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Abstract. — In standard text books on electrodynamics Maxwell’s laws are often illus-
trated by using field lines – a notion lacking relativistic covariance and obscuring the
superposition principle (see e.g. R. Feynman: The Feynman Lectures on Physics, Vol. II,
Chapter 1-5). In this colloquium I am going to present an improved variant of the field
line picture: the discrete approximation of the electromagnetic field by chains (B and D
are modeled by 1-chains, E and H by 2-chains). The language of chains offers a simple,
direct and intuitive approach to Maxwell’s electrodynamics, which does no suffer from
having to compromise on physical and mathematical correctness. Fundamental aspects
such as parity invariance, or the transcription of the theory to curved space-time, are es-
pecially transparent in this approach. In my talk I will illustrate the chain picture at a
number of examples: (i) Aharonov-Casher effect, (ii) equivalence between problems of
magneto- and electrostatics, (iii) emission of an electromagnetic signal by the discharge
of a capacitor, (iv) magnetic excitation due to a point charge in motion.

1. Feynman

Good Afternoon! As you have probably inferred from the announcement, today’s
colloquium won’t be about research but about a topic in physics teaching: I am going
to give you an introduction to the course on classical electrodynamics which I’ve been
teaching at Cologne for over a decade now.
I’d like to start with one of the cornerstones of 20th century physics teaching: the
Feynman Lectures on Physics. In Volume II, Chapter 1-5 (with the title: “What are
the fields?”) Feynman in his inimitable way pokes fun at the notion of field lines often
invoked by physicists. In short, Feynman criticizes two deficiencies: i) the field line
picture does not reflect the superposition principle – which he says is the deepest prin-
ciple of electrodynamics – and ii) field lines lack relativistic covariance (they disappear
in certain reference frames).
Here is what Feynman says about his second point of criticism: “Suppose that you
finally succeeded in making up a picture of the magnetic field in terms of some kind of
lines or of gear wheels running through space ...” And then comes the punch line: “The
gear wheels or lines disappear when you ride along with the object!” (Put differently:
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if you move along with the charges, then the current vanishes and so do the magnetic
field and its field lines.)
Feynman’s conclusion is that the field line picture only helps you in special situations,
and in general you have no choice but to work with the abstract field idea.
Feynman is right, of course, but then he isn’t. What he demolishes is the classical field
line picture of textbook physics. In today’s colloquium I will present to you a modern
alternative, which withstands Feynman’s criticism and serves as the intuitive basis for
the electrodynamics course taught at Cologne University.

2. Contents

Here is what I intend to do. I will start with a simple introduction to the chain picture of
electrodynamics. Once we comprehend the boundary operator on chains, we can for-
mulate Maxwell’s equations. Afterwards we shall introduce the metric, for the purpose
of formulating the constitutive laws. These complete the system of basic equations of
electrodynamics, and we can then move on to applications.
First, I will discuss a relativistic phenomenon, the so-called Aharonov-Casher effect,
at the simple example of a coil in motion. Second, there will be a neat duality between
magneto- and electrostatics. Third, I will turn to a dynamical problem: discharge of
a capacitor or, rather, the electrodynamic signal radiated off by such a process. And
finally, I will revisit Feynman’s problem of disappearing field lines – you might be
curious to see how the chain formalism deals with that issue.

3. Atomistic Picture: Chains

All of my talk will be based on the reasonable assumption that the “continuous can be
approximated by the discrete”. Thus we’ll take an atomistic point of view, replacing
smooth configurations of the electromagnetic field by spiky ones, not because we be-
lieve that the fundamental constituents of the field are discrete, but because it serves
the purpose of better visualization.
Such an approach is legitimate if we can get arbitrarily close to the true configuration
by refining the discretization. This, then, is what you must bear in mind when contem-
plating the pictures I’ll show: that they are to be refined and that ultimately a limit is
taken to recover the continuum.

3.1. Charge density.— Having stated the rules of the game – namely, approxima-
tion of the continuum by the discrete, with a continuum limit to be taken at the end
– let’s start discretizing electrodynamics. Let’s have a bunch of charges qi located at
points pi , to build up the charge density ρ . (Actually, the discrete model for ρ is not
just an approximation but is in fact an accurate representation of classical reality, as
electric charge for all we know is concentrated in point particles each carrying one fun-
damental unit of charge. This model is of course modified by the quantum mechanical
description of charged particles by a wave function.)
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For the book keeping, it is useful to form the linear combination of the points, each
weighted by its charge. Such a formal sum ρ =∑i qi pi is called a 0-chain as the objects
being combined, the points, are zero-dimensional.
From experience I know that many in the audience are surprised at this stage. Let me
therefore add that chains are best viewed as elements of a vector space. In the case at
hand, the points pi correspond to the basis vectors and the charges qi to the components
of the “vector” ρ = ∑qi pi . If that still looks weird, you might find if helpful to use
traditional calculus to write for ρ the following expression:

ρ = ∑
i

qi δ (x−xi)d3x ,

a sum of δ -functions located at the points pi with position vectors xi and weighted
by the charges qi . (This anticipates the mathematical fact that Poincaré duality relates
0-chains to densities.)

3.2. Electric excitation.— The next picture should look familiar, too: we imagine the
electric excitation D, also known as the electric displacement field, to consist of lines γi
carrying electric fluxes ϕi . Thus D is approximated by a 1-chain: a linear combination
of one-dimensional objects γi weighted by real numbers ϕi . Note that the electric flux
lines carry a sense of direction – we call this an inner orientation.

3.3. Electric field strength.— In addition to the 1-chain model of the electric field,
we will need its (Hodge-)dual description as a 2-chain. Imagine a collection of surface
elements Si , each associated with a voltage Vi . Form the linear combination of the Si’s
multiplied by the Vi’s; what you get is a 2-chain called the electric field strength E.
We are all familiar with the physical meaning of this 2-chain in the static limit: in
that case the surface elements of E piece together to closed surfaces, the so-called
equipotential surfaces. Yet the 2-chain model of E makes sense not only in the static
limit but also in dynamical situations; this important aspect of the formalism will be
exploited in the sequel.

3.4. Magnetic field strength and excitation. — Moving on to the magnetic analog
of D, let’s again consider a set of lines γi with fluxes ϕi , now of magnetic type. The
1-chain ∑i ϕi γi is called the magnetic field strength B.
In contrast with its electric partner, B carries an outer orientation, i.e. its lines have a
sense of circulation instead of a sense of direction. Traditionally speaking, D is a polar
vector, whereas B is an axial vector; this expresses the fact that a parity transformation
reverses the sign of D but not the sign of B (and, indeed, a sense of circulation remains
invariant under space reflections).
Finally, there exists the dual model of the magnetic field as a 2-chain: the magnetic ex-
citation, H, consists of surface elements carrying an inner orientation. Please note that
what’s an outer orientation of a line is an inner orientation of the surface perpendicular
to the line.
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4. Boundary Operator

To formulate Maxwell’s equations, we need one differential-type operator. This is
neither the divergence operator, nor the curl, nor the gradient, but a metric-free ancestor
of all of these, the boundary operator: a linear operator that maps k-chains into (k−1)-
chains, by taking the boundary while preserving the type of orientation.

4.1. Example 1. — Let’s see how this works by looking at some examples. The
boundary of a line element γ with inner orientation is the final point of the line minus
the initial point. In the picture, the green piece of line γ has for its boundary the points
shown in red, with the final point p f counted as plus and the initial point pi as minus.
In formulas: the boundary of the 1-chain γ is the 0-chain p f − pi (not to be confused
with the difference vector of two points in an affine space).

4.2. Example 2. — As a second example, consider a surface element S with outer
orientation given, say, by a normal vector. The boundary of S is the closed line γ
surrounding it, with an outer orientation (or sense of circulation) obtained by following
the vector of S and curving outward. (Note that unlike the vector-differential operator
“curl” the boundary operator does not depend on a choice of right-hand or left-hand
rule; in order to determine the orientation of γ , all we need is the distinction between
the interior and the exterior.)
So much for the boundary operator, and now, here we go:

5. Homogeneous Maxwell Equations

5.1. No magnetic monopoles. — The first law of the homogeneous Maxwell equa-
tions states that the 1-chain of B is closed – we say that magnetic flux lines have no
beginning and no end. This holds true as long as there are no magnetic monopoles. Ac-
tually, our formalism could easily accommodate magnetic monopoles, but they have
never been observed experimentally, and so I shall not consider them.
Thus the magnetic field strength has zero boundary.

5.2. Law of induction. — The other homogeneous law, namely Faraday’s law of
induction, states that the electric field strength E does have a boundary, if B is time-
dependent. More precisely, when adding the 1-chain of the boundary of E and the
1-chain of the time derivative “B–dot”, one obtains zero.
Faradays’s law is not so easily pictured, as it involves the operation of taking a deriva-
tive, a notion tied to the continuum. But having discretized in space, let’s go all the
way and make time discrete, too, by replacing the derivative Ḃ by a quotient of differ-
ences with time step ∆t. Then, after reorganizing the equation a little bit, we can draw
the following informative picture:
Imagine a magnetic flux line with a kink in it, and let the kink relocate from one corner
of a rectangle S to the opposite corner in a time interval ∆t; in other words, the flux
line straddles S by its two configurations at t −∆t/2 and t +∆t/2. (Such a process
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may, for example, occur for a Josephson vortex in a layered superconductor when the
magnetic field axis is tilted by a small angle with respect to the plane of the layers.)
Faraday’s law then states that the 2-chain of the electric field strength E at time t must
contain some surface element S′, ∂S′ = ∂S, carrying voltage V = ϕ/∆t (where ϕ is the
magnetic flux of the line). Indeed, the boundary of the 2-chain E(t) = V · S′ matches
the negative time derivative of the flux line configuration if the outer orientation of S′

is given by the sense of direction in which the surface element S′ is pierced by the
circulation of the magnetic flux line at the earlier time t −∆t/2.

5.3. Intuitive picture. — While that’s all we can say based on Faraday’s law alone,
the full set of laws of electrodynamics determine the dynamics of the electromagnetic
field completely (provided that the sources are given), and by noting that these laws
are local we arrive at a stronger statement: the world surfaces swept out by moving
magnetic flux lines consist of instantaneous surface elements of E. Or, to make this
intuitive notion even more visual, we could say, for fun, that the vacuum is a fluores-
cent medium (what a ridiculous concept!), and as magnetic flux lines move through it,
the medium lights up, and what shines (and instantly returns to darkness) are surface
elements of E.

Having said the above, let me stress that Faraday’s law alone makes no statement
about the zero-boundary part of E; there may always exist some closed surfaces – of
the equipotential type – whether B is time-dependent or not.

5.4. A simple application. — To reinforce the intuitive picture of magnetic flux lines
sweeping out surfaces (or surface elements) of E, let’s look at a simple example:

What you see here is the cross section of a long, thin coil. In the wire of the coil, an
electric current flows, so (as we know) there is magnetic flux in the interior of the coil,
with the dots indicating the points of intersection of the flux lines with the plane of the
drawing.

Now let the current carrying coil be in motion with velocity v. Then the moving lines of
B sweep across infinitesimal surfaces which piece together to the surfaces of E shown
in green. These surfaces have their boundaries at the location where the time derivative
of B is nonzero (in agreement with Faraday’s law).

We can put this result in a formula:

E = ι(v)B ,

by introducing an operator “iota(v)” which attaches the direction of v to the lines of B.
The resulting surface elements are weighted by 1/∆t, and finally we send ∆t → 0.

So ι(v) increases the degree of a chain by one (in the present instance from 1 to 2),
while the boundary operator introduced before decreases the degree by one unit. There
is some similarity between the iota-operation and the well-known vector product in R3.
An important difference, however, is that the vector product needs the right-hand rule
and measurement of angles, whereas ι(v) needs no such thing.
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5.5. Atomistic Picture: Chains (V). — The iota-operation is also useful for some
other purposes, e.g. for describing the electric current density j.
Here you see once more, in the simplest situation, exactly how ι(v) acts. Take a point p
and attach the velocity vector v multiplied by a time step ∆t. The resulting line segment
is weighted by the inverse time step. In the limit ∆t → 0 you get an infinitesimal line
segment γ , which we write as ι(v)p. By linear extension this defines a linear and local
operator ι(v) taking 0-chains to 1-chains.
Let me add for the experts that, strictly speaking, ι(v)p is no longer a 1-chain but
rather a 1-current (in the sense of deRham). Being physicists, however, we call limits
of functions still functions (e.g. we call Dirac’s delta-distribution the δ -“function”),
and by the same token I call something a 1-chain even though it is really a singular
limit of 1-chains.
Now let there be a system of point charges moving with velocity v. The electrical
current density then is the 1-chain j whose line segments are obtained by attaching the
velocity v to the points of the charge density ρ . The charges of the points are picked
up as weights in the process.
In formulas: j is the result of operating with ι(v) on the charge density ρ , or explicitly:
j = ι(v)ρ = ∑i qiγi where γi = ι(v)pi .

6. Inhomogeneous Maxwell Equations (I)

Now on to the inhomogeneous Maxwell equations.
We’ll do again the easy part first. Gauss’s law states that the 0-chain of ρ added to the
boundary of the 1-chain of D yields zero; or in familiar language: charges are sources
of electric excitation.
To illustrate, consider a single line of D, which begins somewhere and ends somewhere
else. Then, to satisfy Gauss’s law you must place a positive charge (of magnitude equal
to the electric flux of the line) at the beginning, and a negative one at the end.
Please note the obvious fact that, given D, Gauss’s law determines ρ , but the converse
is not true. Indeed, from one solution of Gauss’s law (for fixed ρ), we can produce any
number of solutions by adding closed lines to D. (In particular, by adding closed lines,
I can turn the shown configuration into a static dipole field.)

6.1. Inhomogeneous Maxwell’s Equations (II). — Finally, let’s formulate the
Ampere-Maxwell law in chain language. It says:
The boundary of the 2-chain of the magnetic excitation H agrees with the sum of the
1-chains of the electric current j and the displacement current Ḋ.
To draw a picture, let’s again make time discrete (with time step ∆t) and approximate
Ḋ by a quotient of differences. Then, if in time ∆t a piece of electric flux line moves
from left to right (like so), there first of all had better be charges – recall Gauss’s law –
attached to both ends, the positive one giving charge flow from left to right, the negative
one from right to left. Now, reversing the direction of the left line segment (taking into
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account the minus sign in the formula) we see that what we have is a closed curve:
Ampere-Maxwell says that there must exist some surface element of H which has this
closed curve for its boundary.
(As an aside: an immediate consequence of the Ampere-Maxwell law is charge conser-
vation. Indeed, by applying the boundary operator to both sides and using the obvious
fact that the boundary of a boundary always vanishes, we infer that

0 = ∂ 2H = ∂ j+∂ Ḋ = ∂ j+ ρ̇ ,

which is the so-called continuity equation phrased in chain language.)

7. Metric: Star Operator

That completes the list of Maxwell equations, but it does not complete the formulation
of Maxwell’s electrodynamics. For one thing, simple counting shows that the system
of equations at hand is underdetermined; for another, we haven’t used any metric op-
erations (such as measuring the length of a curve, or the angle between intersecting
curves); all of Maxwell’s laws (as we presented them) were of a differential or even
topological nature.
But electrodynamics does know about the geometry of space-time, and now the point
has come for us to introduce it.
The metric is injected into the formalism by means of a linear operator, called the star
operator, ⋆ , which converts a surface element into the line element perpendicular to it,
and vice versa. More generally, ⋆ turns k-chains into (3− k)-chains.
To be more precise, ⋆ is a local operator; in the picture shown here the left-hand side is
normalized by the area of the surface element S, and the right-hand side by the length
of the line segment γ; true equality is achieved in the limit where both (the area of S
and the length of γ) are sent to zero. (For the experts: ⋆ sends chains not to chains but
to deRham currents.)
The example demonstrates that ⋆ deals with orientation in the natural way: outer is
sent to inner, and inner to outer.
This was the case of the orientation being given by a sense of direction; it works the
same way if the orientation is given by a sense of circulation.

7.1. Constitutive Laws. — Using the star operator, we formulate the so-called con-
stitutive laws relating field strengths E,B to excitations D,H:
⋆ applied to the surface elements of E produces the line elements of D (on multiply-
ing by the dielectric constant ε0). Similarly, ⋆ applied to the surface elements of H
produces the lines of B (on renormalizing by the magnetic permeability µ0).
Maxwell’s equations together with the constitutive laws form a consistent and beauti-
ful system of equations which determine the electromagnetic field completely, if the
charge density ρ and the current density j are given. Before putting that system to
work in a few examples, I want to drive home a few comments:
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8. Discussion

I advertise the chain picture for the intuitive approach it offers to electrodynamics.
From my extensive teaching experience I can say that students easily grasp the notion
of chains and the operations on them. In fact, after the initial shock – no textbooks are
available! – they love it.
Some things not so transparent in the traditional vector formulation are really clear;
for example: parity invariance is totally manifest! (Indeed, we never had to use the
right hand. In contrast, in the traditional calculus one constantly uses the right-hand
rule – since there is no curl without the right-hand rule – only to discover at the end
that nothing depends on it.)

Students hear with satisfaction that the Maxwell equations they have made an effort to
comprehend are the ultimate version. To pass from flat space electrodynamics to elec-
trodynamics in the vicinity of a black hole, all you need to do is: go to the constitutive
laws and replace the flat space ⋆ operator by the curved space ⋆ operator; Maxwell’s
equations remain the same!
A fourth statement is this: if you’re ever in doubt about the true and precise nature of
a physical observable, think about how to MEASURE it (and you’ll find out.)

9. Discussion (II)

For example, the electric excitation or displacement field D can be measured by
Maxwell’s double plate experiment. (I assume that most of you know this, so I don’t
have to review the details.) By this procedure D is unambiguously identified as a 1-
chain with inner orientation (or, by Poincaré duality, as a 2-form of odd type).
Here I’ve sketched a possible gedanken-measurement of the magnetic excitation H. To
probe for H, use a solid superconductor, say a long thin cylinder. The superconductor
screens the magnetic field (provided it is in the Meissner phase, which I’ll assume) by
activating surface supercurrents. Thus a cylindrical hole is punched into H, and by
Ampere’s law the boundary of H equals the lines of the supercurrent.
In short, by picking up the total current around the cylinder, you’re measuring the line
integral of H along the cylinder. Because what’s measured is a line (integral), the
observable must consist of surfaces [in 3 space dimensions lines are paired in an in-
variant and non-degenerate way with surfaces (and only with surfaces), by intersection
of sets], and since the current circulates, a sense of circulation is naturally given to H.

10. Aharonov-Casher Effect

This is a picture we’ve already seen: it’s the current currying coil, moving with speed
v. I am going to use this picture to motivate the so-called Aharonov-Casher effect,
which arises from the relativistic phenomenon of an electrically neutral particle (say,
a neutron) interacting with an electric field through its spin-magnetic moment. (In
nuclear and condensed matter physics this is also known as spin-orbit coupling.)
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The next picture looks familiar, too: it illustrates the electric field strength E carried
along by the moving coil. The green lines are the surfaces of E intersected with the
plane of the drawing.

By the electrical constitutive law, the 2-chain of E is accompanied by the lines of the
electric excitation D, which are perpendicular to the surfaces of E.

Gauss’ law then implies that some charges are situated on the coil (which had been
neutral when at rest). The neutral coil is charged all of a sudden – a relativistic effect!

The resulting charge distribution can be characterized by its multipole moments. If
we’re interested only in the leading component, namely the electric dipole moment,
the calculation gets very simple.

In the dipole limit we may approximate the coil as a line with magnetic flux Φ and no
transverse extension. According to Ampere’s law and the magnetic constitutive law, Φ
is the product of µ0 times the magnetic dipole moment of the coil per unit of length
(νm). En route to the charge density one multiplies by µ0 , ε0 and v. Since ε0µ0 = 1/c2

(the inverse square of the speed of light), the electric dipole moment of the moving coil
(again per unit of length) works out to be νe = νm × v/c2.

What’s important here is that this is the exact result, even when the coil is moving at
a speed close to the speed of light. While the relativistic effect of length contraction
makes the cross section of the coil look oblate, the magnetic field strength is enlarged
at the same time, so that the total magnetic flux Φ remains the same. (Magnetic flux is
a relativistic invariant; if it wasn’t, there would be serious trouble with the Aharonov-
Bohm effect of quantum mechanics.)

Moreover, the result remains correct when the long thin coil is replaced by an elemen-
tary particle (say, a neutron) with a spin-magnetic moment. We then have: (effective)
electric dipole moment = vector product of the particle velicity with the spin-magnetic
moment, divided by c2 — that’s the classical physics behind the Aharonov-Casher ef-
fect. (In the quantum theory, the resulting interaction with an electric field leads to a
geometric phase which can be made visible in interference experiments.)

11. ElectroMagnetostatics (I)

Next, let’s do a little bit of electro-/magnetostatics, and let’s consider an electric dipole
layer S, with electric dipole moment per unit area given by ν . I claim that the charge
density of the dipole layer with surface S is minus ν times the boundary of ⋆S. This is
verified as follows:

Here is the surface S; we assume it comes with an outer orientation. Applying the
star operator to S turns it into a “hairy” object: the line elements of the 1-chain ⋆S are
tiny pieces of hair perpendicular to the surface. Taking the boundary (end point minus
initial point) gives an arrangement of dipoles; the minus sign places the positive pole
below and the negative pole above the surface. On dimensional grounds, multiplication
by the dipole moment per unit area turns this into a charge density.
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It’s really a lot of fun playing with chains, and the ⋆ operator, the boundary operator,
ι(v) etc.

12. EletroMagnetostatics (II)

Consider now a dipole layer in the form of an arbitrarily shaped surface S; it will excite
some electric field D.
Compare this to the magnetostatic problem where a current is sent around the boundary
loop of the surface, producing a magnetic field B.
I now pose to you the question: Is there any relation between the fields of the two
problems? [You might be inclined to say NO, as the magnetic problem only knows
about the location of the current loop, whereas the input to the electric problem is an
entire surface.]

12.1. ElectroMagnetostatics (II) (again). — Well the answer, already known to
Ampere, is that the fields are the same (apart from an obvious dimensional factor),
outside the vanishingly small space inside the layer, i.e. the dipoles.
A method of proof is readily suggested by the chain picture. We make an ansatz for
D as a sum of two terms: the tiny hair connecting the ends of the dipoles, plus some
remainder D1 .
Now we do a two-line calculation. In Gauss’ law we replace ρ by the expression just
explained (ρ =−ν∂ ⋆S) and D by our ansatz. Two terms cancel, which motivates the
ansatz, and it follows that the remainder D1 has zero boundary.
But we are doing electrostatics, so the electric field strength E has zero boundary, too.
E is proportional to the star of D (the constant of proportionality doesn’t matter as
∂E = 0 is a null condition), so on inserting the ansatz we learn that the boundary of
the star of D1 is a factor times the boundary of S. Apparently, D1 forgets the location
of the surface S, and remembers only the boundary.
Turning to the magnetic side, recall that B is always closed. Since everything is static,
Ampere’s law applies, and in combination with the constitutive law relating B and H,
we have that the boundary of the star of B is proportional to the boundary of S.
We see that D1 and B satisfy the same set of equations. By the principle that the same
equations have the same solutions the claim now follows, for the stray field (or the
“leaky” part) of D, i.e. the part that’s left after taking away the infinitesimal hairy stuff.

13. ElectroMagnetostatics (III)

This correspondence is not accidental but is a special case of a (little known) duality
between magneto- and electrostatics. As a second case, let me mention the magneto-
statics of a long thin coil. This problem is equivalent to the electrostatic problem of
two monopoles placed at the end points of the coil. What we learn from this in par-
ticular is that the magnetic field outside a long thin coil knows only about the two end
points, not about the exact whereabouts of the coil in between.
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If the total electric charge vanishes, we can also go in the opposite direction, from
electro- to magnetostatics. For example, the electric field of two parallel identical
capacitor plates is the same (apart from a factor) as the magnetic field of the current
carrying cylinder that connects the two plates.

14. Discharge of a capacitor (I)

Enough of statics! Let’s get to a dynamical problem: discharge of a capacitor. We
won’t take the sketch here seriously, but will treat the charge distribution of the capac-
itor in dipole approximation (with electric dipole moment u). For later use, please note
that o denotes the central point of the arrangement.
Now let the capacitor be discharged by accident or plan, at time t = 0. The process of
discharging makes itself felt by the emission of an electromagnetic signal, and it is this
signal that we wish to compute.
To prepare the solution, we write down the electric charge density ρ (prior to the
discharge): attaching the dipole vector u to the point o and taking the boundary of the
resulting (infinitesimal) line segment, we get an electric dipole, with the positive pole
located below and the negative one above.
In the process of the discharge, the charge separation is undone; if we attach to o the
negative of the dipole vector, we get the line segment of the time-integrated current
pulse of the discharge.

15. Discharge of a capacitor (II)

After this preparation we tackle the calculation of the dynamical process. By simply
combining the basic equations we easily find the inhomogeneous wave equation for the
magnetic field strength: �B = µ0∂ ⋆ j. (Here � is the d’Alembert or wave operator.)
Since the electric current density j vanishes at all times except zero, B satisfies the
homogeneous wave equation �B= 0 for all times t > 0. What are the initial conditions
for B? Since the second time derivative of B is to yield the singular (δ -type) current
density, B itself is a continuous function of time at t = 0, and since it vanishes before the
discharge it still does so immediately afterwards. However, the first time derivative, Ḃ,
must have a discontinuity in order for the second time derivative to yield the δ -profile
of j; the jump of Ḃ is determined by the time-integrated current pulse just written
down.
In this way we reformulate the problem as an initial-value problem for the homoge-
neous wave equation. To solve the latter, we use the Green’s function of the wave
equation. By this I mean (in the present context) a 0-chain, i.e. an object consisting of
points, Σt . The points of Σt all lie on the surface of a sphere centered at o and expand-
ing with the speed of light (radius ct). The total “mass” (i.e., the sum of the weight
factors of all points) of the 0-chain is t, i.e. in a discretization with N points every point
carries weight t/N.
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The 0-chain so defined can be shown to satisfy the homogeneous wave equation. (More
precisely, Σt is a weak solution of the wave equation; since Σt is not differentiable in
the usual sense, �Σt must be defined in the sense of distributions.)
The short-time asymptotics of Σt is easily stated: the linear time dependence of the total
mass makes limt→0+Σt vanish; in the first time derivative Σ̇t this time dependence is
differentiated away, hence limt→0+ Σ̇t = o (i.e. the degenerate 0-chain whose points are
all collapsed into the center o).
Comparing with the initial value problem for B, we see that B and Σt satisfy equations
of identical structure; to get from Σ̇t=0+ to Ḃ|t=0+, we just need to apply the operator
−ε−1

0 ∂ ⋆ ι(u).

16. Discharge of a capacitor (III)

Since that operator commutes with the wave operator � , the solution for B is immedi-
ately obtained in the form

B|t =−ε−1
0 ∂ ⋆ ι(u)Σt .

So we’ve already found the solution. Let us now illustrate it by a picture. To keep the
picture transparent, I’ll show only the contribution from a circle of constant latitude.
In the first step, we apply ι(u): what results is a fence of line segments parallel to
the dipole vector u . Next is the star operator, turning the fence of line segments into
the ribbon of perpendicular surface elements. Finally, the boundary has to be taken;
the inner boundaries all cancel and what remains are two closed lines (one just a little
inside and the other just a little outside the sphere of radius ct). After multiplication
by the proper weight factor, these are to be interpreted as the flux lines of the magnetic
field strength to be computed.

Remark: The original version of this talk ended with an

illustration of the quantum Hall effect in the chain picture.

See the final slides of the slide show.

17. Feynman’s problem revisited

Let us close the circle by returning to our starting point: the disappearing magnetic
lines. How does the chain picture deal with the problem Feynman complains about?
Consider a positive point charge at rest. By the laws of electrostatics, half lines of
electric flux emanate from it. These lines are static, and there is no magnetic field.
Now let the point charge be in motion (with constant velocity v, for simplicity). The
lines of D then sweep out world surfaces, which consist of infinitesimal surface ele-
ments of the magnetic excitation H in such a way that the boundary of H equals the
closed 1-chain made from the sum of the electric current density j and the electric
displacement current Ḋ. The [slide] shows some of these surfaces of H =−ι(v)D.
The magnetic constitutive law (B = µ0 ⋆H) implies the existence of lines of B perpen-
dicular to the surfaces of H, as shown.
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This rough picture can be made quantitative by refining the discretization, arranging
the electric flux lines in an isotropic way (that’s for low speeds; for high speeds there is
a Lorentz contraction in the direction of v), and translating the hedge-hog configuration
of D with velocity v to produce the infinitesimal surfaces of H. All this is consistent
and correct if not fully intuitive.
Recalling the quote from Feynman: “The gear wheels or lines disappear when you ride
along with the object”, our answer is this: well of course they do, as they owe their
very existence (as lines perpendicular to world surfaces swept out by moving electric
flux lines) to the motion of the charged object.

17.1. Summary. — Within the traditional vector calculus of electrodynamics, one
encounters difficulties when trying to draw consistent pictures of the electromagnetic
field using geometric objects. These difficulties are unnecessary; they arise from (i)
giving up the important distinction between D (H) and E (B) and (ii) modeling elec-
tric and magnetic fields as vector fields. The difficulties go away when the fields are
modeled as chains as described in this talk. A crucial aspect is that E and H must be
modeled as 2-chains, whereas B and D are 1-chains.
As a final remark, note that Feynman’s other complaint (that the ideas of field lines
do not contain the superposition principle) is immaterial. In fact, our chain picture
perfectly fits with the superposition principle: chains, by definition, can be added and
subtracted just like vectors.

[Here the story ends in the sound of Feynman’s drumming ...]
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