Bott periodicity for Z₂ symmetric ground states of gapped free-fermion systems with disorder

> R. Kennedy & <u>Martin R. Zirnbauer</u> @ Nobel-Symposium Stockholm (June 14, 2014)

Periodic Table of topological insulators/superconductors

	Symn	netry		d								
AZ	Θ	[I]	Π	1	2	3	4	5	6	7	8	
А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

from Hasan & Kane, Rev. Mod. Phys. (2011):

Quantum Hall Effect He-3 (B phase) QSHI: HgTe Majorana Bi₂ Se₃

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997)

Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009); Teo & Kane (2010); Stone, Chiu, Roy (2011); Freedman, Hastings, Nayak, Qi, Walker, Wang (2011); Abramovici & Kalugin (2012); Freed & Moore (2013)

Question: does there exist a ``diagonal map''?

	Symn	netry		d									
AZ	Θ	[I]	Π	1	2	3	4	5	6	$\overline{7}$	8		
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}		
AIII	0	0	1	$\mathbb Z$	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0		
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2		
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2		
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0		
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}		
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0		
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0		
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		

from Hasan & Kane, Rev. Mod. Phys. (2011):

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997)

Teo & Kane: $\mathcal{H}_{nc}(\mathbf{k},\mathbf{r},\theta) = \cos\theta\mathcal{H}_{c}(\mathbf{k},\mathbf{r}) + \sin\theta\Pi \qquad (A1)$ $\mathcal{H}_{c}(\mathbf{k},\mathbf{r},\theta) = \cos\theta\mathcal{H}_{nc}(\mathbf{k},\mathbf{r})\otimes\tau_{z} + \sin\theta\mathbb{1}\otimes\tau_{a}, \quad (A3)$

We ask a more ambitious question ...

	Symn	netry					(d			
AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

- "Master" diagonal map (from single, universal principle) ?
- Make convincing argument for bijection between SPT phases ?
- Delineate limits of validity (stable vs. non-stable regime) ?

Distinctive features of our approach

(joint work with R. Kennedy)

- Revisit the Kitaev sequence of pseudo-symmetries A symmetry is an (anti-)unitary operation that commutes with *H*
- Universal model for free-fermion ground states Avoid "spectral flattening" of the Hamiltonian
- Topological classification by homotopy theory Do not make the approximation of *K*-theory
- Use the standard framework of Hermitian Q.M. over $\mathbb C$ Keep the $\mathbb R$ -structure flexible

[Overview:]

I. Universal Model for Free Fermion Ground States of gapped systems with symmetries

II. The Diagonal Map

Ground states as vector bundles

Notation: Fock operators c^{\dagger} (creation), c (annihilation) Momentum space M, momentum kAssume translation invariance (for disorder: see later)

Fact. Free-fermion ground state $|g.s.\rangle \stackrel{1:1}{\leftrightarrow} \{A_k\}_{k \in M}$

where $A_k = \operatorname{span}_{\mathbb{C}} \{ \widetilde{c}_1(k), \dots, \widetilde{c}_n(k) \}$

and $\tilde{c}_j(k)$ q.p. annihilation ops. removing momentum k: $\tilde{c}_j(k)|g.s.\rangle = 0$ (j = 1, ..., n)

Example. Charge conserved, two bands:

$$A_k = \operatorname{span}_{\mathbb{C}} \{ c_p(k), c_h^{\dagger}(-k) \}$$

Insulators. Gapped system $\frown \{A_k\}_{k \in M}$ complex vector bundle Fermi constraint: $\{A_k, A_{-k}\} = 0$

		Symmetry											
	AZ	Θ	[I]	Π	1	2	3	4	5	6	7	8	
	А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
Fermi constraint —	BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
$\int A \cdot A \cdot d = 0$	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	
$\{A_k, A_{-k}\} = 0$	DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	
	AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
	\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
	CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

Universal Model (including symmetries)

Clifford algebra of pseudo-symmetries:

$$J_l J_m + J_m J_l = -2\delta_{lm} \mathbf{1}$$

where J_1, \ldots, J_s are \mathbb{C} -linear operators on $A_k \oplus A_k^c \equiv \mathbb{C}^{2n}$

Definition. A translation-invariant ground state of a gapped system of symmetry class *s* is a rank-*n* complex vector sub-bundle $\{A_k\}_{k \in M}$ with fibers $A_k \subset \mathbb{C}^{2n}$ subject to (for all $k \in M$):

- Fermi constraint:
$$\{A_k, A_{-k}\} = 0$$

- pseudo-symmetries: $J_1A_k = \ldots = J_sA_k = A_k^c$

Example. Time-reversal symmetry: $TA_k = A_{-k}$

 $\sim J_1 = \gamma \circ T$ ($\gamma: c \leftrightarrow c^{\dagger}$ Hermitian conj.)

Kitaev Sequence ("real" classes)

class	symmetries	S	pseudo-syms
D	none	0	Fermi constraint
DIII	T (time reversal)	1	$J_1 = \gamma T$
AII	T, Q (charge)	2	$J_2 = i\gamma TQ$
CII	T, Q, C (ph-conj)	3	$J_3 = i\gamma CQ$
С	S_1, S_2, S_3 (spin rot)	4	see below
CI	S_1, S_2, S_3, T	5	
AI	S_1, S_2, S_3, T, Q	6	
BDI	S_1, S_2, S_3, T, Q, C	7	

Q: Why do 3 spin generators amount to 4 pseudo-symmetries?

Tool: (1,1) doubling isomorphism.

$$C_{s}(n) := \{A \in \operatorname{Gr}_{n}(\mathbb{C}^{2n}) \mid J_{1}A = \ldots = J_{s}A = A^{c}\}$$
$$R_{s}(n) := \{A \in C_{s}(n) \mid \{A, A\} = 0\}$$

Double the band number $(\mathbb{C}^{2n} \text{ to } \mathbb{C}^{2n} \oplus \mathbb{C}^{2n})$ and let $I = \begin{pmatrix} 0 & \mathbf{1}_{2n} \\ -\mathbf{1}_{2n} & 0 \end{pmatrix}, \quad K = i \begin{pmatrix} \mathbf{1}_{2n} & 0 \\ 0 & -\mathbf{1}_{2n} \end{pmatrix}, \quad \widetilde{J}_l = \begin{pmatrix} 0 & J_l \\ J_l & 0 \end{pmatrix} \quad (l = 1, \dots, s)$ Note: K is "imaginary": $\{Kw, Kw'\} = -\{w, w'\}$

Lemma. $C_s(n) \simeq C_{s+2}(2n), \quad R_s(n) \simeq R_{s+1,1}(2n)$

Corollary. Let (note $K = i\widetilde{J}_1\widetilde{J}_2\widetilde{J}_3$) $\widetilde{J}_l := \begin{pmatrix} iS_l & 0\\ 0 & -iS_l \end{pmatrix}$ $(l \le 3), \quad \widetilde{J}_4 := I, \quad \widetilde{J}_l := \begin{pmatrix} 0 & J_l\\ J_l & 0 \end{pmatrix}$ $(l \ge 5)$

Then (1,1) doubling isomorphism $\curvearrowright s$ pseudo-symmetries equivalent to s-4 pseudo-syms. plus 3 spin rotation symmetries.

Kitaev Sequence ("real" classes)

class	symmetries	S	pseudo-syms
D	none	0	Fermi constraint
DIII	T (time reversal)	1	$J_1 = \gamma T$
AII	T, Q (charge)	2	$J_2 = i\gamma T Q$
CII	T, Q, C (ph-conj)	3	$J_3 = i\gamma CQ$
С	S_1, S_2, S_3 (spin rot)	4	see below
CI	S_1, S_2, S_3, T	5	
AI	S_1, S_2, S_3, T, Q	6	
BDI	S_1, S_2, S_3, T, Q, C	7	

Disorder

From the work on QHE, one knows how to proceed:

Replace momentum k by twist parameters θ changing the boundary conditions. Study vector bundles $\{A_{\theta}\}_{\theta \in T^d}$ over parameter space T^d . (The diagonal map still exists ...)

- **Q:** Why are there exactly ten classes?
- A: See MZ (Tenfold Way), arXiv:1001.0722, www.thp.uni-koeln.de/zirn/

"Complex" classes:

class	symmetries	pseudo-syms
A	Q	none Fermi
AIII	Q, C	$J_1 = i\gamma C$ constraint

The Diagonal Map

How to classify?

Notions of topological equivalence for vector bundles:

- 1. Homotopy classes
- 2. Isomorphism classes

(okay for "many conduction bands")

3. Stable equivalence (*K*-theory)

(okay for "many conduction & many valence bands")

Example. Class *D* in 2+1 dimensions (defect).

K-theory (Teo & Kane) predicts a \mathbb{Z}_2 -classification, but for n = 1 the homotopy group is actually \mathbb{Z} .

4.1 Homotopy Groups

Perhaps the simplest noncontractible spaces are spheres, so to get a glimpse of the subtlety inherent in homotopy groups let us look at some of the calculations of the groups $\pi_i(S^n)$ that have been made. A small sample is shown in the table below, extracted from [Toda 1962].

	$\pi_i(S^n)$												
		<i>i</i> · 1	\rightarrow 2	3	4	5	6	7	8	9	10	11	12
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0
Ļ	2 3	$\begin{array}{c} 0\\ 0\end{array}$	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_{12} \mathbb{Z}_{12}	\mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_3 \mathbb{Z}_3	\mathbb{Z}_{15} \mathbb{Z}_{15}	\mathbb{Z}_2 \mathbb{Z}_2	$\mathbb{Z}_2 imes \mathbb{Z}_2$ $\mathbb{Z}_2 imes \mathbb{Z}_2$
	4 5	0	$0 \\ 0$	0	\mathbb{Z}^{-}	\mathbb{Z}_2^-	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_2^- \times \mathbb{Z}_2$	$\mathbb{Z}_2^{\sim} \times \mathbb{Z}_2^{\sim}$	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}^-	\mathbb{Z}_2^-
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_{24}	0	Z	\mathbb{Z}_2
	7 8	0	0	0	$0 \\ 0$	$0 \\ 0$	0	<i>ℤ</i> 0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24} \mathbb{Z}_{2}	\mathbb{Z}_{24}	0

from A. Hatcher, Algebraic Topology

Diagonal Map $(d,s) \rightarrow (d+1,s+1)$

Starting point: $\widetilde{J_1}, \ldots, \widetilde{J_s}$ and $\{\widetilde{A}_k\}_{k \in M_d}$

Preparatory step: jack up by (1,1) doubling isomorphism

 \frown New starting point: $\widetilde{J_1}, \ldots, \widetilde{J_s}; I, K$ and $\{A_k\}_{k \in M_d}$

Define:

$$A_{k,t} := e^{(t/2)KJ(A_k)} \cdot A_k \qquad J(A) = i(\Pi_A - \Pi_{A^c})$$

Note:

- 1. Fermi constraint: $\{A_{k,t}, A_{-k,-t}\} = 0$
- 2. Pseudo-syms: $J_1A_{k,t} = ... = J_sA_{k,t} = A_{k,t}^c = IA_{k,t} \checkmark$
- 3. Periodicity: $A_{k,t+2\pi} = A_{k,t}$

Outcome: V.B. $\{A_{k,t}\}_{(k,t)\in M_{d+1}}$ in class s+1 on $M_{d+1} = M_d \times S^1$

 D (none)
 Dill (T)

 Example 1.
 (d,s) = (0,0) to (d,s) = (1,1).

 n = 1 : $R_0(1) = \{\mathbb{C} \cdot c, \mathbb{C} \cdot c^{\dagger}\}$

(1,1) doubling \frown tensor with $(\mathbb{C}^2)_{\text{spin}}$ and let $K = i(\sigma_1)_{\text{BdG}} \otimes (\sigma_1)_{\text{spin}}$, $I \equiv J_1 = \gamma T = (\sigma_1)_{\text{BdG}} \otimes (i\sigma_2)_{\text{spin}}$, $A = \text{span}_{\mathbb{C}} \{c^{\dagger}_{\uparrow}, c^{\dagger}_{\downarrow}\} \cong |\text{full}\rangle$.

$$A_{k} = e^{(k/2)KJ(A)} \cdot A = \operatorname{span}_{\mathbb{C}} \left\{ c_{\sigma}^{\dagger}(-k)\cos(k/2) - c_{-\sigma}(k)\sin(k/2) \right\}_{\sigma=\uparrow,\downarrow}$$

In BCS form: $|g.s.\rangle = e^{\sum_{k} \cot(k/2)P_{k}} |\operatorname{vac}\rangle$ where $P_{k} = c_{\uparrow}^{\dagger}(k)c_{\downarrow}^{\dagger}(-k)$.
For more general $K = K(\alpha)$:

$$P_k = c_{\uparrow}^{\dagger}(k)c_{\downarrow}^{\dagger}(-k)\cos\alpha + \left(c_{\uparrow}^{\dagger}(k)c_{\uparrow}^{\dagger}(-k) - c_{\downarrow}^{\dagger}(k)c_{\downarrow}^{\dagger}(-k)\right)\sin\alpha$$

Topological 1d superconductor with spin-triplet pairing and *T*-invariance

Example 2. (d,s) = (1,1) to (d,s) = (2,2)

(1,1) doubling \frown tensor with band space $(\mathbb{C}^2)_{ph}$

Topological 1d class-*D*III superconductor (after ph-transformation): $A_{-k_1} = \operatorname{span}_{\mathbb{C}} \left\{ c_{h\uparrow}^{\dagger}(k_1) \cos(k_1/2) + \mathrm{i} c_{p\downarrow}^{\dagger}(k_1) \sin(k_1/2); \& \uparrow \leftrightarrow \downarrow, \mathrm{i} \to -\mathrm{i} \right\}$

Apply 1-par. group: $A_{-k} = e^{-(k_0/2)KJ(A_{-k_1})} \cdot A_{-k_1} = \operatorname{span}_{\mathbb{C}} \left\{ \& \uparrow \leftrightarrow \downarrow, i \to -i; \\ \begin{pmatrix} r_{h_{\uparrow}}, \cdot \end{pmatrix} & \begin{pmatrix} c_{h_{\uparrow}}^{\dagger}(k) \cos(k_1/2) + ic_{p\downarrow}^{\dagger}(k) \sin(k_1/2) \end{pmatrix} \cos(k_0/2) \\ + \begin{pmatrix} c_{p\downarrow}^{\dagger}(k) \cos(k_1/2) + ic_{h\uparrow}^{\dagger}(k) \sin(k_1/2) \end{pmatrix} \sin(k_0/2) \right\}$ Note: $A_{\pm \pi/2, k_1} = \operatorname{span}_{\mathbb{C}} \left\{ c_{h\uparrow}^{\dagger} \pm c_{p\downarrow}^{\dagger}, c_{h\downarrow}^{\dagger} \pm c_{p\uparrow}^{\dagger} \right\}$ $\approx k_0 = \pm \pi/2$ are isolated zeros of Kane-Mele Pfaffian \approx Kane-Mele invariant non-trivial (QSHI)

Next SPT phases in line: 3d insulator (*C*II), 4d superconductor (*C*), etc.

"Master" diagonal map (from single, universal principle)

	Symn	netry		d										
AZ	Θ	[I]	Π	1	2	3	4	5	6	$\overline{7}$	8			
А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}			
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0			
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2			
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2			
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		0	0	\mathbb{Z}	0			
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		0	0	\mathbb{Z}			
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0			
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0			
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0			

- Delineate limits of validity (stable vs. non-stable regime)

Summary & Outlook

- Kitaev sequence of symmetry classes firmly established.
- New perspective from master diagonal map: iterative construction of free-fermion SPT phases with high (*d*,*s*) from those with low (*d*,*s*).
- Homotopy-theoretic proof of "Periodic Table" is forthcoming.
- Homotopy theory gives precise bounds on the range of stable equivalence.
- Our method also applies to topological crystalline insulators.

Thank you!