From Random Matrices to Supermanifolds

M.R. Zirnbauer
Munchen, LMU (June 13, 2008)

 Why random matrices? What random matrices?
* Which supermanifolds?

« Random matrix problems lead to questions about
which supersymmetric field theories?

e Some results: spontaneous symmetry breaking, ...
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Nuclear Data Ensemble

10’ r
wn
>4
-3
a 107 o
]
s : ‘
'0‘ JL k\‘N k
. ,2 'l A [l 1 1 N 'l 1 A A A e 1 A 1 v ']
s NN NS S T SN SHUNY T SN NN SN SN N SN ST U S N R 0 13 140 1 180 17
20 30 40 50 60 70 80 90 100 no 120 %0232 Epn-ev w ™ ™ 0
) En" eV

Total cross section versus c.m. energy for scattering of neutrons on 232Th.
The resonances all have the same spin 1/2 and positive parity.
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Universality of spectral fluctuations

In the spectrum of the Schrédinger, wave, or Dirac operator
for a large variety of physical systems, such as

e atomic nuclei (neutron resonances),

» disordered metallic grains,

« chaotic billiards (Sinai, Bunimovich),

* microwaves in a cavity,

« acoustic modes of a vibrating solid,

« quarks in a nonabelian gauge field,

» zeroes of the Riemann zeta function,

one observes fluctuations that obey the laws given by random matrix

theory for the appropriate Wigner-Dyson class and in the ergodic limit.
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Spacing distribution of the Riemann zeroes
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from A. Odlyzko (1987)

FIGURE 3: NORMALIZED SPACINGS (NEAREST NEIGHBOUR BETWEEN THE ZEROS
OF ((s)). IN THE NOTATION OF (2.12), p1 (RIEMANN, 10%, 70 x 10°) VERSUS p;
(CLASSICAL) '
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Wigner-Dyson universality

Wigner-Dyson symmetry classes:
« A :complex Hermitian matrices (‘unitary class’, GUE)
« Al :real symmetric matrices (‘orthogonal class’, GOE)

o All : quaternion self-dual matrices (‘symplectic class’, GSE)

Dyson (1962, The 3-fold way): = The most general kind of matrix
ensemble, defined with a symmetry group which may be
completely arbitrary, reduces to a direct product of independent

irreducible ensembles each of which belongs to one of three
known types.”

This classification has proved fundamental to various areas of
theoretical physics, including the statistical theory of complex

many-body systems, mesoscopic physics, disordered electron
systems, and the field of quantum chaos.
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Outline

Motivation: universality of disordered spectra
Symmetry classes of disordered fermions: 10-fold way
Riemannian symmetric superspaces (an example)

Recent results: diffusion in a SUSY hyperbolic sigma model
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Symmetry Classes of Disordered Fermions

 Heinzner, Huckleberry, MRZ,
Commun. Math. Phys. 257 (2005) 725

« MRZ, Encylopedia of Mathematical Physics,
vol.5, 151-160 (Elsevier, 2006)
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Symmetry classes: setting & motivation

Consider one —particle Hamiltonians (fermions) :
H=1> W, (c;c,—c,c)+1> (Z,,¢.C,+Z,,C4C,)

Canonical anticommutation relations: ¢, ¢, +c,C, =9,

Applications/examples:
e Hartree —Fock —Bogoliubov theory of superconductors
e Dirac equation for relativistic spin 1/2 particles

Following Dyson, classify such Hamiltonians according to
symmetries! What are the irreducible blocks that occur?

Conjecture (Altland & MRZ,1996) .
Classification by large families of symmetric spaces
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Proof of conjecture

Disordered fermion systems with quadratic Hamiltonians::
H=2>W,c'c,+3> Z;cc; + hec.

ij =i
e oy gel(e]  wowz--2
Nambu space V ®V *“ with symmetric bilinear form by C.A.R.
Unitary and antiunitary symmetries: G=U uTU (U compact).
Decompose intoirreducible blocks of U —equivariant
homomorphisms R —V and transfer structure (C.A.R.+T)

After transfer, every set of block data specifies
a classical irreducible symmetric space,
and every classical irreducible symmetric
space occurs in this way.

.. (Heinzner, Huckleberry, MRZ; 2005)
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The ten large families of symmetric spaces

family symmetric space form of H :(W* : tj
" -W
A U(N) complex Hermitian
Al U(N)/O(N) real symmetric
All U(2N)/USp(2N) guaternion self —adjoint
C USp(2N) Z complex symmetric, W =W~
Cl USp(2N)/U(N) Z complex symmetric, W =0
D SO(2N) Z complex skew, W =W"
DIl SO(2N)/U(N) Z complex skew, W =0
Alll  U(p+q)/U(p)xU(q) Z complex pxq, W=0
BDI SO(p+0q)/SO(p)xSO(q) Z real pxq, W=0

Cll USp(2p+2q)/USp(2p)xUSp(29) Z quaternion 2px2q, W =0
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Physical realizations

Al

A

All

Cl

Dl

Alll
BDI
Cll

electrons in a disordered metal with conserved spin and

with time reversal invariance invariance

same as Al, but with time reversal broken by a magnetic

field or magnetic impurities

same as Al, but with spin-orbit scatterers

guasi-particle excitations in a disordered spin-singlet
superconductor in the Meissner phase

same as ClI but in the mixed phase with magnetic vortices
disordered spin-triplet superconductor

spin-triplet superconductor in the vortex phase, or with
magnetic impurities

massless Dirac fermions in SU(N) gauge field background (N > 2)
same as Alll but with gauge group SU(2) or Sp(2N)

same as Alll but with adjoint fermions, or gauge group SO(N)

Altland, Simons & MRZ, Phys. Rep. 359 (2002) 283
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Random matrix methods

Methods based on the joint probability density for the eigenvalues
of a random matrix:

« Orthogonal polynomials + Riemann-Hilbert techniques
» (Scaling limit) reduction to integrable PDE’s (Painleve-type)

In contrast, superanalytic methods apply to band random
matrices, granular models, random Schrodinger operators etc.

« Hermitian (or Hamiltonian) disorder:
Hubbard-Stratonovich Schafer-Wegner method (1980) ,
see MRZ, arXiv:math-ph/0404057 (EMP, Elsevier, 2006),
superbosonization (2007)

« Unitary (scattering, time evolution) disorder:
color-flavor transformation (1996), Howe duality (2004)
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Wegner’s N-orbital model (class A)

Hermitian random matrices H for
alattice A with N orbitals per site i € A.

Hilbert spaceV =@._, V., V.=C".
Orthogonal projectors: I1.: V —>V..

Fourier transform of probability measure du(H):
jexp(—iTrHK)dy(H) = [ (K,), K; =TI KIT;,
local gauge invariance : U(V,)x U(V,)x...x U(V,,) .

Gaussian distribution as a special case:
] ] (K;) = exp(—ﬁzi’jcijTrHiKHjK)
i=j: C.=O(N°), i=]j: C; =O(N™).
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Riemannian symmetric superspaces

and the correspondence with supersymmetric nonlinear sigma models
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Symmetric supermanifolds: an example

Hermitian vector space U =C"™,
The space of all orthogonal decompositions
U=Uu"eU =zC’eC"

Isa Grassmann manifold U /(U xU )= M.

Pseudo —hermitian vector space V = C"™ of signature (p,q).
The pseudo —orthogonal decompositions

V=V'eV =zCc’eC"
form a non—compact Grassmannian U /(U xU )= M.

Globally symmetric Riemannian manifold: M =M, x M,
(of type Alll)
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Example (cont’d)

Vector bundle E —=— M.
A point me M determines U =U"®@U", V=V"®V .
Fibre 7*(m)=Hom@U ",V )®Hom(U ~,V™*)

@ Hom(V ,U")®@Hom(V",U").

Minimal case:
77t (m)
2 X
S

The algebra of sections I'(M, A E™) carries a canonical
action of the Lie superalgebra g = gl(U ®V) =

~C*

Riemannian symmetric superspace (M, AE", g) .

gl p+q|p+q -
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Riemannian metric structure

Graded —commutative algebra of sections A=I'(M,AE")
Invariance w.r.t. g—actionon A determines metric tensor
g: DerA x DerA > A

Supersymmetric sigma model is functional integral of maps
p: R" > >E

Action functional is given by the metric tensor in the usual way.
Riemannian structure isimportant for stability!
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The 10-Way Table

Correspondence between random matrix models
and supersymmetric nonlinear sigma models:

RME A Al Al C CI D Dl Al BDI Cll

noncomp. Alll BDI CIl DIl D CI C A Al All

susy NLsM

compact Alll CIl BDI CI C DIl D A All Al

MRZ, J. Math. Phys. 37 (1996) 4986
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Some analytical estimates

for (super)symmetric nonlinear sigma models
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Granular Model (deformed)

(Weakly coupled GUE’S)

disordered metallic grain with N electron states

probability measure :

-1
—ZHJ G Tr (I H I H)

dH

du(H)=c|Det(E+ic—H)[ e
((E+ie-H)'O0)F) =
J‘e_izi,jJij Tr(SQiSQj)_szr(é‘—iSE)Qk Qo,ll QO'ZZ erA DetN (Qk) d V(Qk),

2x 2 Hermitean matrices Q, >0, s = diag(1,-1).

Noncompact global symmetry (at £ =0):
Q —>TQT", T =sT'seSU(,Ll.
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Origin of Hyperbolic Symmetry

| Det(E+ie—H)|*= J'e“(% (E+is—H)p1) o-i(p,. (Eic—H)p,)

Note the sign change forced by the requirement of
convergence of the integral. Hence we are dealing
with a quadratic form of indefinite signature.
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Sigma Model Approximation

SU(1,1) orbit M =TT =X is H* (2-hyperboloid)
Restrict to critical manifold H? x...x H?

(by eliminating the massive modes).

(I (E+iz—H)™(0,0) |2>ﬂ = (cosh’e dist(xo,o)>S

Gibbs measure e°[], dvol(x,)

S = B coshodist(x;, X;)
+¢& 2., coshodist(x,,0)
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Spontaneous Symmetry Breaking

Theorem (Spencer and MRZ, CMP 252 (2004) 167):
(cosh? dist(x(,,o)>S <const if &-vol>1
and if d >3 and S is not too small.

Remark: This bound means that the field stays near
the origin. In the infinite-volume limit it implies
regularity of the Green’s function in &£ (in sigma

model approximation) and is consistent with the
existence of extended states.

Proof: Use the lwasawa decomposition G = NAK for
SU(1,1). Integrate out the nilpotent degrees of
freedom, resulting in convex action for the torus
variables. Apply the Brascamp-Lieb inequality.
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SUSY hyperbolic nonlinear sigma model

Advantage of toy model :

Grassmann variables can be integrated out,
and effective action actionisreal,

so probabilistic methods apply.

- . cosh (t;—t; “t — COS
Z . (B.e) = J‘e B 5. cosh (ti-t)) Det“?D, (1) He ty—e cosht, dt, ,
keA

[s;D,(t)s]= B e (s, —s;)’ +&y e“s] .

<i, > keA

Equivalence to random walk in correlated random
environment (edge reinforced random walk).
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SUSY Ward identities

OSp (2| 2) symmetry gives nontrivial relations,
e.g.,

1= (B (1- ny)>

B,, = cosh(t, —t )+ex " (S, —s)

etX +t,

xy_B

Xy

G [(6,-5,):D7(5,-5,)] .
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Main result

Theorem (Disertori, Spencer, MRZ; June 2008) :

1. The fluctuations of the t field are small at all scales:

m
<cosh (t, _ty)>A,ﬂ,g < const ,

uniformly in x,y and A aslongas g>m>1.

2. The average of the t fieldis bounded:

<e”“X> < const |
A, B,&

aslongas ¢|A|=0(L"),
where |A|=L°, f>m>1. a>0.

Corollary : noncompact symmetry is
spontaneously broken — diffusion (extended states)!
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Noncompact nonlinear sigma models

space(time)

/

2 target M

sympetric space
(noncompact)

b (M)

Energy (action) function: S = L| Dol = Iddx Uiy 0,0° 0,0 9z
Regularization: lattice AcX

Targets M: S0O,,/SO,,U /U xU_,

d = 1: M. Niedermaier, E. Seiler, arXiv:hep/th-0312293

d = 2: Duncan, Niedermaier & Seiler, Nucl. Phys. B 720
(2005) 235

d = 3: Spencer & MRZ, Commun. Math. Phys. 252 (2004) 167
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