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Abstract. — This is the text of my 50 minute talk. To read and understand it, you are
advised to consult the enclosed slides.

1. Periodic Table

We have already heard several talks about topological insulators (and superconduc-
tors) at this meeting, so I hope it’s okay for me not to give another introduction to the
subject, but just remind you of some of the major examples as we go along.

Let me begin by showing the so-called “Periodic Table”. Some four years ago, most
if not all of the examples of topological insulators and superconductors known at that
time were put into a table [of homotopy groups] by the Santa Barbara group, following
Kitaev and their own earlier work. This included, among others, the quantum spin Hall
insulator and the insight that He-3B is a topological superfluid. The Periodic Table
caused quite a stir in the community; in any case, it has been reprinted in numerous
articles including a major review by Hasan and Kane, and it has been discussed in a
number of papers by various groups. Those of some importance for this talk are listed
at the bottom of this slide. My goal here is to add some perspective to this striking
table. At the end, I will sketch a new proof of the table based on homotopy theory, and
nothing but homotopy theory. (In particular, there will be no K theory.)

2. Ten-Way Classification

My talk is organized in two major parts. In the first part, I will review a classification
result dubbed the “Tenfold Way”. While conceived for the symmetry classification of
disordered fermions, an adaptation thereof serves the goal of classifying (symmetry-
protected) topological ground states. In the second part, I will concentrate on systems
with translation symmetry and look at the free-fermion ground states classified by the
Periodic Table.
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2.1. Quasi-particle vacua (I). — In this talk, we will go right to the heart of the
matter! Thus I will not introduce any Hamiltonians and then follow the usual practice
of flattening them, making them Dirac, or whatever, for the purpose of topological
classification. Rather, we will look directly at the ground states, as follows.

Let c†
α denote the Fock operator creating a single particle in state α , and let cα be

the corresponding annihilation operator. The Fock vacuum is uniquely characterized
by the property of being annihilated by all the annihilation operators:

cα |vac⟩= 0 (α = 1,2, . . .).

Now define the notion of quasi-particle vacuum by an analogous property,

c̃α |ṽac⟩= 0 (α = 1,2, . . .),

where the operators c̃ are the result of making a Bogoliubov transformation:.

c̃α = ∑
α ′

(
cα ′ uα ′α + c†

α ′ vα ′α
)
.

Such vacua are also referred to as many-body ground states in the Hartree-Fock-
Bogoliubov mean-field approximation.

Note that the (large) family of quasi-particle vacua contains the family of n-particle
Slater determinants as a special case. For this we set

c̃α = c†
α (1 ≤ α ≤ n), c̃α = cα (α > n).

2.2. Quasi-particle vacua (II). — Now, in order to handle the general situation with
symmetries, we introduce the following notation.

Let U denote the vector space of operators annihilating a single particle, and let V
be the corresponding space of creation operators:

∑uα cα ∈U , ∑vα c†
α ∈V .

I use the word “Nambu space ” for the orthogonal sum

W =U ⊕V.

This vector space carries a Hermitian scalar product defined by⟨
ψ | ψ ′⟩ := {ψ†,ψ ′}, ψ = ∑

(
uα cα + vα c†

α
)
∈W,

where † means (taking) the adjoint operator and the curly brackets denote the anti-
commutator. Thus W is what is called a Hermitian vector space.
Fact. There is a one-to-one correspondence between quasi-particle vacua and Hermi-
tian subspaces A ⊂W subject to the conditions

{A,A}= 0 , dimA = 1
2 dimW.

Thus A is a space of generalized annihilation operators. (Indeed, the anti-commutator
of any pair of operators in A vanishes, and A has the largest possible dimension for this
property to hold.)

Now in the presence of a group G of symmetries we require

g ·A = A (for all g ∈ G).
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We then ask: can a classification of G-invariant quasi-particle vacua be given?

2.3. What’s a symmetry?— Let’s start at the very beginning and recall what is meant
by a symmetry in the context of quantum mechanics. Following Wigner (who was
awarded the 1963 Physics Nobel Prize for his foundational work on symmetry prin-
ciples and their application to nuclear and particle physics) a symmetry in quantum
mechanics is primarily a transformation on the rays of Hilbert space, with the property
that all transition probabilities are preserved.

Now one corner stone of our subject is a theorem (attributed to Wigner) stating that
any quantum symmetry T lifts to Hilbert space as a linear operator, say T̂ , which is
either unitary, or anti-unitary. In the former case the Hermitian scalar product of
Hilbert space is preserved, in the latter case it is preserved up to complex conjugation.

I wish to make two remarks here. First comes the obvious statement that symme-
tries always form a group, G . Indeed, if two operators are symmetries, then so is their
composition. The second remark is that in order for an operator T̂ to be a symmetry
of a quantum system with Hamiltonian H, we require that T̂ commutes with H. Thus
so-called chiral symmetries, which anti-commute with the Hamiltonian – a prominent
example is the chirality operator γ5 which anti-commutes with the massless Dirac op-
erator – such “chiral symmetries” aren’t symmetries, at least not in the sense of this
talk. (I must emphasize this point because my work on symmetry classification is often
cited in an abridged form that overlooks or ignores this crucial aspect.)

2.4. Setting: Fock space & and symmetries. — Next we specify the mathematical
framework in which to carry out the classification; our setting is a refinement of that
used by Freeman Dyson in his famous Threefold Way of random matrix theory.

2.4.1. Fock space. — First of all, we replace Dyson’s general Hilbert space by the
more elaborate structure of a Fock space, F , built from a single-particle Hilbert space
V . Since we are dealing with fermions, Fock space is formed by taking exterior powers;
note that Fn = ∧n(V ) denotes the n-particle sector. And, of course, the Fock operators
creating and annihilating particles satisfy the canonical anti-commutation relations,

c†
α cβ + cβ c†

α = δαβ , cα cβ + cβ cα = 0 = c†
α c†

β + c†
β c†

α ,

referred to as CAR for short.

2.4.2. Symmetries. — Following Dyson, we adopt the setting of a symmetry group G
acting on Fock space by unitary and anti-unitary operators. We require the group of
unitary symmetries to be defined on the single-particle space V and extend it to Fock
space F in the natural way. [This requirement, I should say, excludes Yangian and
other quantum group symmetries, which arise at the many-particle level.] There is no
further restriction; thus the group of unitary symmetries may be quite arbitrary.

As for the anti-unitaries, we allow for the possible presence of time-reversal symme-
try, which is defined on the single-particle Hilbert space and extends to Fock space in
the usual way. Moreover, the structure of Fock space opens the possibility for another
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anti-unitary operation to be a symmetry; this is (twisted) particle-hole conjugation, C,
which transforms a state of n particles into a state of n holes.

2.5. Step of reduction. — Recall that we want to classify ground states (more pre-
cisely: quasi-particle vacua). The main step in this quest is a reduction process by
which the subgroup G0 of unitary symmetries is essentially removed. To carry out
this reduction, we first observe that the G-action on Fock space induces a G-action on
Nambu space, and then we identify in W all irreducible representations of G0. Let λ
be an index that runs over the isomorphism classes of irreps that occur. All irreps in the
same class can be viewed as identical copies of a standardized representation, say Rλ .
They are gathered in a so-called G0-isotypic component, which is the tensor product
of Rλ with a factor accounting for multiplicity:

W =
⊕

λ
Wλ , Wλ = Hλ ⊗Rλ .

For a perfect mathematical formulation, one thinks of each representation of class λ as
a linear mapping (or homomorphism) that takes the standard representation space Rλ
and sends it as a G0-representation into W :

Hλ = HomG0(Rλ ,W )≃ Cmλ .

Phrased in simple terms, each multiplicity space Hλ is just Cmλ , where mλ is the
number of times the irreducible G0-representation Rλ occurs in W . Let me illustrate
this with two examples.
Example 1. Take G0 to be a group Γ of space translations, which is Abelian. Then λ
is the quantum number for momentum (λ = k), and all representation spaces are one-
dimensional (Rλ = Rk ≃C). Our multiplicity space here is the space of Fock operators
that lower the momentum by k:

Hk =Uk ⊕V−k;

it is spanned by the annihilation operators at momentum k and the creation operators
at momentum −k.
Example 2. For another example, take G0 to be the (non-Abelian) group of SU2
spin rotations. Then λ is the spin j of a single particle, and Rλ is the standard spin
representation space of dimension 2 j + 1. Here one has to deal with the fact that
creating spin j isn’t the same as annihilating spin j; therefore, some SU2-equivariant
isomorphism is employed in order to bring the decomposition into the desired form.

[For more examples and a leisurely account of this story, you may wish to consult
my Oxford Handbook Article on Symmetry classes (arXiv:1001.0722).]

2.6. Ten-Way Classification. — We are now ready to make a statement. Let G =
G0 ∪G1 be any group of unitary and anti-unitary symmetries acting on Fock space (as
described above) and hence on Nambu space. We also recall that each quasi-particle
vacuum is identified with its space A of annihilation operators. The statement then is
Theorem. Every G-invariant quasi-particle vacuum decomposes as an orthogonal sum:

A =
⊕

λ
A(λ ), A(λ ) = x(λ )⊗Rλ ,
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where each vector space x(λ ) lies in some classifying space Xλ , of which there exist
10 different types. The latter are in bijection with the 10 large families of symmetric
spaces.
Remark. This is an immediate corollary of a classification result proved by Heinzner,
Huckleberry, and myself. But let me go slowly, and take some time to explain the
meaning of the statement and the idea of its proof.

2.7. What’s a symmetric space?— In Riemannian geometry there exists something
called the Riemann curvature tensor. In a coordinate basis, it has the well-known
expression

R i
j kl = ∂kΓ i

l j −∂lΓ i
k j +Γm

l j Γ i
km −Γm

k j Γ i
lm .

A (locally) symmetric space is defined to be a Riemannian manifold X =U/K with a
Riemann tensor which is covariantly constant:

∇R = 0 .

The simplest example of a such a space is the round two-sphere S2,

X = S2 , ds2 = dθ 2 + sin2 θ dϕ 2 ,

with line element induced by the Euclidean distance of three-dimensional space. An-
other example is the set Cn ≃ V ⊂ CN of all complex n-dimensional subspaces in N
dimensions. Such a space is called a Grassmann manifold, or a Grassmannian for
short. Note that any two n-dimensional subspaces can be mapped into each other by a
unitary transformation of the full space. Since nothing changes when we just transform
within a fixed subspace and its orthogonal complement, one has the identification

X = Grn(CN) = U(N)/U(n)×U(N −n)

of the Grassmannian with a quotient of unitary groups.
An important and well-known fact about symmetric spaces is that they were com-

pletely classified [the globally symmetric ones] by the French geometer Elie Cartan.
Apart from a finite number of exceptional spaces, they come in 10 large families, which
Cartan called A, AI, AII, AIII, BD, BDI, C, CI, CII, and DIII.

2.8. Quasi-particle vacua & symmetric spaces (I). — Next, for those of you who
are not familiar with this story, I am going to give two examples of the correspondence
between quasi-particle vacua and symmetric spaces.

The first one is the example with no symmetries whatsoever. In that case, denoting
the dimension of single-particle Hilbert space by N, the space of all quasi-particle
vacua is a symmetric space X = O(2N)/U(N) (of Cartan type DIII).

To see this, take the Fock vacuum, say A0 (spanned by the “bare” annihilation oper-
ators), and apply to it some element of the large group of Bogoliubov transformations,
O(2N). The action of the Bogoliubov group O(2N) is transitive, so you’ll be able
to reach the most general quasi-particle vacuum from the Fock vacuum. Since the
latter is invariant under the U(N) subgroup which simply transforms the c’s amongst
themselves, you get the claimed statement.
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Let me remark that there exist several equivalent ways of looking at this symmet-
ric space X . First of all, X = O(2N)/U(N) may be viewed as the space of complex
structures of R2N . In physical terms, this says that every point of X corresponds to
a distinct way of decomposing 2N Majorana fermions into creation and annihilation
parts. Second, X has 2 connected components. These correspond to quasi-particle
vacua with even or odd fermion number. Third, the connected component with even
fermion number is the space of BCS-states (Bardeen, Cooper, Schrieffer) of the most
general form:

|BCS⟩= exp
(
∑Zαβ c†

αc†
β

)
|vac⟩ .

2.9. Quasi-particle vacua & symmetric spaces (II). — For another example, let the
symmetry group G be the U(1) group underlying charge (or particle number) conser-
vation. In this case, quasi-particle vacua are Hartree-Fock ground states, also known as
Slater determinants. To phrase this in our language, note that the decomposition into
isotypic components now is the decomposition

W =U ⊕V

into annihilation and creation operators. A = A(−)⊕A(+) here is a sum spanned by
some annihilation operators A(−)⊂U and creation operators A(+)⊂V . If dimV = N
and dimA(+) = n (that’s the particle number), then A(+) is a point of the Grassman-
nian X = U(N)/U(n)×U(N − n). Physically speaking, A(+) may be identified with
the space of occupied states, and A(−) with the space of empty states.

2.9.1. Riemannian structure?— Since I defined symmetric spaces as Riemannian man-
ifolds, you may ask how one puts a Riemannian geometry on the space of quasi-particle
vacua. The answer is that one takes the geodesic distance between two such vacua to
be the positive number t if the ray of one is obtained from the ray of the other by
applying the exponential of an anti-Hermitian particle-hole type operator of norm t:

dist(x1,x2) = t ⇐⇒ R |ṽac2⟩= R eS|ṽac1⟩, ∥S∥= t.

Here I am using the notation “little x” (x ≡ R |ṽac⟩) for the ray of the ground state
(omitting the irrelevant overall phase factor).

2.10. Proof of classification theorem. — So much for background underlying the
classification theorem of HHZ. A brief sketch of its proof is as follows:

1. Recall the decomposition of Nambu space into isotypic components with respect
to the subgroup of unitary symmetries G0:

W =
⊕

λ
Wλ , Wλ = Hλ ⊗Rλ .

2. Transfer all remaining structure (CAR, T , C) to the multiplicity blocks Hλ .
3. Show that, in the process, the only change that may occur is a change of the type

of involution, i.e. T = Teff ⊗β with β 2 =±1, etc.
4. Enumerate the possible cases.
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It should be emphasized that the process of reduction by the unitary symmetries does
modify, in general, the CAR structure and/or the algebraic properties of the anti-unitary
symmetry operations.
Example 1. Let G0 be the group SU(2) of spin rotations, with fundamental represen-
tation Rλ = (C2)spin. In this case, the reduction process eliminating the spin degree
of freedom effectively replaces CAR by CCR (canonical commutation relations) — a
kind of “fermion-boson transmutation”!
Example 2. Let the setting be the same as in the first example, but now augmented
by the anti-unitary symmetry of time reversal T . If T 2 =−1 (as is the case for spinful
fermions), then T 2

eff =+1 after spin reduction.

3. Free-fermion ground states

3.1. Quasi-particle vacua with translation symmetry. — We begin with some no-
tation. Let Γ denote a group of translations, and let Γ̂ ≡ M be its Fourier dual, i.e.,
momentum space (Brillouin zone). As before, Uk (V−k) denotes the space of single-
particle annihilation (resp. creation) operators lowering the momentum by k ∈ M . For
each k we form the Hermitian vector space Wk =Uk⊕V−k with dimension dimWk = 2N
and scalar product ⟨

ψ | ψ ′⟩= {ψ†,ψ ′}.
Adapting a fact stated in Section 2.2 we have:
Fact. An insulator ground state of free fermions is a rank-N complex vector bundle

A
π−→ M, π−1(k)≡ A(k)⊂Wk

subject to the CAR constraint

{A(k),A(−k)}= 0 (for all k ∈ M).

Recall that this condition says that the anti-commutator for any pair of single-particle
annihilation operators must vanish. In the presence of symmetries other than transla-
tions there will be complex (anti-)linear conditions on the fibers A(k).

3.2. Quantum Spin Hall Insulator (AII). — Let us illustrate the general statement
by an example of great physical interest: the so-called quantum spin Hall insulator.

We assume that particle number is conserved and take the symmetry group G to be
generated by time reversal (for spin-1/2 electrons, so that T 2 =−1) and by a group Γ of
translations. In this case, our quasi-particle vacua are Hartree-Fock mean-field ground
states (with an even number n of occupied bands). Because momentum k is conserved
due to translation symmetry, we may describe these ground states by assigning to each
k-value the corresponding vector space, V (k) ⊂ CN , of occupied states (or, using the
language of solid state physics, the vector space spanned by the valence band states
at momentum k). If the system is an insulator, i.e., the Fermi energy sits in a gap,
this assignment determines what is called a vector bundle: a family of vector spaces
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that varies continuously with k. The presence of T -symmetry implies that the time-
reversal operator applied to the valence states of momentum k yields the valence states
of momentum −k:

T V (k) =V (−k).

For the special case of a time-reversal invariant momentum k0 =−k0 it follows that the
vector space of valence states is T -invariant: T V (k0) =V (k0). By the properties of the
anti-unitary operator T this implies that the vectors of V (k0) organize into so-called
Kramers pairs.

For M = S2, the case of a two-dimensional fluid where k0 = 0 and ∞ are the only
T -invariant momenta), such vector bundles fall into two topological classes. Phys-
ically speaking, these are those of a trivial band insulator and of the quantum spin
Hall phase (and every one of our translation-invariant Hartree-Fock mean-field ground
states belongs to one of the two).

To distinguish between the two cases, one looks at a topological invariant that mea-
sures the twisting of the vector bundle — following Kane and Melé one associates with
V (k) the Pfaffian p(k) := Pfτk of the skew-symmetric map

τk : V (k)→V (k)∗ = (CN)∗/V (k)⊥, v 7→ ⟨T v, ·⟩ .

The phase of the complex-valued function k 7→ p(k) winds either an even or an odd
number of times along a circle through 0 and ∞ in k-space.

3.3. From vector bundles to classifying maps. — We now change perspective and
go to the equivalent description of a vector bundle by its classifying map. For concrete-
ness, we do it again at the example of the quantum spin Hall insulator, and comment
on the general situation at the end.

Recall that a choice of n-dimensional subspace V (k)≃Cn ⊂CN determines a point
x in a Grassmann manifold

x ∈C := U(N)/U(n)×U(N −n).

(We now write “C”, as in classifying space.) In the vector bundle picture we associate
with each k-value a vector space V (k), but we may equivalently associate with each
k-value the corresponding point in C. Thus instead of a vector bundle {V (k)}k∈M we
get a mapping ψ : k 7→V (k)∈C from k-space into the Grassmannian C. The condition
TV (k) =V (−k) due to time-reversal symmetry translates into a condition on the map:

T̃ ψ(k) = ψ(−k).

At any T -invariant point k0 =−k0 this becomes a stability condition T̃ ψ(k0) = ψ(k0)
constraining ψ to take values in a certain subspace of C. That subspace, R, is the
symplectic Grassmann manifold

R = Sp(N)/Sp(n)×Sp(N −n).

Its points are the fixed points of T̃ (the induced action of time reversal) in C.
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Turning to the general situation, G-invariant free-fermion ground states of gapped
systems with translation symmetry (Γ ⊂ G ) are described by classifying maps

ψ : M →C

from momentum space into some symmetric space C subject to the condition

g̃ ·ψ(k) = ψ(g · k) (for all g ∈ Gred )

for every element of the reduced group of symmetries which do not commute with the
translations.

3.4. 1d superconductor, class D. — To give another example, let us consider the
case of a single band of spinless fermions with no symmetries (a.k.a. class D) in one
dimension. The vector bundle {Ak}k∈M of the (superconducting) ground state takes
the form of

A(k) = spanC
(

u(k)ck + v(k)c†
−k

)
,

where the function v(k)/u(k) ≡ z(k) = −z(−k) is skew-symmetric by the CAR con-
straint {A(k),A(−k)}= 0. This ground state may look more familiar when written as
a BCS state:

|BCS⟩= e ∑k z(k)c†
kc†

−k |vac⟩.
In any case, the associated classifying map here is a map ψ : M →C from the momen-
tum circle M ≃ S1 into a two-sphere:

C = U(2)/U(1)×U(1)≃ S2.

By the CAR constraint, the self-dual momenta k0 =−k0 get mapped into

R = O(2)/U(1) = {|0⟩, |1⟩},
which may be viewed as a set of two opposite points on S2; physically speaking, one
(say, the South Pole) corresponds to the vacuous state |0⟩ and the other one (North
Pole) to the fully occupied state |1⟩.

3.5. How to classify?— There exist several notions of topological equivalence for
vector bundles, and they are not the same. The finest classification is by homotopy –
two vector bundles (or the associated classifying map) belong to the same homotopy
class if they can be transformed into each other by a continuous sequence of infinitesi-
mal deformations. Another classification is by isomorphy – two vector bundles are said
to be isomorphic if an isomorphism (a single, possibly large transformation) takes one
into the other. Isomorphy is coarser than homotopy. Indeed, two vector bundles in the
same isomorphism class need not be in the same homotopy class, unless the number of
conduction bands is sufficiently large. Third, if both the number of conduction bands
and valence bands are taken to infinity, isomorphism classes become stable equivalent
classes; these are also known as K-theory classes.
Example 1. The “Hopf magnetic” insulator of Moore, Ran, and Wen (2008) has one
valence band and conduction band each; hence C = S2. If M = S3 then

0 = VectC1 (M) ̸= π3(S2) = Z.
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Thus all complex line bundles over S3 are isomorphic to the trivial bundle. On the
other hand, there do exist infinitely many homotopy classes of maps from S3 to S2

(they are classified by the Hopf invariant).
Example 2. If M = S1 then

Z2 = VectR1 (M) ̸= π1(S1) = Z.
This says that there exist two isomorphism classes of real line bundles over S1 (the
trivial bundle and the Möbius bundle), whereas the homotopy classes of maps from S1

to S1 are in bijection with Z.

3.6. Notation for classifying spaces. — Here comes again the Periodic Table (of Ki-
taev, and Ludwig et al.) for the case of Gred = Z2 . Our notation for classifying spaces
is as shown. (More precisely, the Grassmann manifolds in the table come with an ex-
tra Z-factor; physically speaking, this integer corresponds to the number of occupied
bands.) The periodicity statement of the (“real” part of the) Periodic Table then reads

[Sd,Cs(n)]Z2
∼= [Sd+1,Cs+1(2n)]Z2 (n ≫ d),

where [Sd,Cs(n)]Z2 stands for the set of homotopy classes of Z2-equivariant maps from
Sd into Cs(n) (and similar on the RHS).

3.7. Homotopy-theoretic proof of the Periodic Table. — With R. Kennedy we are
close to finishing a proof of the Periodic Table using methods of homotopy theory only.
The proof is too technical to be suitable for presentation to a broad physics audience,
so I’ll just give a very brief outline. There are three main ingredients:

1. The Bott isomorphism [SD,Rs]∼= [SD+1,Rs−1] .
2. The Whitehead Theorem in G-equivariant homotopy (for G=Z2 ). This is needed

to link the Bott isomorphism to our setting of G-equivariant homotopy.
3. A certain fiber bundle, whose projection map (a kind of “square”) sends the rela-

tive homotopy groups of our G-equivariant setting to the homotopy groups gov-
erned by Bott periodicity.

Unfortunately, the requisite fiber bundle exists in only 2 of the 8 cases to consider.
Therefore, to make the proof work, we are forced to consider the more general situation
envisaged by Teo & Kane (2011), where k ∈ M has D space-like and d momentum-like
components. Then the argument goes as follows:

[SD,d,Cs(n)]Z2

1,2∼= [SD+s,d,C0(n)]Z2

3∼= [SD+s,d+1,C1(2n)]Z2

1,2∼= [SD,d+1,Cs+1(2n)]Z2 .
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