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Teo & Kane (2010); Stone, Chiu, Roy (2011); Freed & Moore (2013)  
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[overview:] 

I. Ten-Way Classification 
II. Free Fermion Ground States 



Quasi-particle vacua (I) 

Fock vacuum: 

Quasi-particle vacuum: 

where 

Remark:  quasi-particle vacua are also referred to as ground states 

in the Hartree-Fock-Bogoliubov mean-field approximation. 

Special case (   -particle Slater determinant): 

Fock operators:           (creation),          (annihilation) 



Quasi-particle vacua (II) 

In the presence of a group      of symmetries, we require 

Vector space of annihilation operators:  

Nambu space                        comes with a Hermitian scalar product 

Fact: Quasi-particle vacua are in one-to-one correspondence with 
Hermitian subspaces               (annihilation operators) subject to 

Creation operators:  

(for all             ). 

Classification of     -invariant ground states ? 



Eugene P. Wigner 

Q:  What’s a symmetry in quantum mechanics? 

A:   An operator                             on Hilbert rays that preserves  

       all transition probabilities:  

Symmetries in quantum mechanics 

Remark 2:  Symmetries commute with the Hamiltonian (                 ).  

                    Thus “chiral symmetry” (                      ) is not a symmetry.  

Remark 1:  The symmetries form a group, 

Wigner’s Theorem:  

A symmetry       in quantum mechanics can always 

be represented on Hilbert space by an operator       

which is either unitary or anti-unitary. 



Setting: Fock space & symmetries 

Freeman J. Dyson 

Single-particle Hilbert space  

Fock space        for (identical) fermions: 

Particle creation           and annihilation operators 
satisfy CAR, 

 Unitary symmetries: any group of unitary operators defined on       
     and extended to        in the natural way.  

Symmetry group acts       acts by (anti-)unitary ops on Fock space: 

 Anti-unitary symmetries: 
     1. Time reversal                         extended to           
     2. Particle-hole conjugation (twisted)      :  n particles        n holes  



Step of reduction 

multiplicity space 

For any reductive group        (here: unitary symmetries,                  ) 
Nambu space        decomposes into        -isotypic components: 

irreps of 

Example 1:  Take                   (space translations).  Then 

                (momentum),                             ,  and 

                                (all Fock operators lowering the momentum by     ). 

Example 2:  Take                        (spin rotations).  Then 

                (single-particle spin),                                   . 

See also: MRZ, Symmetry Classes, arXiv:1001.0722 



Ten-Way Classification 

Remark. This is an immediate corollary of the classification result 

by Heinzner, Huckleberry & MRZ. 

Theorem. Every      -invariant quasi-particle vacuum        decomposes  

as an orthogonal sum 

Let                           be any group of unitary & anti-unitary symmetries  
acting on       (as described above) and hence on Nambu space       . 

where each vector space             lies in some classifying space         , 
of which there exist 10 different types. The latter are in bijection 
with the 10 large families of symmetric spaces.  





What’s a symmetric space? 

Def.:   A (locally) symmetric space is a Riemannian manifold    

                             with covariantly constant curvature: 

 Complete classification by E. Cartan (1926)  

     Large families: A, AI, AII, AIII, BD, BDI, C, CI, CII, DIII 

Some facts: 

 Metric tensor        is the only     -invariant (0,2) tensor on 

Ex. 1:  the round two-sphere 

Riemann tensor: 

Ex. 2:  the set 

            of all subspaces  



Quasi-particle vacua & symmetric spaces (I) 

Example 1:                 (no symmetries at all).  

2.       has two connected components          even/odd fermion parity  

Fact. If                    ,,  the space       of quasi-particle vacua is a  

symmetric space                                       (Cartan type: DIII).    

Proof. Apply the most general Bogoliubov transformation in 

to the Fock vacuum                                              The latter is invariant 

under unitary transformations  

1.       is also the space of complex structures of          .  (Interpretation:   

       decomposition of Majorana fermions into creation and annihilation parts) 

Remarks: 

3.        is the space of general BCS-states 



Quasi-particle vacua & symmetric spaces (II) 

Example 2.                    (conservation of charge):  quasi-particle vacua       
are Hartree-Fock ground states (a.k.a. Slater determinants). 

Q: How is the structure of Riemannian manifold determined? 

A: Our variable quasi-particle vacua                            constitute a 
     homogeneous space, which is Riemann by the (geodesic)  
     distance function 

Decomposition into isotypic components:                        . 

Q.p. vacua are sums                                    with                     ,   

If                         and                              (particle number),  then  

is a point of the Grassmannian  



Proof of classification theorem (HHZ) 

1. Recall the decomposition of        into        -isotypic components: 

4. Enumerate the possible cases. 

2. Transfer all remaining structure (CAR,    ,    ) to the blocks  

3. Show that, in the process, the only change that may occur is a  
    change of involution type, i.e.                     ,    with                   , etc. 

Example 1. 

Example 2.   Same as above, but      present:  



Free-fermion ground states 



Quasi-particle vacua with translation symmetry 

Fact.  The ground state of a gapped system of  
free fermions is a rank-     complex vector bundle 

 
with fibers subject to                                               

(for all                 ). 

Notation.  Group of translations       (symmetries). 

Fourier dual                (Brillouin zone, momentum space). 

                annihilation (resp. creation) operators at              . 

Hermitian vector spaces                                 with  

and scalar product 



Quantum Spin Hall Insulator  

Let       be generated by      (translations),   

U(1)  (charge conservation) and time reversal  (                  ). 

Time-reversal symmetry implies 

At    -invariant momenta                      one has 

Note: in this setting, q.p. vacua are HF ground states with an even 
number     of valence bands. If the system is gapped (insulator), 

then the ground state is a vector bundle                                      , with 

                     :=  vector space of valence states. 

For                 such ground states fall into 2 top. classes (trivial band 
insulator; QSHI phase) distinguished by the Kane-Mele invariant. 



Quantum Spin Hall Insulator (cont’d)  

Bulk-boundary correspondence: 

non-trivial bulk topological invariant 

 perfectly conducting surface mode 

Kane & Mele, 2005: 

The Pfaffian                          of the skew-symmetric      -linear map 

 

is    -even:                          , and                    . 

The Kane-Mele       -topological invariant 

counts its pairs of zeroes (mod 2). 



From vector bundles to classifying maps 

There exists an equivalent description by a so-called classifying map.  

Constraint 

Example.                               determines 

Thus                           determines a mapping 

and 

General picture: 

   -invariant free fermion ground states  (           ) are described by 
classifying maps into a symmetric space,                      , subject to 
an equivariance condition                                        for all                  . 



Majorana fermions in superconductors  

No symmetries, “spinless fermions”, single band, D = 1.                                        

J. Alicea, arXiv:1202.1293 

Weak pairing:  bulk-boundary correspondence   gapless edge state 

Vector bundle:                                       

Classifying map:                                     

, 



How to classify? 

There exist several notions of topological equivalence: 

1. Homotopy classes of classifying maps 

2. Isomorphism classes of vector bundles 
 (okay for “many conduction bands”) 

3.   Stable equivalence of vector bundles (    -theory) 
 (okay for “many conduction & many valence bands”) 

 

Example 1.  ”Hopf magnetic” insulator (Moore, Ran, Wen; 2008) 
Two bands (one valence, one conduction). 

Let               .  Then 

Example 2. Let               .  Then 



Notation for classifying spaces 

Statement of periodicity for                       :  



Homotopy-theoretic proof of “Periodic Table” 
(R. Kennedy & MRZ, in preparation) 

1. Bott isomorphism 

2. Whitehead theorem in     -equivariant homotopy for 
                                     ( transfer to the required setting) 

3. A fiber bundle projection linking our relative homotopy groups  
       to the homotopy groups governed by Bott periodicity 

Ingredients: 

Consider the generalization by Teo & Kane (2010) 
(      space-like and      momentum-like components for              )  



Summary & Outlook 

 The ten-way symmetry classification of disordered fermions 

     carries over to quasi-particle vacua / free fermion ground states.  

 No new classifying spaces appear beyond the ten large families  

     of symmetric spaces.  

 The notions of vector bundle and classifying map are associated  

     with inequivalent notions of topological equivalence.  

 Homotopy-theoretic proof of “Periodic Table” is forthcoming. 

 Our method gives bounds on the range of stable equivalence. 

 It applies to other symmetry groups (including, e.g., reflections). 



The End 


