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[overview:] 

I. Ten-Way Classification 
II. Free Fermion Ground States 



Quasi-particle vacua (I) 

Fock vacuum: 

Quasi-particle vacuum: 

where 

Remark:  quasi-particle vacua are also referred to as ground states 

in the Hartree-Fock-Bogoliubov mean-field approximation. 

Special case (   -particle Slater determinant): 

Fock operators:           (creation),          (annihilation) 



Quasi-particle vacua (II) 

In the presence of a group      of symmetries, we require 

Vector space of annihilation operators:  

Nambu space                        comes with a Hermitian scalar product 

Fact: Quasi-particle vacua are in one-to-one correspondence with 
Hermitian subspaces               (annihilation operators) subject to 

Creation operators:  

(for all             ). 

Classification of     -invariant ground states ? 



Eugene P. Wigner 

Q:  What’s a symmetry in quantum mechanics? 

A:   An operator                             on Hilbert rays that preserves  

       all transition probabilities:  

Symmetries in quantum mechanics 

Remark 2:  Symmetries commute with the Hamiltonian (                 ).  

                    Thus “chiral symmetry” (                      ) is not a symmetry.  

Remark 1:  The symmetries form a group, 

Wigner’s Theorem:  

A symmetry       in quantum mechanics can always 

be represented on Hilbert space by an operator       

which is either unitary or anti-unitary. 



Setting: Fock space & symmetries 

Freeman J. Dyson 

Single-particle Hilbert space  

Fock space        for (identical) fermions: 

Particle creation           and annihilation operators 
satisfy CAR, 

 Unitary symmetries: any group of unitary operators defined on       
     and extended to        in the natural way.  

Symmetry group acts       acts by (anti-)unitary ops on Fock space: 

 Anti-unitary symmetries: 
     1. Time reversal                         extended to           
     2. Particle-hole conjugation (twisted)      :  n particles        n holes  



Step of reduction 

multiplicity space 

For any reductive group        (here: unitary symmetries,                  ) 
Nambu space        decomposes into        -isotypic components: 

irreps of 

Example 1:  Take                   (space translations).  Then 

                (momentum),                             ,  and 

                                (all Fock operators lowering the momentum by     ). 

Example 2:  Take                        (spin rotations).  Then 

                (single-particle spin),                                   . 

See also: MRZ, Symmetry Classes, arXiv:1001.0722 



Ten-Way Classification 

Remark. This is an immediate corollary of the classification result 

by Heinzner, Huckleberry & MRZ. 

Theorem. Every      -invariant quasi-particle vacuum        decomposes  

as an orthogonal sum 

Let                           be any group of unitary & anti-unitary symmetries  
acting on       (as described above) and hence on Nambu space       . 

where each vector space             lies in some classifying space         , 
of which there exist 10 different types. The latter are in bijection 
with the 10 large families of symmetric spaces.  





What’s a symmetric space? 

Def.:   A (locally) symmetric space is a Riemannian manifold    

                             with covariantly constant curvature: 

 Complete classification by E. Cartan (1926)  

     Large families: A, AI, AII, AIII, BD, BDI, C, CI, CII, DIII 

Some facts: 

 Metric tensor        is the only     -invariant (0,2) tensor on 

Ex. 1:  the round two-sphere 

Riemann tensor: 

Ex. 2:  the set 

            of all subspaces  



Quasi-particle vacua & symmetric spaces (I) 

Example 1:                 (no symmetries at all).  

2.       has two connected components          even/odd fermion parity  

Fact. If                    ,,  the space       of quasi-particle vacua is a  

symmetric space                                       (Cartan type: DIII).    

Proof. Apply the most general Bogoliubov transformation in 

to the Fock vacuum                                              The latter is invariant 

under unitary transformations  

1.       is also the space of complex structures of          .  (Interpretation:   

       decomposition of Majorana fermions into creation and annihilation parts) 

Remarks: 

3.        is the space of general BCS-states 



Quasi-particle vacua & symmetric spaces (II) 

Example 2.                    (conservation of charge):  quasi-particle vacua       
are Hartree-Fock ground states (a.k.a. Slater determinants). 

Q: How is the structure of Riemannian manifold determined? 

A: Our variable quasi-particle vacua                            constitute a 
     homogeneous space, which is Riemann by the (geodesic)  
     distance function 

Decomposition into isotypic components:                        . 

Q.p. vacua are sums                                    with                     ,   

If                         and                              (particle number),  then  

is a point of the Grassmannian  



Proof of classification theorem (HHZ) 

1. Recall the decomposition of        into        -isotypic components: 

4. Enumerate the possible cases. 

2. Transfer all remaining structure (CAR,    ,    ) to the blocks  

3. Show that, in the process, the only change that may occur is a  
    change of involution type, i.e.                     ,    with                   , etc. 

Example 1. 

Example 2.   Same as above, but      present:  



Free-fermion ground states 



Quasi-particle vacua with translation symmetry 

Fact.  The ground state of a gapped system of  
free fermions is a rank-     complex vector bundle 

 
with fibers subject to                                               

(for all                 ). 

Notation.  Group of translations       (symmetries). 

Fourier dual                (Brillouin zone, momentum space). 

                annihilation (resp. creation) operators at              . 

Hermitian vector spaces                                 with  

and scalar product 



Quantum Spin Hall Insulator  

Let       be generated by      (translations),   

U(1)  (charge conservation) and time reversal  (                  ). 

Time-reversal symmetry implies 

At    -invariant momenta                      one has 

Note: in this setting, q.p. vacua are HF ground states with an even 
number     of valence bands. If the system is gapped (insulator), 

then the ground state is a vector bundle                                      , with 

                     :=  vector space of valence states. 

For                 such ground states fall into 2 top. classes (trivial band 
insulator; QSHI phase) distinguished by the Kane-Mele invariant. 



Quantum Spin Hall Insulator (cont’d)  

Bulk-boundary correspondence: 

non-trivial bulk topological invariant 

 perfectly conducting surface mode 

Kane & Mele, 2005: 

The Pfaffian                          of the skew-symmetric      -linear map 

 

is    -even:                          , and                    . 

The Kane-Mele       -topological invariant 

counts its pairs of zeroes (mod 2). 



From vector bundles to classifying maps 

There exists an equivalent description by a so-called classifying map.  

Constraint 

Example.                               determines 

Thus                           determines a mapping 

and 

General picture: 

   -invariant free fermion ground states  (           ) are described by 
classifying maps into a symmetric space,                      , subject to 
an equivariance condition                                        for all                  . 



Majorana fermions in superconductors  

No symmetries, “spinless fermions”, single band, D = 1.                                        

J. Alicea, arXiv:1202.1293 

Weak pairing:  bulk-boundary correspondence   gapless edge state 

Vector bundle:                                       

Classifying map:                                     

, 



How to classify? 

There exist several notions of topological equivalence: 

1. Homotopy classes of classifying maps 

2. Isomorphism classes of vector bundles 
 (okay for “many conduction bands”) 

3.   Stable equivalence of vector bundles (    -theory) 
 (okay for “many conduction & many valence bands”) 

 

Example 1.  ”Hopf magnetic” insulator (Moore, Ran, Wen; 2008) 
Two bands (one valence, one conduction). 

Let               .  Then 

Example 2. Let               .  Then 



Notation for classifying spaces 

Statement of periodicity for                       :  



Homotopy-theoretic proof of “Periodic Table” 
(R. Kennedy & MRZ, in preparation) 

1. Bott isomorphism 

2. Whitehead theorem in     -equivariant homotopy for 
                                     ( transfer to the required setting) 

3. A fiber bundle projection linking our relative homotopy groups  
       to the homotopy groups governed by Bott periodicity 

Ingredients: 

Consider the generalization by Teo & Kane (2010) 
(      space-like and      momentum-like components for              )  



Summary & Outlook 

 The ten-way symmetry classification of disordered fermions 

     carries over to quasi-particle vacua / free fermion ground states.  

 No new classifying spaces appear beyond the ten large families  

     of symmetric spaces.  

 The notions of vector bundle and classifying map are associated  

     with inequivalent notions of topological equivalence.  

 Homotopy-theoretic proof of “Periodic Table” is forthcoming. 

 Our method gives bounds on the range of stable equivalence. 

 It applies to other symmetry groups (including, e.g., reflections). 



The End 


