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• Why random matrices? What random matrices?
• Which supermanifolds?
• Random matrix problems lead to questions about 

which supersymmetric field theories?
• Some results: spontaneous symmetry breaking, …
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Wigner 1955

Nearest-neighbor spacing distribution for
the ``Nuclear Data Ensemble´´ comprising
1726 spacings. For comparison, the RMT 
prediction labelled GOE and the result for
a Poisson distribution are also shown.

Total cross section versus c.m. energy for scattering of neutrons on 232Th.
The resonances all have the same spin 1/2 and positive parity.

232

Poisson

NDE
1726 spacings

Nuclear Data Ensemble
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In the spectrum of the Schrödinger, wave, or Dirac operator
for a large variety of physical systems, such as                

• atomic nuclei (neutron resonances),

• disordered metallic grains,

• chaotic billiards (Sinai, Bunimovich),

• microwaves in a cavity,

• acoustic modes of a vibrating solid,

• quarks in a nonabelian gauge field,

• zeroes of the Riemann zeta function,

one observes fluctuations that obey the laws given by random matrix 

theory for the appropriate Wigner-Dyson class and in the ergodic limit.
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Universality of spectral fluctuations



Spacing distribution of the Riemann zeroes

from A. Odlyzko (1987)

GUE
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Wigner-Dyson symmetry classes:

• A   : complex Hermitian matrices (‘unitary class’, GUE)

• AI  : real symmetric matrices (‘orthogonal class’, GOE)

• AII : quaternion self-dual matrices (‘symplectic class’, GSE)

Dyson (1962, The 3-fold way): ``The most general kind of matrix 
ensemble, defined with a symmetry group which may be 
completely arbitrary, reduces to a direct product of independent 
irreducible ensembles each of which belongs to one of three 
known types.’’

This classification has proved fundamental to various areas of 
theoretical physics, including the statistical theory of complex
many-body systems, mesoscopic physics, disordered electron 
systems, and the field of quantum chaos.

Wigner-Dyson universality
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Outline

• Motivation: universality of disordered spectra

• Symmetry classes of disordered fermions: 10-fold way

• Riemannian symmetric superspaces (an example)

• Recent results: diffusion in a SUSY hyperbolic sigma model
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• Heinzner, Huckleberry, MRZ,                                             
Commun. Math. Phys. 257 (2005) 725

• MRZ, Encylopedia of Mathematical Physics, 
vol.5, 151-160 (Elsevier, 2006)

Symmetry Classes of Disordered Fermions
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Symmetry classes: setting & motivation
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After transfer, every set of block data specifies 
a classical irreducible symmetric space, 
and every classical irreducible symmetric 
space occurs in this way.                               
(Heinzner, Huckleberry, MRZ; 2005)

Proof of conjecture

9/26

( )

)

).(

).,(

h.c.

t
t2

1

2
1

2
1

TVR
U

UTUUG
VV

ZZWW
c
c

WZ
ZW

cc

ccZccWH jiijjiij

+→
−
∪=

⊕

−==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

++=

∗

∗
∗∗

∗

∗∗∗ ∑∑

(C.A.R. structure transfer andsmshomomorphi
tequivarianof blocks eirreduciblinto Decompose

compact:symmetriesy antiunitar andUnitary 
C.A.R.by  form bilinearsymmetric  withspace Nambu

:nsHamiltoniaquadratic   withsystems fermion Disordered



The ten large families of symmetric spaces
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Physical realizations

AI    electrons in a disordered metal with conserved spin and 
with time reversal invariance invariance 

A     same as AI, but with time reversal broken by a magnetic 
field or magnetic impurities

AII   same as AI, but with spin-orbit scatterers
CI    quasi-particle excitations in a disordered spin-singlet         

superconductor in the Meissner phase                                                  
C     same as CI but in the mixed phase with magnetic vortices
DIII  disordered spin-triplet superconductor 
D     spin-triplet superconductor in the vortex phase, or with 

magnetic impurities
AIII  massless Dirac fermions in SU(N) gauge field background (N > 2)
BDI  same as AIII but with gauge group SU(2) or Sp(2N)
CII   same as AIII but with adjoint fermions, or gauge group SO(N)

Altland, Simons & MRZ, Phys. Rep. 359 (2002) 283
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Random matrix methods

Methods based on the joint probability density for the eigenvalues
of a random matrix:

• Orthogonal polynomials + Riemann-Hilbert techniques
• (Scaling limit) reduction to integrable PDE’s (Painleve-type)

In contrast, superanalytic methods apply to band random 
matrices, granular models, random Schrödinger operators etc.

• Hermitian (or Hamiltonian) disorder:
Hubbard-Stratonovich Schäfer-Wegner method (1980) , 
see MRZ, arXiv:math-ph/0404057 (EMP, Elsevier, 2006),    
superbosonization (2007)

• Unitary (scattering, time evolution) disorder:
color-flavor transformation (1996), Howe duality (2004)

12/26



Wegner’s N-orbital model (class A)
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Riemannian symmetric superspaces

and the correspondence with supersymmetric nonlinear sigma models

14/26



Symmetric supermanifolds: an example
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Example (cont’d)
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Riemannian metric structure
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The 10-Way Table

IC

Correspondence between random matrix models 
and supersymmetric nonlinear sigma models: 

RME      A     AI      AII    C      CI    D     DIII  AIII   BDI   CII

noncomp.   AIII  BDI   CII    DIII   D     CI    C     A      AI      AII

compact     AIII  CII    BDI   CI     C     DIII  D     A      AII     AI
susy NLsM

MRZ, J. Math. Phys. 37 (1996) 4986 
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Some analytical estimates 

for (super)symmetric nonlinear sigma models



Granular Model (deformed)

(Weakly coupled GUE’s)

disordered metallic grain with N electron states
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Origin of Hyperbolic Symmetry
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Sigma Model Approximation
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Spontaneous Symmetry Breaking

Theorem (Spencer and MRZ, CMP 252 (2004) 167):                         

if         

and if             and       is not too small.

const),dist(cosh 0
2 ≤

S
oxo 1vol ≥⋅ε

3≥d β

Remark: This bound means that the field stays near 
the origin.  In the infinite-volume limit it implies          
regularity of the Green’s function in     (in sigma 
model approximation) and is consistent with the 
existence of extended states.                          

ε

Proof: Use the Iwasawa decomposition                  for 
SU(1,1).  Integrate out the nilpotent degrees of 
freedom, resulting in convex action for the torus
variables.  Apply the Brascamp-Lieb inequality.

NAKG =

23/26



SUSY hyperbolic nonlinear sigma model
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SUSY Ward identities
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Main result
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Noncompact nonlinear sigma models

d = 1:  M. Niedermaier, E. Seiler, arXiv:hep/th-0312293
d = 2:  Duncan, Niedermaier & Seiler, Nucl. Phys. B 720 

(2005) 235
d = 3:  Spencer & MRZ, Commun. Math. Phys. 252 (2004) 167 
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