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“Periodic Table” of topological insulators/superconductors

Symmetry d

A7 &) = I1 1 2 3 4 5 6 7 8

A 0 0 0 O [z 0z 0 zZ 0 Z Quantum Hall Effect
AIIll O 0 1 Z 0 7Z 0 Z 0 Z 0
BDI 1 1 1 Z 0 0 0 Z 0 Zo Zo

D 0 1 O (|Zsl Z 0O 0 0 Z 0 Zo QSHI: HgTe
DIIT| —1 1 1 | Zo Zo |Z| O 0 0 Z 0

AIll =1 0 0| 0 Zo Zo Z 0 0 0 Z Majorana
CIr|{ -1 -1 1 Z 0 Zo Zo Z 0 0 0O _

Bi, Se;
C 0 —1 0 0O Z 0 Zo Zo Z 0 0
CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the

notation of Altland and Zirnbauer (1997)

from Hasan & Kane,
Rev. Mod. Phys. (2011)

Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009);
Teo & Kane (2010); Stone, Chiu, Roy (2011); Freed & Moore (2013)



[overview:]

|. Ten-Way Classification
Il. Free Fermion Ground States



Quasi-particle vacua (l)

Fock operators: CTOC (creation), ¢ (annihilation)

Fock vacuum: ¢4 |vac) =0 (a=1,2,...)

Quasi-particle vacuum: ¢ |vac) =0 (ax=1,2,...)

where 505 — Z (Ca’ Ua/ o + CTOC’ VOC’OC)
a/

Remark: quasi-particle vacua are also referred to as ground states
in the Hartree-Fock-Bogoliubov mean-field approximation.

Special case (n-particle Slater determinant):

A~

Cy=c, (1<a<n), C¢q=cq (00>n)



Quasi-particle vacua (1)

Vector space of annihilation operators: Z”Oﬂ cq €U
Creation operators: Zva c& cV

Nambu space W = U &V comes with a Hermitian scalar product

(W) ={y' v} w=Y (taca+vych) eW.

Fact: Quasi-particle vacua are in one-to-one correspondence with
Hermitian subspaces A C W (annihilation operators) subject to

{A,A} =0, dimA=3dimW.

In the presence of a group G of symmetries, we require

g-A=A (forall g € G).

Classification of G-invariant ground states ?



Symmetries in quantum mechanics

Q: What’s a symmetry in quantum mechanics?
A: Anoperator T : Zvy; — Zvy, on Hilbert rays that preserves
all transition probabilities: | (T2, . TZ ) \2 = [(Zv, . Z ) \2.

Wigner’s Theorem:
A symmetry T in gquantum mechanics can always

be represented on Hilbert space by an operator T
which is either unitary or anti—unitary.\l

(Tya|Twi) = (ya|pn) ;
Remark 1: The symmetries form a group, G. Eugene P. Wigner

Remark 2: Symmetries commute with the Hamiltonian (TH = HT).
Thus “chiral symmetry” (5D = —D) is not a symmetry.



Setting: Fock space & symmetries

Single-particle Hilbert space V

Fock space .# for (identical) fermions: %, = N'(V)

Particle creation (CT) and annihilation operators (c) A |
satisfy CAR, Freeman J. Dyson

c&cﬁJrcﬁc& = 3a5 , CqCBTCBCx :O:c&c};JrcEcTa.

Symmetry group acts G acts by (anti-)unitary ops on Fock space:

= Unitary symmetries: any group of unitary operators defined on V
and extended to .# in the natural way.

= Anti-unitary symmetries:
1. Timereversal T:V —V, extendedto T : %, — %,
2. Particle-hole conjugation (twisted) C: n particles — n holes



Step of reduction

For any reductive group G (here: unitary symmetries, Gg C G)
Nambu space W decomposes into Gq-isotypic components:

W:@AWA, Wy =, QR

™~

multiplicity space irreps of Gy
6, = Homg, (R;,W) ~ C™

Example 1: Take Gy = I (space translations). Then
A =k (momentum), Ry =R, ~C, and 4. =U; B V_;

(all Fock operators lowering the momentum by & ).

Example 2: Take Gy = SU» (spin rotations). Then
A = (single-particle spin), Ry =R, ~ cx i+l

See also: MRZ, Symmetry Classes, arXiv:1001.0722



Ten-Way Classification

Let G = GyUG| be any group of unitary & anti-unitary symmetries
acting on .# (as described above) and hence on Nambu space W.

Theorem. Every G -invariant quasi-particle vacuum A decomposes
as an orthogonal sum

A=@D,AA). AA)=x(A) DRy,

where each vector space X(4) lies in some classifying space X3 ,
of which there exist 10 different types. The latter are in bijection
with the 10 large families of symmetric spaces.

Remark. This is an immediate corollary of the classification result
by Heinzner, Huckleberry & MRZ.
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Abstract: Building upon Dyson’s fundamental 1962 article known in random-matrix
theory as the threefold way, we classify disordered fermion systems with quadratic Ham-
iltonians by their unitary and antiunitary symmetries. Important physical examples are
afforded by noninteracting quasiparticles in disordered metals and superconductors, and
by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators
which carry a representation of some symmetry group. Our approach 1s to eliminate all



What’s a symmetric space?

Fi

Riemann tensor:  R'j = oI}, — T, +T .

myi m
lj ka o 1_‘k j

Def.: A (locally) symmetric space is a Riemannian manifold
X = U/K with covariantly constant curvature: VR=20.

Ex. 1: the round two-sphere X =S?, ds*> =d6?+sin’0d¢?

Ex. 2: the set X = Gr,(CY) =U(N)/U(n) x UN —n)
of all subspaces C"~Vv c CV

Some facts:

= Complete classification by E. Cartan (1926)
Large families: A, Al, All, Alll, BD, BDI, C, Cl, Cll, DI

" Metric tensor g;; is the only G-invariant (0,2) tensor on X



Quasi-particle vacua & symmetric spaces ()
Example 1: G = {e} (no symmetries at all).

Fact. If dimV = N, the space X of quasi-particle vacua is a
symmetric space X = O(2N)/U(N). (Cartan type: DIlI).

Proof. Apply the most general Bogoliubov transformation in O(2N)
to the Fock vacuum Ay = spang{cy,...,cy}. The latteris invariant

under unitary transformations U(N) C O(2N).

Remarks:
1. X is also the space of complex structures of RN (interpretation:

decomposition of Majorana fermions into creation and annihilation parts)

2. X has two connected components <> even/odd fermion parity

3. Xy is the space of general BCS-states exp (Zzaﬁc;cg) [vac)



Quasi-particle vacua & symmetric spaces (ll)

Example 2. G = U(1) (conservation of charge): quasi-particle vacua
are Hartree-Fock ground states (a.k.a. Slater determinants).

Decomposition into isotypic components: W =U® V.
Q.p.vacua are sums A =A(—)PA(+) with A(—)CU, A(+)CV.

If dimV =N and dimA(+) = n (particle number), then A(+)
is a point of the Grassmannian X = U(N)/U(n) x U(N —n).

Q: How is the structure of Riemannian manifold determined?

A: Our variable quasi-particle vacua x = % |vac) constitute a
homogeneous space, which is Riemann by the (geodesic)
distance function

diSt(xl,)CQ) =1 <—— %’ﬂfcg :%65’\;{(:1% HSH = 1.



Proof of classification theorem (HHZ)

1. Recall the decomposition of W into Gg-isotypic components:
W = @AWA, Wy = 5, QR),.
2. Transfer all remaining structure (CAR, 7, C) to the blocks 7 .

3. Show that, in the process, the only change that may occur is a
change of involution type, i.e. T = T ® B with ﬁz = 41, etc.

4. Enumerate the possible cases.

Example 1. Gy = SU(2)gpin, R; = (C*)gpin : CAR — CCR.

Example 2. Same as above, but 7 present: T2 =—1 — Tesz = +1.



Free-fermion ground states



Quasi-particle vacua with translation symmetry

Notation. Group of translations 1" (symmetries).
Fourier dual I'= M (Brillouin zone, momentum space).
Ui (Vi) annihilation (resp. creation) operators at k€ M.

Hermitian vector spaces W, = U, & V_; with dimW, = 2N
and scalar product (v | y/) = {y",y/}.

Fact. The ground state of a gapped system of
free fermions is a rank-N complex vector bundle

o M, ml(k)=Ak) C W,
with fibers subject to

{A(k),A(—k)} =0  (forall k € M).




Quantum Spin Hall Insulator i

CdTe d
HgTe T
. CdTe
Let G be generated by I (translations),
U(1) (charge conservation) and time reversal (T2 = —1).

Note: in this setting, g.p. vacua are HF ground states with an even
number n of valence bands. If the system is gapped (insulator),

then the ground state is a vector bundle M = k — V (k) € C" with
V (k) ~ C" := vector space of valence states.

Time-reversal symmetry implies TV (k) =V (—k).
At T-invariant momenta ko = —ko one has TV (ko) =V (ko).

For M = S? such ground states fall into 2 top. classes (trivial band
insulator; QSHI phase) distinguished by the Kane-Mele invariant.



Quantum Spin Hall Insulator (cont’d)

Kane & Mele, 2005:
The Pfaffian p(k) = Pf1; of the skew-symmetric C-linear map
o V(k) = V() = (CYH* V)", v (T,
is T-even: p(k) = p(—k), and p(kg) #O.
The Kane-Mele 7, -topological invariant

counts its pairs of zeroes (mod 2).

Bulk-boundary correspondence:

non-trivial bulk topological invariant
- perfectly conducting surface mode

R14.23 (L)




From vector bundles to classifying maps

There exists an equivalent description by a so-called classifying map.
Example. V (k) ~ C" c CN determines x € C:=U(N)/U(n) x U(N —n).
Thus {k+—V(k)} determinesa mapping {k— y(k)<C}.
Constraint TV (k)=V(—k) = Ty(k)=y(—k).

and TV(ky)=V(ky) = w(kyp)€R=Sp(N)/Sp(n)xSp(N—n).

General picture:

G-invariant free fermion ground states (I' C G) are described by
classifying maps into a symmetric space, v : M — C, subject to
an equivariance condition g-y(k) =y(g-k) forall g & Gpq.



Majorana fermions in superconductors

No symmetries, “spinless fermions”, single band, D = 1.
Vector bundle:

A(k) = spanc (u(k) e +v(k)c ), v(k) u(k) = 2(k) = —2(—k)
Classifying map:

C=U(2)/U(1)xU(1)=S8*>, R=0(2)/U(1) = {N.P.,S.P.}.

Weak pairing: bulk-boundary correspondence -2 gapless edge state

(c) A h/A (d)
l’ ' ‘ Tc?pcl)lo- s-wave SC ¥ E
gica gi! 73 Ya o Y2
1D wire . l1 D_V;ir_el :
x Y | Gate | | Gate |
S-wave superconductor TerlaI /,(,/A
> [ v

FIG. 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin-orbit-coupled wire. (b) Band structure
for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the chemical
potential lies within the field-induced gap at & = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate super-
conductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy Majorana

J. Alicea, arXiv:1202.1293



How to classify?
There exist several notions of topological equivalence:

1. Homotopy classes of classifying maps «

2. Isomorphism classes of vector bundles

(okay for “many conduction bands”)

3. Stable equivalence of vector bundles ( K -theory)

(okay for “many conduction & many valence bands”)

Example 1. "Hopf magnetic” insulator (Moore, Ran, Wen; 2008)
Two bands (one valence, one conduction).

Let M =S>. Then 0= Vect[ (M) # m3(S?) = Z.

7.

Example 2. Let M =S!. Then Z, = Vect{ (M) # m (S!)



Notation for classifying spaces

Rs(n)

Cs(n)

N N DN R WD = O«

01611/08?1 X 0811
Ogy,

0811. / U4rz.
Udn/Spa4y

Sp4n/ Sp2n. X Sp2n
SpZn

SpZn/ Uﬂ

Urz./ Oy

U16n./ USn X USn

Uy, / U, x Uy
Uy,

Al
BDI

DIIIT
All
CII

Cl

Statement of periodicity for Goq = Z» :

9. Cy(n)]z,

12



Homotopy-theoretic proof of “Periodic Table”

(R. Kennedy & MRZ, in preparation)
Ingredients:

1. Bottisomorphism [S”.R,] = [SPT! R, ]

2. Whitehead theorem in G-equivariant homotopy for G = 7>
(= transfer to the required setting)

3. Afiber bundle projection linking our relative homotopy groups
to the homotopy groups governed by Bott periodicity

Consider the generalization by Teo & Kane (2010)
(D space-like and d momentum-like components for k € M)

12 |
[SD: dv Cs (n)]Zz - [SDJF‘S:da Co (n)]Zz

3 | 1,2
> [§PEAHL 01 (2n)]z, = [P Cou (20)]2,



Summary & Outlook

The ten-way symmetry classification of disordered fermions
carries over to quasi-particle vacua / free fermion ground states.
No new classifying spaces appear beyond the ten large families
of symmetric spaces.

The notions of vector bundle and classifying map are associated
with inequivalent notions of topological equivalence.

Homotopy-theoretic proof of “Periodic Table” is forthcoming.
Our method gives bounds on the range of stable equivalence.
It applies to other symmetry groups (including, e.g., reflections).



The End



