant amount
of entanglement can be readily distinguished. As argued above, the band insulator is real-
ized in the regime of almost vanishing entanglement for large interlayer coupling t ′. The
lower part of the phase diagram is a region of finite entanglement entropy pointing to
at least one separate regime. The Renyi entropy along a vertical cut through the data of
Fig. 5.18 is shown in Fig. 5.19 for U/t = 4 and L = 4 and L = 8. Another possibility
to assess whether this third regime is a finite size effect or a genuine third phase is to
study the scaling of the Renyi entropy with system size. This is shown in Fig. 5.20 for
different values of the on-site Coulomb repulsion U/t = 2,4,8 and 16 and fixed inter-
layer hopping t ′/t = 1. With the entropy renormalized by the linear system size L, the
boundary law scaling expected for the Mott insulator corresponds to a flat line. This is
precisely what is found for moderate to large Hubbard interaction U/t = 4,8,16. In con-
trast, for small Hubbard interaction U/t = 2 the clearly noticeable slope of the data points
suggests an additional logarithmic contribution to the entanglement entropy. Precisely
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Figure 5.18.: Color-coded Renyi entanglement entropy S2 for the bilayer Hubbard model calculated for a
bipartition of a 4× 4× 2 system (with the system divided into a strip of extent 1× 4× 2 and its comple-
ment). The entanglement entropy was calculated for integer values of U ranging from 1 to 10 and with
t ′ in the range of [0.5,5.3] with a step size of 0.05. The different entanglement regimes hint at general
characteristics of the underlying phase diagram. For dominant interlayer coupling t ′ & 4 the vanishingly
small entanglement points to the featureless band insulator with singlet formation on the interlayer rungs.
For moderate interlayer coupling, the finite entanglement reveals the Mott insulator. The phase boundary
separating the band insulator is indicated by an equipotential line of S2 = 0.8. The relevant color values
corresponding to these values of the entanglement entropy are also marked on the colorbar by white lines.
Figure first appeared in [25].
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Figure 5.20.: Finite-size scaling of
the entanglement entropy S2 renor-
malized by the linear system size L
for the bilayer Hubbard model at dif-
ferent values of the on-site interac-
tion U/t and fixed interlayer coupling
t ′/t = 1. Note the logarithmic scale
with base 10 chosen for the abscissa.
Figure first appeared in [25].

such an S ∝ L logL scaling is expected for a two-dimensional metal with a Fermi surface
[131, 132]. These results are consistent with finite-temperature data given for smaller lat-
tices in Ref. [121]. Note, however, that the system sizes at hand are still relatively small
when inferring this logarithmic contribution and it would be highly desirable to go to
substantially larger system sizes to exclude possible finite-size effects, see Ref. [122] for
a more in-depth discussion and analysis from the point of view of correlation functions.
Unfortunately, such a substantial increase in system sizes is difficult with the current al-
gorithms and state-of-the-art computational resources.

5.8. Entanglement and the sign problem
In this section, an alternative perspective on the sign problem from the viewpoint of entan-
glement is offered. The guiding idea is to explore whether extracting global information
about the ground state of a many-fermion system via its entanglement properties – such as
the general classification whether it exhibits gapless modes, conventional or topological
order – is possibly not as strongly affected by the sign problem as are measurements of
expectation values of observables aimed at providing a full ground-state characterization
such as order parameters or two-point correlation functions. This information theoretical
angle on the sign problem is originally rooted in the observation that in the Monte Carlo
calculation of entanglement entropies the sign problem enters in an additive instead of
an multiplicative way as for conventional observables, as will be explained below. It was
thus interesting to study whether this observation might point a way to an amenable probe
of global ground-state properties of interacting many-fermion systems even in the pres-
ence of a strong sign problem. It will be shown that auxiliary-field quantum Monte Carlo
approaches appear to be more immune to the sign problem than others using the example
of spinless fermion models on the honeycomb lattice at and below half filling.
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5.8.1. Entanglement entropies formodels with sign problem
It was shown earlier that the entanglement entropy is calculated as the ratio of two parti-
tion sums

S2(A) =− log
Z[A,2,T ]

Z2 ≡− log
Z1

Z0
, (5.28)

where Z1 = Z[A,2,T ] is the partition sum of the replicated system and Z0 = Z2 is the
square of the partition function of the original system. If the system under consideration
exhibits a sign problem, its partition sum Z can be split into a product of a partition sum
Zabs = ∑C |w(C)|, where all weights w(C) of the original partition sum have been taken as
their absolute values, and the expectation value of the sign

Z = ∑
C

w(C) = ∑
C

σ(C) |w(C)|= Zabs · 〈σ〉abs . (5.29)

Inserting this expression in the replica representation of the Renyi entropy (5.28) one
readily obtains

S2(A) =− log

(
Zabs

1

Zabs
0
· 〈σ1〉abs
〈σ0〉abs

)

=− log
Zabs

1

Zabs
0
− log

〈σ1〉abs
〈σ0〉abs

= Sabs
2 (A)+Sσ

2 (A) . (5.30)

Thus, the Renyi entropy for a system with a sign problem separates into two additive
contributions, one coming from the partition sum with absolute weights and one arising
from the sign. This additive behavior, which has earlier been discussed in the context
of variational Monte Carlo approaches [133], should be contrasted to the multiplicative
contribution of the sign to the calculation of conventional observables (4.1). This additive
splitting also raises the immediate question of how contributions to the scaling behav-
ior of the Renyi entropy S2(A) are split among the two terms, in particular whether the
boundary law scaling or any of its subleading contributions can arise solely from the sign
contribution Sσ

2 (A). Could it be sufficient to only consider the absolute partition sum and
its associated entanglement entropy Sabs

2 (A), which can be computed from a QMC sim-
ulation in a straight-forward manner? The simulations of a system of spinless fermions
on the honeycomb lattice presented in the following do not give a general answer to this
question but nevertheless give some numerical evidence that the leading behavior can be
reproduced and thus show that it is worthwhile pondering this question.

5.8.2. Spinless Dirac fermions on the honeycomb lattice
In this model, spinless fermions on the honeycomb lattice are subjected to a nearest-
neighbor repulsive interaction V described by a Hamiltonian

H =−t ∑
〈i, j〉

(
c†

i c j + c†
jci

)
+V ∑

〈i, j〉
nin j . (5.31)
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Figure 5.21.: Geometries of the hon-
eycomb lattice and its bipartitions
into subsystems A (shaded in blue)
and B used in (a) Fig. 1 and (b) Fig. 2
of the main text, respectively. Figure
first appeared in [55].

(a) (b)

At half-filling 〈n〉= 1/2 this model exhibits a fermionic quantum phase transition, likely
in the Gross-Neveu universality class [134, 135], from a Dirac semimetal for small re-
pulsion V to a charge density wave state for large V , as recently discussed in various nu-
merical works [136, 46, 137, 138]. What makes this spinless fermion system particularly
interesting in this context is that it exhibits a severe sign-problem in the complex-fermion
typically used in DQMC, but can be recast in a Majorana fermion representation without
sign problem [46]. This allows benchmarking results for the sign-ignoring entanglement
entropies Sabs

2 (A) obtained for the complex-fermion case with numerically exact data for
S2(A) from the Majorana fermion approach and in particular distill the sign contribution
Sσ

2 (A) to the Renyi entropy (5.30).

For the simulation, it is of great importance to choose lattice sizes with a particular length
because the singular points of the two Dirac cones should be included in the discretized
Brillouin zone. This leads to the constraint that the linear system size has to be a multiple
of three. The lattice is then partitioned into two subsystems made up of two thirds and
one-third of the sites, respectively, see Fig. 5.21 for a visualization. The cut is chosen to
be free of corners to avoid potential contributions from subleading terms to the area law
and so that the aspect ratio remains constant when the lattice size is increased.

Results for simulations on these lattices of various sizes are presented in Fig. 5.22. While
the entanglement entropies show almost perfect agreement in the charge density wave
for V > Vc ≈ 1.356(1) [136, 46, 137, 138], there is a noticeable difference for the Dirac
semimetal phase (for V <Vc). This discrepancy partially reflects the strength of the sign
problem in the two phases indicated in the lower panel of Fig. 5.22, with the average
sign 〈σ〉abs almost dropping to zero in the Dirac semimetal phase (indicating a strong
sign problem), while the average sign quickly recovers (approaching unity) beyond the
phase transition into the charge density wave. Note, however, that the deviation of the
sign-ignoring entanglement entropy Sabs

2 (A) from the correct entanglement entropy S2(A)
(calculated in the sign-free Majorana representation) remains almost constant with in-
creasing system size.

This immediately raises the question how the expected scaling behavior of the entan-
glement entropy S2(A) is split into contributions from the sign-ignoring entanglement
entropy Sabs

2 (A) and the sign entropy Sσ
2 (A). To probe in particular the scaling behavior

of Sabs
2 (A) the spinless fermion system of Eq. (5.31) is studied at two different fillings for

which one expects two different scaling laws. At half-filling 〈n〉= 1/2 (and small V ) the
system exhibits a Dirac cone with the entanglement entropy expected to follow a bound-
ary law S2(L) = a`+ . . . with the length of the boundary, in our case ` = L (and a some
non-universal prefactor). At one-third filling 〈n〉 = 1/3 (and small V ) the partially filled
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Figure 5.22.: Upper panel: Sign-ignoring entanglement entropy Sabs
2 (L) for spinless fermions on the honey-

comb lattice at half-filling subject to a nearest-neighbor repulsive interaction V . The latter drives a transition
from a Dirac semimetal for V <Vc ≈ 1.356(1) (indicated by the vertical grey line) to a charge density wave
for V > Vc. The sign-ignoring data is from projector auxiliary-field QMC calculations using a real-valued
Hubbard-Stratonovich transformation at θ = 40. Sign-free reference data from Majorana-QMC simulations
at θ = 20 is indicated by the grey dots. Lower panel: The average sign 〈σ〉abs indicating the strength of the
sign-problem. Figure first appeared in [55].

Figure 5.23.: Scaling of the sign-ignoring entanglement entropy with system size of a spinless fermion
system on the honeycomb lattice with a small nearest-neighbor repulsive interaction V/t = 0.1. The system
exhibits semimetallic states with a Dirac cone at half-filling and a nodal line at one-third filling. Data is from
a projector auxiliary-field QMC calculations using a complex-valued Hubbard-Stratonovich transformation
at θ = 1, for which there is a severe sign problem with 〈σ〉abs ≈ 0 for any finite V and all, but the smallest
system sizes. Error bars are smaller than the symbol sizes. Figure first appeared in [55].
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Figure 5.24.: Scaling of free spin-
less fermions on the honeycomb lat-
tice at half and one-third filling using
the same geometries as described in
the previous section. Figure first ap-
peared in [55].

band structure exhibits a Fermi surface with a nodal line of gapless modes, which leads
to a violation of the boundary law with a multiplicative, logarithmic correction arising in
the entanglement entropy [139, 140], i.e. S2(L) = a` log`+ . . . , where a is again some
non-universal prefactor.

Numerical results for the sign-ignoring entanglement entropies Sabs
2 (A) calculated for cuts

A of dimension 2 ·L×L/3 in a system of 2 ·L×L sites are shown in Fig. 5.23. The data
in this plot is obtained from DQMC calculations using the complex-valued Hubbard-
Stratonovich transformation, in which 〈σ〉abs is suppressed to zero for any finite V and all
but the smallest system sizes. Remarkably, the numerical results of Fig. 5.23 suggest that
the sign-ignoring entanglement entropies Sabs

2 (A) completely reflect the scaling behavior
of the full entanglement entropy S2(A), with the data for the half-filled case clearly seen
to flatten out for large system sizes indicative of the boundary-law scaling, while the data
for the one-third filled case nicely follows the logarithmic scaling behavior expected for
the total entanglement entropy S2(L). This behavior should be contrasted to the results
of a variational Monte Carlo study [141] of model wavefunctions for gapless spin liquids
obtained from a Gutzwiller projection of a Fermi sea. In this study, the authors found
that even the leading order term is not generically robust against the sign problem as
the multiplicative logarithmic contribution to the entanglement entropy for a system with
gapless nodal lines was solely arising in the sign contribution Sσ

2 (A).

The results of Fig. 5.23 can be compared with entanglement data obtained via the corre-
lation matrix method [95], which are shown in Fig. 5.24. The two figures are strikingly
similar, with the sign-ignoring simulation reproducing the general form of the scaling re-
lation including the oscillatory even-odd behavior. Although the data was obtained for
two different values of the nearest-neighbor repulsion V , namely V = 0.0 in 5.24 and
V = 0.1 in Fig. 2 of the main text, the results shown in Fig. 1 and Fig. 3 of the main text,
suggest that the free fermion scaling persists for finite values of V .

A similar quantum phase transition can be observed when doping the spinless fermion
model (5.31) below half filling. Figure 5.25 shows results for the sign-ignoring entangle-
ment entropy Sabs

2 (A)/L for system sizes up to 15× 30 = 450 sites (and 150 fermions),
well beyond the system size limit of any other numerical fermion technique. With in-
creasing V a clear transition in the scaling behavior is seen, going from the logarithmic
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Figure 5.25.: Upper panel: Sign-
ignoring entanglement entropy
Sabs

2 (L)/L for spinless fermions on
the honeycomb lattice at one-third
filling subject to a nearest-neighbor
repulsive interaction V . The numer-
ical data is obtained from projector
auxiliary-field QMC calculations
using a complex-valued Hubbard-
Stratonovich transformation at
θ = 20, for which there is a severe
sign problem for all coupling param-
eters and system sizes as indicated
by the vanishing average sign 〈σ〉abs
shown in the lower panel. The grey
bar indicates the best estimate for
the region in which the logarithmic
contribution vanishes and the system
starts to exhibit pure area law
behavior. Figure first appeared in
[55].

scaling behavior for the nodal liquid at small V to a clean boundary law for larger V (with
all curves collapsing onto each other) indicative of an ordinary charge-ordered state. This
allows estimating the location of this fermionic quantum phase transition to be roughly
located at Vc/t ≈ 0.58±0.04 as indicated by the vertical bar in Fig. 5.25.

5.8.3. Discussion
This section showed that within the framework of DQMC, it is possible to extract some
meaningful physical properties from some models that suffer from severe sign problems.
The most likely reason for this stunning result is that the ignorance of negative signs
in the interpretation of statistical weights manifests itself differently in various Monte
Carlo flavors: In auxiliary-field QMC techniques the weight of a configuration is given
by the determinant of the free fermion problem in the Hubbard-Stratonovich field. At
this level, the propagation of the fermions in imaginary time and all fermionic exchange
terms, have been fully taken into account and condensed into the determinant which only
arises because of the fermionic exchange statistics. If one were to sample a bosonic
system with a similar approach to DQMC, the resulting weight would be given by a
permanent instead of a determinant. This stands in stark contrast to other Monte Carlo
flavors, such as worldline QMC techniques where the ignorance of negative statistical
weights truly implies that one considers bosonic instead of fermionic exchange statistics
and / or couplings are actually changed on the Hamiltonian level from antiferromagnetic
to ferromagnetic – there is no difference in the algorithm. These modifications have to
be undone explicitly by counting the number of worldline permutations and the number
of off diagonal operators from which one calculates the sign of a given configuration that
can later be used in data analysis. In a similar spirit, one cannot expect that variational
Monte Carlo approaches to be robust when ignoring negative statistical weights because
one fully ignores the intricate sign structure of the underlying wavefunction which would
usually be an important part of the sampling process. This distinct property of the DQMC
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method is the most likely source of the huge difference in the splitting of entanglement
contributions observed for nodal line wave functions reported here and in earlier work on
gapless spin liquids [141].

Despite these promising results, considerably more work needs to be done to further un-
derstand whether the results presented here are valid for a restricted class of wavefunc-
tions only or might apply in more generality for the DQMC algorithm and if other Monte
Carlo flavors can be modified to reach the same conclusion. From the point of view of al-
gorithmic complexity theory, it would be interesting to have some guidance into whether
the calculation of global ground state properties, such as the entanglement entropy, might
generally be considered to be in a different complexity class than the calculation of ordi-
nary observables.
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5.9. Conclusion and outlook
This chapter introduced a numerically stable way to calculate entanglement entropies
for many-fermion systems which was benchmarked first on the Hubbard chain and then
applied to the Hubbard model on a bilayer square lattice. Finally, a novel perspective on
the sign problem was explored by studying entanglement properties of a model of spinless
fermions on the honeycomb lattice. With the help of the work presented here, in particular
the implementation of the replica trick and the subsequent stabilization, boundary laws
and their corrections can now be reliably studied for strongly interacting many-fermion
systems.

There are three closely related topics to explore in the future: One is the role of the sign
problem. The results presented in this work are very promising but need to be supported
by similar studies on other models whose properties are known and can thus serve to
verify the ideas. A second important task is to find a model without sign problem but
that nevertheless exhibits interesting boundary laws to which the algorithm presented in
this chapter can be applied to gain actual physical insight. Promising candidates are for
example models with designer Hamiltonians that were already mentioned in the chapter
about the sign problem. Finally, although the entanglement algorithm can be stabilized
using the techniques described in this chapter, it comes at the price of higher computa-
tional cost compared to the conventional correlator based DQMC algorithm. This is where
machine learning techniques could potentially make a huge difference by eliminating or
severely reducing the need for local updates and thus many of the stabilization steps. The
availability of an efficient global update scheme would open the door to studying much
larger system sizes which is highly desirable for the study of the scaling behavior of the
boundary laws in order to extract information about a potential topological entanglement
entropy in a suitable model or, more concretely, the presence of a metallic phase in the
Hubbard bilayer model.
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6. Machine Learning
Machine learning defines a new paradigm of algorithm development. Machine learn-
ing algorithms implement a plastic model whose functionality depends on a number of
parameters, often referred to as hyperparameters, that are determined during a process
called learning at runtime. The values of these hyperparameters define in what way input
data is turned into output data. In contrast, traditional algorithms are defined by a static
set of hard-coded instructions that transform a given input and into a well-defined output.
Note that even algorithms that rely heavily on the use of random numbers, such as the
Monte Carlo simulations used throughout this thesis, are ultimately deterministic because
the instructions how these random numbers are processed are statically implemented in
the program.

Machine learning algorithms can be broadly classified by how the learning process of the
hyperparameters is performed: In supervised learning, the hyperparameters are optimized
with a pair of input and output data, i.e. with the knowledge which input should generate
which output. A prototypical example is the classification of images, in which a set of
images, the input data, comes with a set of labels, the output data, that describe what
is shown on the respective image. The model should learn to assign labels according to
the input images’ content so that it can be used to classify unknown pictures that were
not used in the learning procedure. In contrast, unsupervised learning algorithms are
trained with input data only, i.e. there is no a priori defined output to each input and no
restriction on the possible output classes. This is arguably the more powerful approach
because allowing the algorithm to come up with its own output classes removes some of
the human bias if done properly. The only thing the user has to provide is the metric
according to which the algorithm attempts to classify the input images.

There are many different approaches to implement these algorithms, among them cluster-
ing [142], decision trees [143], random forests [144] or artificial neural networks (ANNs) [145].
Judging by the number of applications in physics, ANNs stand out among the afore-
mentioned techniques. There are three core topics that are currently of interest to the
community: The representation of wavefunctions [146] as neural networks, learning and
sampling from distributions for improving the Monte Carlo sampling procedure using
neural networks [147] or the elimination of the autocorrelation for significantly faster up-
dating schemes [148, 149] and finally the discrimination and characterization of quantum
phases [150, 151, 152, 153].

The results of this thesis pertain exclusively to the application last mentioned, the study
of the properties of models for condensed matter systems using ANNs. Following a brief
introduction to the inner workings of neural networks, a supervised learning method to
extract information about (quantum) phases from Monte Carlo data of any flavor is pre-
sented. This method is then extended to an unsupervised method – one that is capable of
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Figure 6.1.: A perceptron takes an in-
put vector v of size N and maps it
onto a binary output using a set of
N-dimensional weight vector w and a
bias b.

mapping out entire phase diagrams autonomously from raw Monte Carlo data. In addi-
tion, with the help of the unsupervised method, it is also shown that the machine learning
approach is capable of seamlessly distinguishing even topologically ordered phases from
ordinary, symmetry broken phases without any additional modification or fine-tuning of
the algorithm. The chapter ends with an extensive discussion on how this novel approach
allows dealing with the fermion sign problem and includes some promising preliminary
results on the classification of phases despite the presence of a sign problem. The algo-
rithms and data presented in this chapter were first published in [152, 154] from which
this chapter is compiled.

6.1. Artificial Neural networks
Artificial neural networks are constructed from interconnected, elementary units called ar-
tificial neurons that are designed to mimic the human brain. The simplest type of neurons
are called perceptrons [155], see Fig. 6.1. A perceptron processes a given input vector x
by computing the scalar product of the input vector with a weight vector w, subtracting a
bias b and then feeding the result into a Θ-function:

o(z) = Θ(x ·w−b) = Θ(z) , (6.1)

where z is called the weighted input and o(z) is the activation function, sometimes simply
referred to as the activation. A perceptron, therefore, turns a given input into a binary out-
put. As a side note, perceptrons are, in fact, capable of representing functionally complete
logical gates and allow for universal computation [156]. Unlike logical gates, however,
their power does not stem exclusively from their connectedness but to a large extent also
from the choice of hyperparameters and activation functions.

For actual applications, choosing a Θ-function for calculating the activation is not the
optimal choice, since it is not differentiable at zero and has a trivial derivative everywhere
else. This will turn out to be a problem for the learning procedure. Instead, one chooses
one of many differentiable activation functions, such as sigmoids, ReLUs or most recently
swish [145, 157].
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Figure 6.2.: A neural network is typically organized in layers of neurons where all neurons are connected
to all neurons of the preceding and the succeeding layer.

Figure 6.3.: The gradient descent
method finds minima of functions
defining fitness landscapes by start-
ing from an initial point somewhere
in the landscape and moving opposite
to the gradient at that point.

6.1.1. Training neural networks
There are numerous ways of arranging and connecting a large number of neurons to form
neural networks with potentially different computational capabilities. In practice, it has
proven to be advantageous for training to organize the neurons in layers where neurons
within one layer are connected only to neurons from other layers. One example for such
a network is shown in Fig. 6.2.

The information enters a neural network via the input layer (blue) and is subsequently
propagated through the hidden layers (yellow) until it finally reaches the output layer
(red). Along the way, each neuron processes the input vector in combination with its
own weights and biases and feeds the output to the next layer. It is thus obvious that
finding the right values for the weights and biases is of crucial importance for the network
to work as desired. Due to the sheer size of the space spanned by the hyperparameters,
finding the correct set analytically is impossible for all but a few select cases, which is
why the optimization is done numerically using a method called gradient descent[158].
The basic idea is to find minima of functions by starting at a random point and then
moving along the opposite direction of the gradient, see Fig. 6.3. There are numerous
technical improvements that facilitate the convergence towards the global minimum that
are included in actual algorithms. For a more detailed discussion, the interested reader is
referred to [159].

To apply the gradient descent method, a function defining a fitness landscape over the
hyperparameters has to be introduced. In the context of neural networks, this function is
called a cost function or loss function, usually denoted by C(y,y′), which quantifies how
much the actual output y differs from the desired output y′.
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Figure 6.4.: In backpropagation, the
weights and biases are not optimized
all at the same time but iteratively
layer by layer. A central step is there-
fore to derive a formula for the depen-
dence of the cost function on a sin-
gle neuron and its associated weights
and biases which should only depend
on values from the preceding and the
succeeding layer.

Implementing gradient descent

As the name suggests, the idea of gradient descent is to slowly descend to the minimum
of the cost function along the direction of the gradient. To calculate the gradient, the set
of partial derivatives with respect to all hyperparameters is needed which is easy for the
output layer but becomes much more difficult for hidden and input layers. The problem
is that the activation function of a given layer l takes as inputs the results of the activa-
tion functions of layer l− 1 which in turn uses as input the activation functions of layer
l−2 and so forth. To avoid this problem, an algorithm called backpropagation was con-
ceived[160, 161, 162, 163]. The basic idea of this algorithm is to start from the last layer,
calculate the gradient and update the weights for this layer only and then proceed to do the
same for each hidden and finally the input layer. The error that the network made by map-
ping the input to the output vector y instead of y′ is thus propagated backwards through
the network. Here, this procedure is illustrated with the concrete example of the quadratic
cost function and arbitrary but differentiable activation functions o(z). Figure 6.4 illus-
trates the idea of backpropagation where the hyperparameters of a neuron in a given layer
are optimized based on data from the preceding and the succeeding layer.

Optimizing the output layer

The derivatives for the output are the easiest to compute because the weights and biases
directly affect the cost function C. Output neurons are index by k and the neurons of the
previous hidden layer are indexed by j. The derivative of the cost function with respect
to a weight w jk gives

∂C
∂w jk

= (ak− y′k)
∂

∂w jk
ak

= (ak− y′k)
∂

∂w jk
o(zk)

= (ak− y′k)
do
dzk

∂

∂w jk
zk

= (ak− y′k)
do
dzk

a j . (6.2)

(6.3)

The derivative is thus made up of the difference between the output neurons output and
the actual output, the derivative of its activation function and the output a j of the neuron
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connected by the weight w jk. Introducing the shorthand notation δk = (ak−y′k)
do
dzk

allows
rewriting this in the following concise form

∂C
∂w jk

= δka j . (6.4)

This notation is chosen to emphasize that δk is supposed to be the error of the signal.
The closer the output signal of the network is to the actual value, the smaller δk becomes.
From this equation, the output weights are updated as

w jk← w jk−η
∂C

∂w jk
, (6.5)

where η is called the learning rate which controls how large the step along the gradient
is.

The biases are updated in a very similar fashion, with the exception that they are not
proportional to the input signal, so they become

∂C
∂bk

= (ak− y′k)
do
dzk

= δk (6.6)

and are updated just like the weights.

Optimizing hidden layers

Deriving the equations for hidden layers is a little more involved because they affect the
cost function C only indirectly. Nevertheless, the derivation starts out similarly:

∂C
∂wi j

= ∑
k
(ak− y′k)

∂

∂wi j
ak

= ∑
k
(ak− y′k)

do
dzk

∂

∂wi j
zk . (6.7)

Assuming that the hidden layer considered here is the last before the output layer, the
derivative of zk is

∂ zk

∂wi j
=

∂ zk

∂a j

∂a j

∂wi j

= w jk
∂a j

∂wi j

= w jk
do
dz j

∂ z j

∂wi j

= w jk
do
dz j

ai . (6.8)

Thus, the derivative of the cost function becomes

∂C
∂wi j

= ∑
k
(ak− y′k)

do
dzk

w jk
do
dz j

ai

=
do
dz j

ai ∑
k

δkw jk

= δ jai . (6.9)
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Figure 6.5.: A convolutional filter operates on a small section of the image that is of the same size as the
filter itself. By a pixel-wise comparison of the filter and the image section and subsequent summation, a
single value is obtained.

The procedure is identical for the layers further away from the output layer. Put into
words, the gradient for a hidden layer is calculated from the backpropagated error signal
and weigh it with the corresponding feed-forward signal.

Again, the biases are updated using the backpropagation error signal only:

∂C
∂bi

= δ j . (6.10)

Summary of backpropagation

To make backpropagation work, one needs to first calculate all feed-forward signals from
input to output. These are used to determine the value of the cost function. The difference
between the output of the neural network and the desired output is used to calculate the
backpropagation error which in turn is used to update the hyperparameters of a given
layer. This procedure is repeated from output to input layer until all hyperparameters
have been updated once.

In practice, the input vectors are not fed into the network one by one but in so-called mini
batches which are small subsets of the entire input dataset. The gradient is calculated is
averaged over the entire mini batch before the hyperparameters are adjusted. This has the
advantage of preventing too frequent updates to the weights which is computationally ex-
pensive while at the same time preventing premature convergence of the algorithm which
can happen when large portions of or even the entire input dataset is used for averaging.

Another problem one has to worry about is overfitting, which means that the neural net-
work learns to handle the training data extremely well but performs poorly on newly
presented data. One has to experiment with the various tuning options of the neural net-
work, such as its size, the training rate, or the mini batch size to obtain results that are
robust over a certain range of parameter values. More approaches to tackle this problem
are described below.

6.1.2. Convolutional Layers
The neural networks introduced earlier are powerful tools that can realize an abundance of
possible functions based on their connectedness and choice of hyperparameters. However,
it is sometimes advantageous to preprocess the input data which can drastically reduce the
number of layers, neurons, and thus the number of hyperparameters necessary to achieve
a desired task. One such preprocessing layer is a convolutional layer. The fundamental
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Figure 6.6.: Illustration of the action of a convolutional filter on a sample input image. By applying the
convolutional filter to all possible sections of the image, a new image is generated.

advantage of using a convolutional layer is that it can encode some degree of locality
present in the input vector, which in practice may translate to words being adjacent in
text analysis or pixels of an image being direct or next-nearest neighbors. It does so by
providing a number of trainable filters that are moved across the input data and optimized
in such a way that they find distinct patterns that occur frequently. The filter outputs a
number for each segment of the input data it is applied to, leading to as many new input
vectors as the convolutional layer has filters, see Fig. 6.5. A full example is shown in
Fig. 6.6 where a filter that was optimized to detect certain parts of how the number ‘2’ is
encoded in pixel values is shown. The filter is applied first in the top left corner of the
image, resulting in a single number calculated from the sum of the element-wise product
of the filters’ values and the section of the input vector. It is then moved one pixel to the
right and again evaluated to give a second data point. This procedure is repeated until
the entire input vector is processed. At first sight, it might seem counterintuitive that
creating an even larger input vector (due to the number of convolutional filters) would
help in training the neural network. But experience has shown that only with the help
of convolutional layers neural networks have become capable of successfully classifying
images, sound and text bites. A fully connected neural network would need a much larger
number of neurons to realize the same functionality which would in turn be very difficult
to train as well as to physically store on a computer and thus the use of convolutional
filters is the preferred approach.

6.1.3. Pooling layers
Another type of layer that can be inserted before the input is flattened and processed
via a fully connected network is a pooling layer. Pooling layers downsample data with
the goal of reducing the amount of data and therefore computational cost, as well as
pronouncing the most important features in the data which aims to prevent overfitting.
This is done by sliding yet another window over the input data which, in contrast to the
convolutional layer, should be done with a stride size greater than one, in order to actually
produce a smaller output. The most popular options for processing the data within a
particular window are maximum (max) pooling and average pooling, with which either
the maximum value or the average value of all values within a given window are used as
the output, respectively. This is illustrated in Fig. 6.7 for a max pooling operation with a
filter size of 2x2.
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Figure 6.7.: A pooling layer is used to reduce
the image size by reducing a small section of the
image.

maximum

average

Figure 6.8.: A dropout filter deactivates a certain percent-
age of the neuron connection at random to avoid excessive
specialization of the neurons on one particular input vector.

6.1.4. Dropout filters and regularization of hyperparameters
Overfitting can be a serious problem in practical applications. Two techniques that are
specifically aimed at preventing overfitting are dropout filters and regularization of hyper-
parameters. A dropout filter, see Fig. 6.8 can be thought of as a gated connection between
two layers where at each training step, only parts of the gates are open, typically 50%.
Which connections are active is decided randomly for each mini batch with the goal of
preventing specific neurons to learn one particular feature of the training image. By con-
stantly changing the ensemble of active neurons, the gradient descent procedure is less
likely to fall into local minima. Directly aimed at keeping neurons plastic, regularization
penalizes large values of the hyperparameters which could potentially push neurons into
saturation and prevent further training. It can be implemented in various ways, one of
the most popular being L2 regularization, which simply adds the weighted L2 norm of the
weight vector for a given layer to the loss function, aiming to keep it small.

6.2. Supervised approach to the discrimination of
phases of matter

A Hamiltonian consisting of competing terms each is potentially capable of realizing a
variety of different physical phases. Each of the terms is weighted with a tunable param-
eter and the particular choice of parameters decides which phase is realized. To discover
which phase belongs to which parameter region, one typically chooses to measure order
parameters, to calculate entanglement entropies [82] or resorts to measure other non-local
features such as Wilson loops [164] or the modular S matrix[165] if possible.

However, which is of these methods is best suited to map out the phase diagram is not
obvious because they are tailored towards identifying specific types of phases. In addition,
the actual numerical implementation of the measurement process can be very costly or
even impossible depending on the method at hand. This is where neural networks come in
as a possible general purpose tool that can learn from the raw Monte Carlo data generated
by the simulation. The motivation for such an approach is that neural networks excel
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at identifying patterns and structure in data and it will be shown that (quantum) phase
transitions are accompanied by very distinct changes in precisely those patterns of the
Monte Carlo data which can then be exploited for their identification and characterization.

6.2.1. Learning the characteristics of a phase
The Ising model [166] serves as a prototypical example to illustrate this idea: The pres-
ence of (anti-)ferromagnetic order is detected by an order parameter given by the (alter-
nating) sum of all spin directions on the lattice. In a machine learning approach the entire
spin configuration is used as the input. In the magnetized phases, a typical configuration
looks like either a uniformly colored rectangle or a checkerboard pattern while the para-
magnetic phase is characterized by images that look completely random. The observation
that different types of orders are associated with certain patterns in fundamental quantities
is not unique to the Ising model but carries over to other more complicated models such
as Hubbard models of bosons and fermions which are the focus of this chapter.

In the general case, the procedure works as follows: One considers a (quantum) many-
body Hamiltonian that, as a function of some parameter λ , exhibits a phase transition
between two phases – such as the aforementioned thermal phase transition in the clas-
sical Ising model [150] or the zero-temperature quantum phase transition as a function
of some coupling parameter [152]. In such a setting, where one has prior knowledge

A B
�c

Figure 6.9.: Setup for supervised discrimination of two phases A and B (left and right) separated by a
critical coupling strength λc using neural networks.

about the existence of two distinct phases, one can train a convolutional neural network
in a supervised setting with labeled representations of the respective phases acquired by
Monte Carlo sampling deep inside the two phases. One is in principle free to choose
which specific representation to use for the training process, but often the employed fla-
vor of Monte Carlo offers at least one straightforward choice. For the Ising model, this
obvious choice is images of the spin configurations [150]. After successfully training the
CNN to distinguish these two phases (which typically requires a few thousand training
instances), one can then feed unlabeled instances, sampled for arbitrary intermediate pa-
rameter values of λ , to the CNN in order to locate the phase transition between the two
phases, see also the schematic illustration of Fig. 6.9. This approach has been demon-
strated to produce relatively good quantitative estimates for the location of the phase tran-
sition [150, 152, 167, 168, 169] and might even be finessed to be amenable to a finite-size
scaling analysis for second-order phase transitions [150].

6.2.2. Network architecture
The network architecture is chosen to be similar to the ones that have already been used
successfully in other contexts of pattern recognition, in particular image recognition. One
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conv pool conv pool full dropout full

Figure 6.10.: Schematic illustration of the neural network used in this work. A combination of convo-
lutional (conv) and max-pooling layers (pool) is first used to study the image, before the data is further
analyzed by two fully connected neural networks separated by a dropout layer. The convolutional and the
first fully connected layer are activated using rectified linear functions, while the final layer is activated by
a softmax function. Figure first appeared in [152].

such architecture is shown in Fig. 6.10, which has been employed throughout this thesis,
sometimes with minor modifications. It consists of two main components – a convolu-
tional and a fully connected part. Because the exact values for the number of hyperpa-
rameters may vary slightly from project to project, only typical choices are reported here.
The convolutional part processes the data by a combination of two convolutional and max-
pooling units. Both of these units are activated by a rectified linear function (relu) and
have filters typically of size 3× 3 with about 32 filters for the first and 64 filters for the
second layer. The data is then fed into a fully connected, relu activated layer of usually
512 neurons. To avoid overfitting, a dropout regularization at a rate of 0.5 is applied to
this layer until the result can be read out from a softmax layer. The optimization of the
neural network is performed using the cross-entropy as a cost function and ADAM [170]
as a particularly efficient variant of the stochastic gradient at a learning rate of typically
γ = 0.0001.

The number of epochs is adjusted dynamically based on the timeseries of the loss func-
tion. If desired, errorbars can be generated by recording data for a number of epochs and
considering the mean and variance because they weights continue to be adjusted slightly
as different mini batches are used in training. The networks used in this work were im-
plemented using the TensorFlow library [171].

6.2.3. Finding the correct input
The neural network employed in this thesis was designed with image recognition in mind
and therefore whatever type of input is chosen should resemble an image. In DQMC
simulations, the two principal objects that lend themselves naturally to be used as input
to the neural network are the auxiliary field and the Green’s function. A priori, one would
expect both of them to work equally well as they were both shown to play a fundamental
role in the algorithm (see chapter 2). To verify this assumption, the by now familiar
spinful Hubbard model on a honeycomb lattice is used:

H =−t ∑
〈i, j〉,σ

c†
i,σ c j,σ +U ∑

i
nn↓,i . (6.11)
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Figure 6.11.: Results from training the neural network on Hubbard-Stratonovich field configurations of a
spinful Hubbard model on a 2 ·6×6 lattice with on-site interaction U . Reference points for training were
U = 1.0 and U = 16.0, marked by red dots in the figure. Despite intensive training, the network depicted
in Fig. 6.10 is unable to distinguish the auxiliary field configurations of the two reference points and as a
consequence cannot be used to discriminate between the two phases. Figure first appeared in [152].

For assessing the suitability of the auxiliary fields, the interaction is decoupled in both
the charge and the magnetic channel, see (2.34). and (2.34), respectively. For each of
these decouplings, 8192 auxiliary field configurations and Green’s functions are sampled
along the Markov chain for many different values of the on-site interaction U . Further
parameters are a discretization step of ∆τ = 0.1 and a projection time θ = 10. Thus,
the auxiliary field for the spinful Hubbard model is of size 2 ·L2× 200 and the Green’s
functions are of size 2 ·L2×2 ·L2.

Learning auxiliary field configurations

Regardless of the type of transformation employed, the training of the CNN from Fig. 6.10
is performed with auxiliary field configurations from two extremal values of the interac-
tion strength U , namely U = 1.0 and U = 16.0. After 32 epochs, training is stopped and
the network is asked to predict to which of the phases configurations from intermediate
couplings strengths belong. The results of this training and prediction procedure for auxil-
iary fields from simulations with decoupling in the charge channel are shown in Fig. 6.11.

The side panels show one sample of the auxiliary field configuration from the two re-
spective extremal points. At first sight, there is no discernible difference although these
configurations belong to two very different points in the phase diagram. As indicated by
the flat line and the constant prediction of 0.5, the neural network is equally incapable of
distinguishing these two phases based on the auxiliary field when decoupling the charge
channel.

The situation is improved when decoupling in the magnetic channel, the results for which
are shown in Fig. 6.12. In stark contrast to the previous case, the auxiliary field config-
urations are visibly different for the two reference values of the interaction U . For weak
interactions, U = 1.0, the auxiliary spins are arranged in a random, noisy pattern while at
strong interactions, U = 16.0, the spins form long lines in the direction of projection time.
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Figure 6.12.: Results from training the neural network on auxiliary field configurations of a spinful Hubbard
model on a 2 · 6× 6 lattice with on-site interaction U using a Hubbard-Stratonovich decoupling in the
magnetic channel. Reference points for training were U = 1.0 and U = 16.0, marked by red dots in the
figure. The neural network is able to distinguish the two phases, but the prediction of the critical point lacks
accuracy. Figure first appeared in [152].

Judging purely from the difference in appearance, a neural network should be capable of
distinguishing the two phases. This impression is confirmed by the prediction produced
by the network which shows that the network is capable of finding enough unique fea-
tures distinguishing the two respective phases. However, despite being generally capable
of distinguishing the phases, the supposed critical point for this system size is located at
U ≈ 8.0, far away from the actual value U ≈ 3.86 even when considering that U ≈ 3.86
is the value for the infinite system.

Learning Green’s functions

The second option for constructing an input that naturally comes to mind is to use Green’s
functions, i.e. the two-point correlator 〈ci c†

j〉. Its two index structure is already very
suggestive of being representable as a square matrix, which in turn can be interpreted as
an image, where the number of “color” channels is determined by whether the entries
of the Green’s function are real-valued or complex-valued. The Green’s functions used
as an input here are obtained from the same simulation and correspond each to one of
the auxiliary field configurations used previously. Applying the same training procedure
as for the auxiliary fields, one obtains the curves shown in Fig. 6.14. The side panels
each show four different samples of Green’s functions from deep inside the two phases.
Because the entries of the Green’s functions are actually complex numbers, they were
transformed for the purpose of visualization as described in the figure’s caption. Note,
however, that the network was trained using the raw, complex-valued data. In contrast
to the training with auxiliary field configurations, a relatively sharp signal is obtained that
locates the value of the phase transition close to the actual value.
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Figure 6.13.: The main panel shows results from training a network on Green’s functions for the same
parameter settings as in Fig. 6.11 and 6.12. For the visualization of the samples of Green’s functions in the
side panel, the complex entries of these matrices are color-converted by interpreting their absolute value
as the hue of the color and their phase angle as the saturation (HSV coloring scheme [172]). The red dots
indicate the location of the interaction values used for training. Figure first appeared in [152].

Conclusion

In conclusion, the auxiliary field configurations can in principle be used as an input. How-
ever, their usability depends strongly on the type of Hubbard-Stratonovich transformation
used and they show a strong finite size effect, at least for the system considered here.
The results could possibly be improved by leaving the dimensions of the auxiliary field
unflattened at the rather high cost of working with genuinely three-dimensional tensors
as inputs to the network [173]. However, not every problem allows freely choosing the
type of Hubbard-Stratonovich transformation due to its Hamiltonian that may only allow
for one particular decoupling. Other reasons include the stability of the algorithm or the
efficiency of the updates. In contrast to the auxiliary fields, the Green’s functions perform
much better and are always accessible regardless of the underlying type of decoupling.
In particular, they are a general and quantity and accessible in other QMC methods that
are not based on auxiliary fields such as Stochastic Series expansion. Thus, from now
on, Green’s functions will be used exclusively as the input for the neural network unless
mentioned otherwise.

6.2.4. Machine learning a fermionic quantum phase transition
Having established that the Green’s function is the object of choice, the transition of the
spinful Hubbard model on the honeycomb lattice is studied more closely, see Fig. 6.14.
The critical value of the interaction strength can now be located quite close to the actual
value, right in between the value for the infinite system (U ≈ 3.85) and the finite size
value that was previously determined for the largest system studied here (U ≈ 4.2 [174]).
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Figure 6.14.: Machine learning of the phase transition from a semi-metal to an antiferromagnetic insulator
in the spinful Hubbard model (6.11) on a honeycomb lattice using the Green’s function approach (see main
text). Visualized in the side panels are representative samples of the Green’s function (calculated from the
auxiliary field) for a 2 · 9× 9 system in the two respective phases. The main panel shows the prediction
obtained from a CNN trained for parameters in the two fermionic phases (indicated by the red dots). Data
for different system sizes 2 ·L×L are shown where the colors were selected to highlight an apparent even-
odd effect in the linear system size. The vertical solid line indicates the position of the phase transition
in the thermodynamic limit [175], while the dashed line marks the position at which the antiferromagnetic
order breaks down [174] for the finite system sizes of the current study. Figure first appeared in [152].

6.3. Unsupervised approach tomapping out phase
diagrams

One major shortcoming of the supervised scheme for distinguishing phases is that one has
to have a rough idea of which range of parameters belongs to which phase. A priori, these
ranges will be unknown and thus the supervised approach is not generally suitable. In
particular, it might occur that in between two extremal values that realize different phases,
one or more other phases are realized which would be missed by training on extremal
values only. For those situations, it is desirable to have an unsupervised approach that is
capable of autonomously discovering the relevant parameter ranges.

6.3.1. Turning supervised into unsupervised
The key idea of the unsupervised approach presented here is to slide a small window
through the parameter space of the to-be-determined phase diagram and to test whether it
is possible to positively discriminate two distinct phases for the two boundary parameters.
The latter can be accomplished by employing the original supervised approach, i.e. by
making an attempt to train a CNN on labeled instances for the two boundary parameters
and to subsequently determine whether the training indeed led to a positive discrimina-
tion of the two sets of instances. For a parameter window that encloses a phase transition,
the expectation is that a positive discrimination is indeed found, i.e. the CNN produces
prediction values of p = 0 and p = 1 for the two sets of instances, respectively. A param-
eter window that for its full extent resides within one given phase, however, should not
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Figure 6.15.: Schematic illustration of the unsupervised machine learning approach. For a small param-
eter window, which is slid across parameter space, a discrimination of phases at its endpoints A and B is
attempted via a supervised learning approach. A positive discrimination via the underlying convolutional
neural network is expected only if the parameter window indeed encompasses a phase transition, while it
should fail when points A and B reside in the same phase. Figure first appeared in [154].

result in a positive discrimination of the instances and should result in a prediction value
of p = 0.5 for all instances (indicating a maximal confusion). This approach is indeed
unsupervised in the sense that one can introduce a metric that quantifies how well the
instances used in a given training procedure can be positively discriminated. Specifically,
we consider the “label distance" d(λ1,λ2) as the integral over the prediction values p in
λ -space between two points λ1 and λ2

d(λ1,λ2) = Θ




λ2∫

λ1

dλ (p(λ )−0.5)− ε


 , (6.12)

which indicates how close the assignment of labels for instances at these two points should
be. If they belong to the same phase, the prediction will in theory always be 0.5 and the
integral will evaluate to 0, while it will be 1 if the instances for the two values of λ are
distinguishable (and separated by a phase transition). In practice, deviations from the
ideal values can be accounted for by introducing a threshold difference ε .

6.3.2. Application to hard-core bosons
The first test system is the Bose-Hubbard model[176], which captures the competition
between kinetic and potential energies that stabilize superfluid and Mott insulating phases,
respectively. Adding nearest-neighbor repulsion or ring exchange terms can enrich its
phase diagram by supersolid [177, 178, 179] or d-wave-correlated Bose liquids [180].
For the purpose of evaluating the proposed method, a model of hard-core bosons on the
square lattice [181] subject to a nearest-neighbor Coulomb repulsion V and a chemical
potential µ is chosen. Its Hamiltonian is

H=−t ∑
〈i, j〉

(
a†

i a j +a†
jai

)
+V ∑

〈i, j〉
nin j−µ ∑

i
ni , (6.13)

where ni = a†
i ai are the usual boson operators in second quantization. Its ground-state

phase diagram [182, 181] exhibits four different phasesas illustrated in Fig. 6.17a) –
besides the trivial, fully filled or completely empty, ground states there is an extended
superfluid phase along with a checkerboard solid. At finite temperatures, the model ex-
hibits continuous phase transitions to a normal fluid both from the checkerboard solid
(second order) and the superfluid (Kosterlitz-Thouless) as illustrated in Fig. 6.18a). This
abundance of different phases and different types of phase transitions is ideally suited
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Figure 6.16.: Identification of
the first-order quantum phase
transition between the checker-
board solid and superfluid phase
for ∆ = 3 employing (a) a super-
vised and (b) the unsupervised
ML approach. Figure first ap-
peared in [154].
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Figure 6.17.: Zero-temperature phase diagram of interacting hard-core bosons. Panel (a) shows the phase
diagram extracted from quantum Monte Carlo (QMC) simulations [182, 181]. Panels (b) and (c) show the
phase diagrams extracted from our unsupervised ML approach applied to correlation functions sampled in
QMC simulations (for L = 8). Panel (b) is based on the diagonal correlation function 〈Sz

i S
z
j〉 and panel (c)

on the off-diagonal correlation function 〈S+i S−j 〉+ 〈S+j S−i 〉, respectively. Figure first appeared in [154].

to benchmark the proposed unsupervised approach against numerically exact results from
large-scale Monte Carlo simulations [181]. The simulations are carried out using Stochas-
tic Series Expansion [183] to study an anisotropic spin-1/2 model in a magnetic field to
which the original Hubbard Hamiltonian (6.13) can be mapped [184] to give

H=−∑
〈i, j〉

(
S+i S−j +S−i S+j

)
+∆ ∑

〈i, j〉
Sz

i S
z
j +h∑

i
Sz

i . (6.14)

In this mapping, ∆=V , h= 2V−µ for t = 1 The systems under study are of linear system
sizes L = 8,16,24,32 and were sampled at inverse temperatures of up to β = 40.

The first step is to map out the phase boundaries of the ground-state phase diagram in
the (∆,h) plane by shifting a training window (of width δ∆ = 0.2) vertically across the
parameter space. In the spirit of devising a rather general algorithm that uses no prior
knowledge about the phase diagram and the specific nature of its phases, the CNN is
fed with equal-time Green’s functions sampled in the Monte Carlo simulation, as was
done for the supervised scenario. Specifically, for this model the diagonal correlation
function 〈Sz

i S
z
j〉 and the off-diagonal correlation function 〈S+i S−j 〉+ 〈S+j S−i 〉 are used as

input. Fig. 6.16 illustrates results for an example cut at ∆ = 3 as a function of h comparing
the supervised and the unsupervised learning approach.

Figure 6.16a) shows how the supervised method allows identifying the location of the
phase transition via the change in the prediction function when trained deep in the two
phases (h1,2 = 3.0,5.0). Figure 6.16b) shows the same transcription from the perspective
of the unsupervised scheme put forward in the preceding section where a training window
of varying length is moved along the cut. A singular peak in the average prediction
success clearly indicates the location of the phase transition, with the peak narrowing for
shorter window width as expected. Results of such cuts are compiled into an entire phase
diagram shown in Figs. 6.17b) and c) where the average prediction success is plotted.
The diagrams reveal several sharp transitions and, in fact, traces out the phase diagram in
superb quantitative agreement with the original MC analysis [181].

82



6. Machine Learning

(a) (b) (c)

checkerboard 
solid

h

2nd order

1st order

KT

SF

T

h

T

h

T

0.5

1.0

0 4.0

0.5

1.0

1.5

0
6.0 6.00 0

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

Figure 6.18.: Finite-temperature phase diagram of interacting hard-core bosons. Panel (a) shows the phase
diagram found in quantum Monte Carlo simulations [181], panels (b) and (c) show results form our unsu-
pervised ML approach (for L = 8). For Panel (b) the diagonal correlation function 〈Sz

i S
z
j〉 is fed into the

CNN, for panel (c) the winding number per site. The white lines indicate the phase boundaries of panel (a).
Figure first appeared in [154].

The broadening of the transition from one of the trivial states into the superfluid in the
diagonal correlations reflects their slower decay in comparison with the rapid change of
the off-diagonal correlations.

Tracing out the thermal transitions to construct the finite-temperature phase diagram of
model (6.14) turns out to be somewhat more difficult. The results obtained via the un-
supervised approach applied to the diagonal correlation function 〈Sz

i S
z
j〉 are shown in

Fig. 6.18b). The second-order transition between checkerboard solid and normal fluid
results in a relatively broad signature, which is mostly due to the moderate system size
(L = 8) underlying this comprehensive sweep of the phase diagram. It is interesting to
note that while the Kosterlitz-Thouless (KT) transition out of the superfluid leaves no vis-
ible trace in the analysis of the diagonal correlation function, it leaves a broad signal in
the off-diagonal correlation function (not shown). This reflects the intrinsic inefficiency
of local observables to capture the non-local nature of the vortex-antivortex unbinding
at a KT transition. Alternatively, the CNN can be fed with explicit information about
winding numbers for configurations sampled in the Monte Carlo simulation, e.g. the
winding number per site in one of the spatial directions. Each sample of the winding
number was normalized with respect to its largest absolute value to ensure values in the
range of (−1,1). The idea is to emphasize the pattern of the distribution of windings
rather than the absolute values, which would be used for a direct estimation of the order
parameter. This results in a clear signal located slightly above the actual KT transition,
see Fig. 6.18c). The finite-size trend of this peak is shown in Fig. 6.19. While the feature
broadens with increasing system size, the peak systematically enhances for larger systems
and clearly shifts towards the MC estimate.

6.3.3. Fermions and topological order
The second example to illustrate the effectiveness of the unsupervised learning approach
is a model of Dirac fermions coupled to a fluctuating Z2 gauge field,which exhibits a
phase transition from a deconfined, topologically ordered phase to an antiferromagnet
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Figure 6.19.: Identification of the finite-temperature Kosterlitz-Thouless transition between superfluid
and normal fluid for h = 5.0 when feeding the CNN with winding numbers of Monte Carlo configurations.
The dashed lines indicate the known location of the transition. Figure first appeared in [154].

[185, 186]. Defined on a square lattice, its Hamiltonian reads

H= ∑
〈i, j〉

Z〈i, j〉

(
N

∑
α=1

c†
i,αc j,α +h.c

)
−Nh ∑

〈i, j〉
X〈i, j〉

+NF ∑
�

∏
〈i, j〉∈∂�

Z〈i, j〉 , (6.15)

where in this study there are N = 2 species of fermions with creation/annihilation oper-
ators c†

i,α /ci,α and bond spin operators Z〈i, j〉 and X〈i, j〉 that correspond to the usual Pauli
spin-1/2 matrices. Since

Qi = (−1)∑α c†
i,α ci,α ∏

δ=±ax,±ay

X〈i,i+δ 〉 (6.16)

commutes with (6.15), the Gauss law, Qi =−1, is imposed dynamically in the zero tem-
perature limit and on any finite-sized lattice. The original model of Ref. [185] was sup-
plemented with a flux term of magnitude F = 1/2 which shifts the critical value for the
magnetic field toward larger values. The phase transition is then found to be hc ≈ 0.40
[187].

The data for the machine learning approach is generated with finite temperature auxiliary-
field quantum Monte Carlo [188] as implemented in the ALF-package [189, 15] with the
latter providing samples of the equal-time single-particle Green’s function 〈c†

i c j〉 for an
inverse temperature β = 40. As Fig. 6.20a) clearly demonstrates, the highly non-trivial
phase transition in model (6.15) can be readily located using the unsupervised approach –
there is a sharp peak located right at the expected value of the transition for varying system
sizes. This might be surprising at first sight as one might expect that the non-local nature
of the topologically ordered phase might pose similar problems as the identification of the
vortex-antivortex unbinding at a topological phase transition (as discussed above). Indeed,
a recent machine learning based identification of topological order [168] succeeded only
because of the addition of explicit non-local filters (akin to the convolutional filter of a
CNN). In the context of model (6.15) such steps are not necessary as the topological
nature of the deconfined Dirac phase can reveal itself already on relatively modest length
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supervisedunsupervised Figure 6.20.: Detection of
phase transition to topological
order in model (6.15) of
fermions coupled to a fluctuat-
ing Z2 gauge field employing
(a) the unsupervised and (b)
a supervised ML approach.
Figure first appeared in [154].

scales – the proliferation of vison excitations at the transition are bound to plaquettes of
the square lattice and as such easily detectable. Although visons are very local, the CNN
is fed with snapshots of the Green’s function 〈c†

i,σ c j,σ 〉 – a quantity that, taken at face
value, contains very little information. Since the simulations are SU(2)-spin invariant,
each snapshot also has no spin dependence. Furthermore, since {Qi,ci,σ}= 0, it follows
that 〈c†

i,σ c j,σ 〉= δi, j/2, reflecting the fact that the Green’s function is a gauge-dependent
quantity. Note that the latter equation holds only after averaging over snapshots. As such,
it is certainly remarkable that the CNN can detect in such a precise manner the phase
transition between a topologically ordered state and an antiferromagnet.

The supervised learning approach can be used as a consistency check, which is shown in
Fig. 6.20b) where a CNN was trained deep inside the two respective phases (indicated by
the arrows). As expected, the prediction changes from 0 to 1 right at the transition (dashed
line). Note that both machine learning approaches like a standard analysis of the phase
transition using RG-invariant quantities [185, 187] are relatively sensitive to finite-size
effects, which makes it hard to infer the order of transition from the currently available
data. Compared to the hard first-order transition in the boson model, the fermionic tran-
sition at hand certainly does not show a similarly sharp transition. On the other hand,
the finite-size trends of Fig. 6.20 do not readily allow for a data collapse expected for a
continuous transition [190].

6.4. Sign-problematic many-fermion systems
Similar in spirit to the work presented in chapter 5, this section explores the machine
learning perspective on the sign problem. In contrast to how ordinary observables have
to be treated in a model with sign problem (see chapter 4), a neural network only looks
for patterns in characteristic quantities of the system such as the Green’s functions, the
auxiliary field (DQMC), operator string (SSE) or any other relevant quantity from the
configuration space or one that is derived from those. As a disclaimer, it should be men-
tioned right away that the work presented in the following does not in any way solve the
fermion sign problem in the sense that it becomes possible to calculate correlation func-
tions and obtain any desired information about the model. What will be shown, however,
are two examples of models with a very severe sign problem that realizes distinct patterns
in their respective equal times Green’s function that can be learnt by a neural network and
used to detect the critical value of the interaction for the transition. With this information,
it even becomes possible to establish a concept called transfer learning, where a neural
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network trained on one model can be used to detect the transition in another model that is
structurally similar which potentially opens the way to a multi-purpose phase classifica-
tion system. The issue of how representative these results are will be discussed at the end
of the section.

The system of choice is again the spinless Hubbard model on the honeycomb lattice:

H =−t ∑
〈i, j〉

c†
i c j +V ∑

〈i, j〉
nin j. (6.17)

As was done in the entanglement chapter, the model is studied in its sign-problematic
complex fermion basis rather than the sign-problem free Majorana formulation.

6.4.1. Identifying phase boundaries
The network was set up with the same choice for the number of hyperparameters and
trained with the same procedure as in the previous examples. The training set consisted
of representative samples of the Green’s function for interaction strengths deep within
the two phases. For each of the two reference points V = 0.1 (semi-metal) and V = 2.5
(CDW), 8192 (4096 for L = 15) samples were generated from DQMC simulations using
the modified statistical ensemble of absolute weights |WC|. Thus optimized, unlabeled
configurations from several different interaction values 0.1 < V < 2.5 were fed to the
CNN which was then asked to predict to which phase a particular configuration belongs.

Unlike for regular observables, there is no obvious way how to include the sign in the
learning procedure if desired. One can envision many different ways such as including
a separate pixel, a separate layer (i.e. image dimension) training multiple networks for
different values of the sign or multiplying the entire sample by its sign. A separate pixel
would likely be deemed irrelevant by the training procedure, considering that there are
(2 · L2)2 other fluctuating quantities. Training multiple networks is not possible for a
model with a phase problem where the phases are numerically different at each step along
the Markov chain and thus do not allow for any kind of grouping. Including a separate
layer and multiplying each sample with its respective phase are similar in nature with the
latter option being the less computationally intensive which is why it was chosen for this
study. In addition, this method is also the closest in spirit to the measurement prescription
for regular observables that include the average over the sign weighted observable 〈σO〉.

Following the above considerations, two experiments were conducted. Once, the infor-
mation about the sign was provided by multiplying each Green’s matrix Gs(i, j) with the
sign associated with the underlying configuration. In a second run, the sign was ignored
altogether and the “bare” Green’s function was presented as is. It turns out that, as illus-
trated in the inset of Fig. 6.21, the prediction of the location of the phase transition is not
notably improved by multiplying the Green’s functions with its phase. While the predic-
tion function moves slightly in parameter space, it also acquires a much broader spread
as estimated from averaging over 12 epochs. In fact, multiplying the Green’s matrices by
a completely random phase is found to give a similar shift and broadening of the spread.
Considering the data for different system sizes in Fig. 6.21 one can determine a quan-
titative estimate of the location of the fermionic phase transition, which is in very good
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Figure 6.21.: (a) Prediction of a CNN for the phase transition from a Dirac semi-metal to a charge density
wave (CDW) ordered state in the half-filled spinless fermion Hubbard model (6.17) on the honeycomb
lattice of size 2 · L× L. The CNN has been trained on 8192 representative samples of the bare Green’s
function deep inside the two phases (indicated by the red dots). The images in the left and right columns
are color-converted instances of the Green’s function used in the training. The inset shows a comparison of
the prediction for the L = 9 system when feeding the CNN with the bare Green’s function or the Green’s
function multiplied by the relative sign / complex phase associated with each configuration (of a given
Markov chain). (b) The averaged real and imaginary part of the weight’s phase φ , Re(φ) and Im(φ),
respectively, is shown in the main part of the figure for L = 6. The three insets show the distribution of
the phase for a sequence of 128 measurements, with their average depicted by the pink dot. Figure first
appeared in [152].
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Figure 6.22.: CNN-based iden-
tification of the phase transition
in the one-third filled, spinless
Hubbard model (6.17) on the
honeycomb lattice with nearest-
neighbor repulsion V . The side
panels show representative sam-
ples of the Green’s functions at
the two reference points V = 0.1
and V = 2.5. The network finds
two clearly separated phases of
which the weak coupling phase
is known to be metallic. Figure
first appeared in [152].
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agreement with the Monte Carlo results [191]. This convincingly demonstrates that the
CNN is capable of providing a high-quality prediction discriminating the two fermionic
phases, even when the sign content of the configurations is ignored. Importantly, us-
ing bare Green’s matrices can provide a significant gain in computational efficiency over
including information about the relative sign of individual configurations because mul-
tiple parallel Markov chains can be sampled. In light of the results of Fig. 6.21 (inset)
which show no systematic improvement of the predictive capabilities of the neural net-
work when given additional information about the sign structure, all data presented below
was obtained by ignoring the sign in the simulation.

The next experiment was conducted using the same spinless fermion system of Eq. (6.17)
but at one-third filling. Going below half-filling turns the itinerant phase for small cou-
pling V into a conventional metal with a nodal Fermi line, while for large V some sort of
CDW-ordered Mott insulating state is still expected. In contrast to half-filling, the one-
third-filled system has no known sign-free (Majorana) basis for this parameter regime.
Despite a very strong sign problem, the supervised machine learning approach is never-
theless capable of finding a prediction function that can properly distinguish two phases
. This procedure indicates the existence of a phase transition around Vc ≈ 0.7± 0.1 as
illustrated in Fig. 6.22, which matches a recent estimate from the earlier entanglement
calculations [55]. The precise nature of the Mott insulating phase at large V has so far
remained elusive, which unfortunately is not altered by the supervised learning approach
employed in the current study.

6.4.2. Transfer learning
Finally, the possibility of “transfer learning" is explored, which means that a neural net-
work is trained on one model but then used to discriminate phases for an entirely different
Hamiltonian without any further training. This approach was highly successful for neural
networks trained with classical Ising configurations in Ref. [150]. In the context of this
work, the CNN was trained to discriminate the fermionic phases of the sign-problem free,
spinful fermion model (6.11) and then applied to predict phases for the sign-problematic,
spinless fermion model (6.17). This procedure seems justified based on the fact that
at half-filling the two models exhibit similar physics, with the potential energy driving
a Gross-Neveu type phase transition from a Dirac semi-metal to a SDW/CDW charge-
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Figure 6.23.: An example of trans-
fer learning in an artificial neural net-
work. A CNN that was trained to
discriminate the phases of the sign-
problem free, spinful Hubbard model
(6.11) and then applied to identify
the phases and phase transition of the
sign-problematic, spinless Hubbard
model (6.17). The network is found
to reliably distinguish the fermionic
phases of the spinless model and pro-
vides a relatively accurate estimate
for the location of the phase transi-
tion (the vertical line indicates the lo-
cation of the transition in the thermo-
dynamic limit of infinite system size).
Figure first appeared in [152].
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ordered phase, respectively. Results for the predictions of the averaged state function are
illustrated in Fig. 6.23, which shows that the CNN is capable of reliably distinguishing the
fermionic phases of the spinless model, even producing a rough estimate for the location
of the phase transition. It is thus concluded that this approach indeed allows for a certain
level of transfer learning between sign-problem free and sign-problematic Hamiltonians,
suggesting a fruitful area of future study on the relationship between supervised machine
learning and the sign problem.

6.4.3. On the validity of themachine learning approach to
sign-problematic models

Following these promising results, the question remains how to interpret them and how
representative they are. To reiterate, the motivation for conducting these experiments is
that in contrast to the analysis of correlation functions, the sign does not enter explicitly
and there is, in fact, not even an obvious way of including it at all. The only relevant
information for the neural network is which patterns appear in the input and how these
patterns are related to each other in the respective input images. If there are patterns that
are unique to one phase, then these will be chosen as one of the distinguishing features
which in turn can be used to detect the location of the phase transition.

The probably most pressing issue that can be raised about this procedure is the question of
whether the phase transitions obtained from the modified ensemble are the same ones that
occur in the real system. It seems that the answer to that question is again dependent on
the particular Monte Carlo flavor, just like it was in the case of the entanglement entropies.
The best example to discuss this is the model of spinless fermions at half filling. The SSE
formulation for this problem is exactly the same as the one for a hardcore boson model at
half filling. This bosonic version has a phase transition from a superfluid to an insulator
at V/t = 2.0, so at much larger coupling strengths, that is accompanied by characteristic
changes in the off-diagonal and diagonal correlation functions [192]. For this model, all
of the information about the fermionic phase transition at around V/t = 1.35 is contained
in the fermion sign, which is calculated from the windings of the hardcore bosons not
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around the simulation cell but around each other. One thus has to find a way of feeding
this information to the network on top in a way that would expose some structure in the
data so that a neural network would be capable of learning some characteristics. It is
obvious that the unmodified data from the auxiliary ensemble in SSE is not sufficient to
learn anything about the fermionic problem.

In stark contrast, the DQMC flavor is capable of coming up with the correct location of the
phase transition within the margin of error set by the finite system sizes. Most likely this
is due to the fact that the DQMC approach does not simply replace fermions by bosons
(or antiferromagnetic by ferromagnetic interactions) when a sign problem appears. There
is, in fact, a straightforward way of building up confidence that the DQMC is less affected
by the sign problem: At least for Hubbard type models, it is possible to use many different
Hubbard-Stratonovich transformations which lead to different sign problems and thus to
different auxiliary ensembles. In addition, the Green’s functions that are generated during
the simulations are different (only expectation values after the averaging process have to
be equal). Because each transformation creates its own unique auxiliary ensemble they
can each exhibit phase transitions for certain coupling strengths or not. If each ensemble
does, in fact, have the same critical interaction strength, then this shows that all of the
auxiliary ensembles that can be simulated via the original model share a common feature
from which one could conjecture that it is also present in their parent model.

Along with the attempt to come up with a way of encoding the sign structure in world-
line methods, it would certainly be worthwhile to set up simulations for models whose
physics is known but that suffer from a sign problem in DQMC using different Hubbard-
Stratonovich transformation and checking whether they all realize the same phase dia-
grams in their respective auxiliary ensembles.

6.5. Conclusion and outlook
The work presented in this chapter played a key role in establishing that machine learn-
ing techniques are capable of learning certain distinct properties of (quantum) phases of
matter from raw Monte Carlo data and that this information can be used to pinpoint the
location of phase transitions. In some cases, it was shown that it is even possible to extract
some information about critical properties as well. Applying this method to an unknown
model offers an easy way of getting a first glimpse at what parameter regimes realize
distinct phases of matter. This already is an advantage over traditional methods where
one would have to test certain order parameters or apply other methods capable of finding
phases that are topologically ordered and thus not identifiable with the help of a simple
order parameter. In a second step, this information could be used to single out certain
interesting values of the model’s parameters for a more in-depth Monte Carlo analysis or
for studies with equally sophisticated techniques such as exact diagonalization or tensor
network algorithms that would be costly to apply to the entire parameter space.

There are two distinct types of models that this method could be useful for. One is the
class of designer models, an example of which was actually studied in section 6.3.3. In
this and other similar models, one considers a sign-problem free model of fermions which
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are subsequently coupled to bosonic degrees of freedom giving rise to many different in-
teresting phases without introducing a sign problem. Because of the variety of possible
couplings and the resulting variety phases that these models can realize, it is advantageous
to have a technique at hand that allows getting a quick overview of what is happening. Ap-
plying the transfer learning approach that was pioneered in this work will not only allow
to identify where different phases are realized but also of what type theses phases are.
The other direction to pursue is to study whether the sign problem can be associated with
some kind of structure that a neural network would be able to learn order to distinguish
phases based on how the sign problem manifests itself.

Aside from the image recognition inspired approach to applying machine learning tech-
niques in condensed matter, there are two more major research directions that show
promising results. The representation of wave functions in terms of tensor network states
and their variational optimization towards the physical target state has been an extremely
successful approach to the many-body problem, in particular in one dimension where un-
der certain conditions it is possible to find an exact representation of a quantum state as
a tensor network state. Not all models are suited for such a procedure though because
either the optimization takes too long or because it is even too difficult to setup an appro-
priate wave function to optimize in the first place. Machine learning techniques provide
an alternative way worthy of further investigation to write down these variational wave
functions that are potentially as powerful as their tensor network counterparts all while
possibly less resource intensive and easier to optimize.

In connection with Monte Carlo, one very interesting application of image generating
machine learning techniques is the construction of new update mechanisms that provide
highly effective global updates, effectively eliminating any autocorrelation between sam-
ples and thus allowing for a more massive parallelization of the simulation that allows
accessing significantly larger lattices. The idea relies on machine learning algorithms
such as Restricted Boltzmann Machines (RBM) or Generative Adversarial Networks that
are capable of generating new images, sometimes photo-realistic, after learning key prop-
erties of existing ones. Just like one find distinguishing features in Monte Carlo configura-
tions for different values of a model’s parameters that can be exploited to separate phases,
one can also generate new Monte Carlo configurations with a sufficiently trained machine
learning algorithm which can be proposed as updates in the Markov Chain. The advan-
tages of having access to such an essentially autocorrelation free algorithm are manifold:
When looking to determine critical properties of models, one often runs into strong finite-
size effects due to the small accessible lattice sizes. Another type of analysis that would
benefit from such an update is the calculation of entanglement entropies which one may
use to find out whether a model realizes a topological phase or not. In chapter 5, it was
shown that such simulations entail additional numerical instabilities that can be controlled
but are nevertheless challenging and costly. With an efficient global update that eliminates
the need for local updates, most of these difficulties would disappear and quantities like
the topological entanglement entropy would be accessible without any problems. The
possibility of efficiently proposing global updates has already been demonstrated concep-
tually, but what is still missing is the conception of a general approach for other models
than the few selected studied thus far.
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This thesis contributed two novel computational approaches to the toolbox of quantum
Monte Carlo techniques to study the many-fermion problem and the related fermion sign
problem. It was demonstrated how to calculate entanglement entropies of fermionic sys-
tems using DQMC in a stable way and how to harness the power of artificial neural net-
works to identify quantum phases and the transitions between them.

While very successful when it can be applied, the natural limit for quantum Monte Carlo
approaches remains the fermion sign problem. It was, however, demonstrated that the
sign problem is not created equal in all Monte Carlo flavors. DQMC in particular allowed
to extract some exact results in the limit of finite-size effects. Much more work on the
various aspects of the fermion sign problem is needed, i.e. which exact solutions exist,
how certain interesting phenomena can be implemented in effective models, and how
auxiliary ensembles without the sign taken into account relate to the actual physical ones.
In a direct extension to this thesis, it would be interesting to see whether the apparent
greater resiliency of the DQMC algorithm in both the entanglement and the machine
learning approach is supported by models other than the simple spinless fermion model
or whether this model is just a particularly easy example. One possible way to explore
this further is to include a second interaction value on the next-nearest neighbor bonds.
The ground state phase diagram of this model has recently been studied using state of
the art exact diagonalization techniques thus providing a perfect testing ground for this
question. A second well-suited model system are spinless fermions on a checkerboard
lattice with complex hopping amplitudes which are believed to realize a fractional Chern
insulator phase for certain parts of its parameter regime. For these systems as well, exact
diagonalization results amenable for comparison exist for relatively large lattices.

Chronologically, the work on machine learning followed the implementations of the en-
tanglement entropies. One of the most interesting applications of machine learning tech-
niques would actually be to revisit the calculation of entanglement entropies in the con-
text of novel global updates. If it was possible to implement such an update efficiently,
it would immediately make many of the numerically costly stabilization procedures pre-
sented in this thesis unnecessary and at the same time allow reaching much larger system
sizes. This is of particular importance because the central insights are gained from the
scaling behavior of the entanglement entropy, the boundary law, which is best explored
over a wide range of system sizes.

Exploring the relation of machine learning and numerical techniques is a very interesting
endeavor, offering many exciting opportunities for future research. Certainly, the identifi-
cation and characterization of phases is a very useful tool because it can be easily applied
without much additional work on the Monte Carlo side. It will be able to show its strength
when it comes to exploring phase diagrams of novel, sign problem free designer Hamilto-
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nians that will then be easily compared to existing, known phases with the help of transfer
learning. As was already mentioned earlier, a very promising idea with huge potential
impact is to use machine learning techniques to devise global update schemes that could
significantly push the existing limitations on system sizes. Outside of the realm of quan-
tum Monte Carlo is the idea to represent and optimize wave function in neural networks
complementing efforts from the matrix product states community. While first results have
been promising, there much remains to be learnt about how general this approach really
is and whether the problems that MPS based methods face are simply due to the underly-
ing structure in which the problem is represented or whether the problem is intrinsically
difficult to solve.

Without doubt, numerical techniques to study the many-fermion problem continue to
evolve and to generate new insights into a decade old problem. Many of its mysteries still
have not been solved and it continues providing new phenomena to explore. Both the en-
tanglement approach and the machine learning approach provide fresh perspectives on the
many-body problem that at least in the case of entanglement based measurements have
already proven to be crucial to studying novel phenomena which would not have been
possible with more traditional techniques. This is an exciting initial position for future
studies that will hopefully help to illuminate new aspects of the beauty of the many-body
problem.
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A.1. Slater determinant calculus
An integral part of the DQMC algorithm are Slater determinants representing the fermionic
states. This section discusses some elementary properties that are necessary to understand
how the DQMC algorithm works.

A.1.1. Representation asmatrices
The starting point is a set of Ns creation operators {γ1, . . .γNs} which might for example
derive from the diagonalization of a two particle Hamiltonian given in position space

H = ∑
i, j

c†
i hi jc j .

These two sets of operators are related by

γα = ∑
i

U†
αici, γ

†
α = ∑

i
c†

i Uiα .

Any Np particle state in the eigenbasis can be written as

γ
†
s1

γ
†
s2
· · ·γ†

sNp
|0〉=

Np

∏
n=1

(
c†

i Ui,sn

)
|0〉=

Np

∏
n=1

(c† ·P)
sn
|0〉 . (A.1)

The transformations of the operators are contained in the matrix P of dimension Ns×Np,
which completely characterizes the Slater determinant.

A.1.2. Properties
Howdoes an exponential of a quadratic operator act on a state vector?

The first important property is the action of the exponential of a Hamiltonian, bilinear in
creation and annihilation operators, on the Slater determinant, i.e. what is the result of

ec†H′c Np

∏
n=1

(c† ·P)
sn
|0〉 . (A.2)
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By applying a unitary transformation U on the matrix H′ the Hamiltonian is diagonalized
λ ′ = U†HU. Using the same transformation on the physical states results in

Np

∏
n=1

(c† ·P)
sn
|0〉 →

Np

∏
n=1

(
γ† ·UP)

sn
|0〉 . (A.3)

Thus, applying the exponential of the Hamiltonian to the state gives

ec†H′c Np

∏
n=1

(c† ·P)
sn
|0〉= eγ

†λγ
Np

∏
n=1

(c† ·UP)
sn
|0〉

= ∑
s1,...,sNp
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†λγ

γ
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|0〉(UP)s1,1 · · ·(UP)sNp ,Np

= ∑
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sNp

e
γsNp |0〉(UP)s1,1 · · ·(UP)sNp ,Np

= ∏
n

(
γ†eλUP

)
sn
|0〉

= ∏
n

(
c†eH′P

)
sn
|0〉 . (A.4)

The creation operators in the the diagonalized basis can be commuted through, leaving
only the exponential of the eigenvalue. If no particle is created in any of the eigenstates,
the exponential acts on the vacuum and evaluates to unity. Ultimately, the vector of cre-
ation operators in the site basis is simply exchanged with the exponential of the Hamil-
tonian matrix. The same argument holds for any product of operators, in particular the
exponentials making up the Trotter decomposed product. In conclusion, a Slater determi-
nant remains a Slater determinant after the propagation by the exponentials of quadratic
operators.

What is the overlap of two state vectors?

Applying a product of exponential operators to a Slater determinant returns another Slater
determinant. To actually calculate the statistical weight, the inner product of two Slater
determinants has to be calculated. To find out how this is done, consider two state vectors
with an equal number of particles Np,

|ψ〉=
Np

∏
n=1

(
c†P
)

n
|0〉 (A.5)

∣∣ψ ′
〉
=

Np

∏
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(
c†P′

)
n
|0〉 (A.6)

(A.7)

and calculate their overlap 〈ψ|ψ ′〉:
〈
ψ|ψ ′

〉
= 〈0|

1

∏
n=Np
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P†c
)

n
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|0〉 (A.8)
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The important part of the last expression is the expectation value of the creation and
annihilation operators

〈0|csNp
· · ·csN1

c†
s′N1
· · ·c†

s′Np
|0〉 (A.9)

This expression is only non-zero if the two sets of indices are related by a permutation π ,

{s1, . . . ,sNp}= π({s′1, . . . ,s′Np
}) . (A.10)

In that case, the expression evaluates to (−1)π and thus (A.8) reduces to

∑
s1,...,sNp
π∈SNp

(−1)πP†
Np,sNp

· · ·P†
1,sN1

P′
π(sN1),1

P′
π(sNp),Np

= det
(

P†P′
)

(A.11)

This establishes that the overlap of two Slater determinants is the determinant of the prod-
uct of the matrices characterizing the states.

Evaluating the grand-canonical trace

It was previously established that

ec†H′c Np

∏
n=1

(c† ·P)
sn
|0〉= ∏

n

(
c†eH′P

)
sn
|0〉

holds, even for an arbitrary number of exponentials of quadratic Hamiltonians,
(

∏
l

ec†H(l)c
)

Np

∏
n=1

(c† ·P)
sn
|0〉= ∏

n

[
c†

(
∏

l
eH(l)

)
P

]

sn

|0〉 . (A.12)

The product of matrices on the right should now be viewed as originating from an effec-
tive, quadratic Hamiltonian, Heff written in the basis of the site operators. Associated with
this effective Hamiltonian is an eigenbasis which can be used for taking a trace:

Tr
(

ec†Heffc)= Tr
(

eγ
†λγ
)

= Tr

(
∏

i
eγ

†
i λiγi

)

=

(
1+∏

i
eλi

)

= det
(

1+ eHeff
)

(A.13)

(A.14)
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A.1.3. Deriving an expression for the Green’s function
A central part of the algorithms presented in chapter 2 was a quantity that was referred to
as the Green’s function. This statement will now be justified by deriving the form of the
Green’s function and showing that it equals the quantities encountered earlier. A general
single body observables is written as O = c†Ac, where for the single particle Green’s
function the matrix A is derived from

cxc†
y = δx,y− c†

mδm,yδn,xcn = δx,y− c†
mA(xy)

mn cn , (A.15)

which is evaluated differently in the projective and the finite temperature formulation.
Both cases start from the expression for the evaluation of an observable with the help of
introducing the sought after operator as a source, which is later set to zero.

Zero temperature formulation

〈
cxc†

y

〉
= δx,y−

〈
c†

mA(xy)
mn cn

〉

= δx,y−
∂

∂η
ln〈ψT | B̂(2θ ,θ)eηc†

mA(xy)
mn cnB̂(θ ,0) |ψT 〉

∣∣∣∣
η=0

= δx,y−
∂

∂η
lndet

(
P†B(2θ ,θ)eηA(xy)

mn B(θ ,0)P
)∣∣∣∣

η=0

= δx,y−
∂

∂η
Tr ln

(
P†B(2θ ,θ)eηA(xy)

mn B(θ ,0)P
)∣∣∣∣

η=0

= δx,y−
∂

∂η
Tr ln

(
P†B(2θ ,θ)eηA(xy)

mn B(θ ,0)P
)∣∣∣∣

η=0

= δx,y−Tr
[(

P†B(2θ ,0)P
)−1

P†B(2θ ,θ)A(xy)
mn B(θ ,0)P

]

= (1−B(θ ,0)P
(

P†B(2θ ,0)P
)−1

P†B(2θ ,θ))x,y (A.16)
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Finite temperature formulation

〈
cxc†

y

〉
= δx,y−

〈
c†

mA(xy)
mn cn

〉

= δx,y−
∂ lnTr

[
B(β ,τ)eηc†

mA(xy)
mn cnB(τ,0)

]

∂η

∣∣∣∣∣
η=0

= δx,y−
∂ lndet

[
1+B(β ,τ)eηA(xy)

mn B(τ,0)
]

∂η

∣∣∣∣∣
η=0

= δx,y−
∂Tr ln

[
1+B(β ,τ)eηA(xy)

mn B(τ,0)
]

∂η

∣∣∣∣∣
η=0

= δx,y−Tr
[
B(τ,0)(1+B(β ,0))−1 B(β ,τ)A(xy)

mn

]

= δx,y−
[
δx,y− (1+B(τ,0)B(β ,τ))x,y

]

= (1+B(τ,0)B(β ,τ))x,y (A.17)
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