Bott Periodicity and the "Periodic Table" of Topological Insulators and Superconductors

Martin R. Zirnbauer @ Mathem. Kolloquium, Uni Paderborn July 24, 2017

Kitaev's Periodic Table of topological insulators/

	Symn	netry		d									
AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8		
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}		
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0		
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2		
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2		
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0		
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}		
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0		
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0		
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		

from Hasan & Kane, Rev. Mod. Phys. (2011):

superconductors

QSHI = Quantum Spin Hall Insulator

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997)

Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009); Teo & Kane (2010); Stone, Chiu, Roy (2011); Freedman, Hastings, Nayak, Qi, Walker, Wang (2011); Abramovici & Kalugin (2012); Freed & Moore (2013)

Integer Quantum Hall Effect

2D disordered electrons; high B, low T

D.J. Thouless (1982-5; Nobel Prize Physics 2016): Ground state = complex line bundle \mathscr{N} over T^2 Hall conductance = $I/V_{\rm H} = n e^2/h$ n = (integral of) first Chern class of \mathscr{N} but

bulk-boundary correspondence

Quantum Spin Hall Insulator

(Kane & Mele, 2005)

Strong spin-orbit scattering (preserves time-reversal invariance) causes band inversion \curvearrowright the bundle of Fermi projections is twisted.

This twisting is detected by the Kane-Mele index.

Bulk-boundary correspondence: non-trivial bulk topological invariant

 \rightarrow perfectly conducting surface mode

Majorana chain (gapped 1d superconductor)

No symmetries, "spinless fermions", single band; momentum kBogoliubov transformation: $\gamma_k = u(k) c_k + v(k) c_{-k}^{\dagger}$ $(k \in \mathbb{R}/2\pi\mathbb{Z})$ Fermi constraint: $\{\gamma_k, \gamma_{-k}\} = 0$ $\sim u(k) v(-k) + v(k) u(-k) = 0.$ Weak pairing: $u(0) = v(\pi) = 0$ (topol. invt.)

Weak pairing: bulk-boundary correspondence \rightarrow gapless edge state

FIG. 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin-orbit-coupled wire. (b) Band structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the chemical potential lies within the field-induced gap at k = 0, the wire appears 'spinless'. Incorporating the pairing induced by the proximate super-conductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy Majorana

Bott Periodicity

Bott Periodicity (I)

- X compact Riemannian manifold
- \boldsymbol{v} triple (p,q;h)

SN N

- X^{v} space of minimal geodesics of class v
- |v| minimum over all non-minimal geodesics of class v
 of no. of negative eigenvalues of Hessian of length function

Thm (Bott, 1959). If X is a symmetric space, then so is X^{ν} , and $\pi_d(X^{\nu}) = \pi_{d+1}(X)$ for $0 < d < |\nu| - 1$.

Example.
$$X = S^n$$
, $X^{(p,-p)} = S^{n-1}$, $|v| = 2(n-1)$
 $\implies \pi_d(S^{n-1}) = \pi_{d+1}(S^n)$ for $0 < d < 2n-3$
(Freudenthal suspension theorem).

What's a symmetric space?

Riemann tensor: $R^{i}_{\ jkl} = \partial_k \Gamma^{i}_{lj} - \partial_l \Gamma^{i}_{kj} + \Gamma^{m}_{lj} \Gamma^{i}_{km} - \Gamma^{m}_{kj} \Gamma^{i}_{lm}$

Def.: A (locally) symmetric space is a Riemannian manifold X = U/K with covariantly constant curvature: $\nabla R = 0$.

- **Ex. 1:** the round two-sphere $X = S^2$, $ds^2 = d\theta^2 + \sin^2\theta d\phi^2$
- **Ex. 2:** the set $X = \operatorname{Gr}_n(\mathbb{C}^N) = \operatorname{U}(N)/\operatorname{U}(n) \times \operatorname{U}(N-n)$ of all subspaces $\mathbb{C}^n \simeq V \subset \mathbb{C}^N$

Classification:

Globally symmetric spaces classified by E. Cartan (1926) 10 large families: *A*, *A*I, *A*II, *A*III, *BD*, *BD*I, *C*, *C*I, *C*II, *D*III

Bott Periodicity (II)

		π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8
$C_{\rm even}$	$\rm U/\rm U imes \rm U$	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
$C_{\rm odd}$	U	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
R_0	O/U	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
R_1	U/Sp	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0
R_2	$\mathrm{Sp}/\mathrm{Sp} \times \mathrm{Sp}$	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}
R_3	Sp	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0
R_4	$\mathrm{Sp/U}$	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0
R_5	U/O	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0
R_6	$O/O \times O$	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}
R_7	О	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2

Raoul Bott (1923-2005)

 Table 1. Bott Periodic Table of the stable homotopy groups of symmetric spaces

Bott Periodicity (III): Morse Theory

Manifold M, function $f: M \to \mathbb{R}$ (smooth and proper).

 $M^a := \{ x \in M \mid f(x) \le a \}.$

homotopy-equivalent

Thm 1. If f has no critical values in [a,b], then $M^a \sim M^b$.

Thm 2. Let $x \in M$ be a non-degenerate critical point of fof index n. If x is the only critical point in $f^{-1}[f(x) - \varepsilon, f(x) + \varepsilon]$, then $M^{f(x)+\varepsilon} \sim M^{f(x)-\varepsilon} \cup e_n$ (n-cell e_n).

Fact. Functions f of the needed kind (Morse functions) do exist.

Bott Periodicity (IV): Idea of proof

 $M = \Omega^{\nu} X$ (space of paths in X from p to q of homology class h), Morse function $f \equiv$ length of path.

$$\begin{split} M^a &= \emptyset \text{ if } a < L \equiv \text{geodesic distance from } p \text{ to } q, \\ M^a &= X^v \text{ if } L < a < L + \varepsilon, \\ \vdots \\ \Omega^v X &= X^v \cup e_n \cup e'_n \cup \dots \text{ where } \dim e_n \geq |v|. \end{split}$$
Hence $\pi_{d+1}(X) = \pi_d(\Omega^v X) = \pi_d(X^v)$ if 0 < d < |v| - 1.

Bott Periodicity (V): Clifford algebra

 $W \cong \mathbb{C}^{2n}$ Hermitian vector space with compatible symmetric bilinear form $\{\cdot, \cdot\} : W \otimes W \to \mathbb{C}$.

 J_1, \ldots, J_s generators of Clifford algebra on W: $J_l J_m + J_m J_l = -2\delta_{lm} Id_W, \quad (J_l^* = J_l^{-1} = J_l^T).$ Note: $W = E_{+i}(J) \oplus E_{-i}(J).$

Let $C_0(n) := \operatorname{Gr}_n(W)$ Grassmann m'fld of complex *n*-planes in *W*. Define $C_s(n) := \{A \in C_0(n) \mid J_1A = \ldots = J_sA = A^c\},$ $R_s(n) := \{A \in C_s(n) \mid \{A,A\} = 0\}.$

Lemma.

 $C_0(n) \supset C_1(n) \supset C_2(n) \supset \ldots$ complex Bott v-sequence, $R_0(n) \supset R_1(n) \supset R_2(n) \supset \ldots$ real Bott v-sequence. More precisely,

Sketch of proof for $R_0(n)$.

Let $W = A \oplus A^c$ and $\{A, A\} = 0$.

Then for $g \in U(W) \cap O(W) \cong O_{2n}$ it follows that

 $W = gA \oplus g \cdot A^{c}$, and $\{gA, gA\} = 0$.

The O_{2n} -action on $R_0(n)$ is transitive.

The stabilizer of A is $U(A) \cong U_n \subset O_{2n}$. Hence $R_0(n) \cong O_{2n}/U_n$.

Bott Periodicity (VI): Bott Map

Make the identifications $X \equiv R_{s-1}(n)$, $X^{\nu} \equiv R_s(n)$; and $\Omega^{\nu}X \equiv$ paths from $E_{+i}(J_s)$ to $E_{-i}(J_s)$.

Given $A \in R_s(n)$, assign to A a minimal geodesic $\beta : [-\pi/2, \pi/2] \to R_{s-1}(n)$ by $t \mapsto \beta_t(A) = e^{(t/2)J_s J(A)} \cdot A$, $J(A) = i(\Pi_A - \Pi_{A^c})$.

This is the Bott Map ...

Comment. Same for $C_s(n)$ instead of $R_s(n)$.

Bott Periodicity (II')

v-sequences: complex and real

	π_8	π_7	π_6	π_5	π_4	π_3	π_2	π_1		
	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	$U/U \times U$	$C_{\rm even}$
	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	U	$C_{\rm odd}$
	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	O/U	R_0
	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	U/Sp	R_1
	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$\mathrm{Sp}/\mathrm{Sp} \times \mathrm{Sp}$	R_2
	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	Sp	R_3
Bott Mar	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	$\mathrm{Sp/U}$	R_4
•	0	0	0	\mathbb{Z}	0	22	\mathbb{Z}_2	\mathbb{Z}	U/O	R_5
	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	$O/O \times O$	R_6
	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	О	R_7

 Table 1. Bott Periodic Table of the stable homotopy groups of symmetric spaces

Free-Fermion Ground States

Universal model (notation/setting)

Quasi-particle vacuum \equiv free-fermion ground state \equiv Hartree-Fock-Bogoliubov mean-field ground state

Single-particle annihilation (creation) operators c_{α} (c_{α}^{\dagger})

$$U = \operatorname{span}_{\mathbb{C}} \{ c_1, \dots, c_n \}, \quad V = \operatorname{span}_{\mathbb{C}} \{ c_1^{\dagger}, \dots, c_n^{\dagger} \}$$

 $W = U \oplus V$ space of field operators (Nambu space)

Structure on W:CAR bilinear form $\{\cdot, \cdot\}: W \otimes W \to \mathbb{C}$ Hermitian conjugation $\gamma: W \to W$

Fact. Free-fermion ground states $|g.s.\rangle \stackrel{1:1}{\leftrightarrow} W = A \oplus A^{c}$ where $A = \operatorname{span}_{\mathbb{C}} \{ \widetilde{c}_{1}, \dots, \widetilde{c}_{n} \} \subset W$ and the \widetilde{c}_{α} are quasi-particle annihilation ops: $\widetilde{c}_{\alpha} |g.s.\rangle = 0$ $(\alpha = 1, \dots, n)$ **Fermi constraint:** $\{A, A\} = 0$

Symmetries in quantum mechanics

- **Q:** What's a symmetry in quantum mechanics?
- A: An operator $T : \mathscr{R}\psi_1 \mapsto \mathscr{R}\psi_2$ on Hilbert rays that preserves all transition probabilities: $|\langle T\mathscr{R}\psi_2, T\mathscr{R}\psi_1 \rangle|^2 = |\langle \mathscr{R}\psi_2, \mathscr{R}\psi_1 \rangle|^2$.

Wigner's Theorem:

A symmetry T in quantum mechanics can always be represented on Hilbert space by an operator \hat{T} which is either unitary or anti-unitary.

$$\langle \hat{T} \psi_2 | \hat{T} \psi_1 \rangle = \overline{\langle \psi_2 | \psi_1 \rangle}$$

Remark 1: The symmetries form a group, G.

Eugene P. Wigner

Remark 2: Symmetries commute with the Hamiltonian ($\hat{T}H = H\hat{T}$). Thus "chiral symmetry" ($\gamma_5 D \gamma_5 = -D$) is not a symmetry.

J. Math. Phys. 3 (1962) 1199

The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FREEMAN J. DYSON Institute for Advanced Study, Princeton, New Jersey (Received June 22, 1962)

Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-representations and co-representations is clarified and extended. The three types of representation, and the three types of co-representation, are shown to be directly related to the three types of division algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The author's theory of matrix ensembles, in which again three possible types were found, is shown to be in exact correspondence with the Wigner classification of co-representations. In particular, it is proved that the most general kind of matrix ensemble, defined with a symmetry group which may be completely arbitrary, reduces to a direct product of independent irreducible ensembles each of which belongs to one of the three known types.

Tenfold Way

Communications in Mathematical Physics

Symmetry Classes of Disordered Fermions

P. Heinzner¹, A. Huckleberry¹, M.R. Zirnbauer²

- ¹ Fakultät für Mathematik, Ruhr-Universität Bochum, Germany. E-mail: heinzner@cplx.ruhr-uni-bochum.de; ahuck@cplx.ruhr-uni-bochum.de
- ² Institut für Theoretische Physik, Universität zu Köln, Germany. E-mail: zirn@thp.uni-koeln.de

Received: 10 June 2004 / Accepted: 9 December 2004 Published online:

Abstract: Building upon Dyson's fundamental 1962 article known in random-matrix theory as *the threefold way*, we classify disordered fermion systems with quadratic Hamiltonians by their unitary and antiunitary symmetries. Important physical examples are afforded by noninteracting quasiparticles in disordered metals and superconductors, and by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators which carry a representation of some symmetry group. Our approach is to eliminate all

In this paper, it is proved that the symmetry classes of disordered fermions are in one-to-one correspondence with the 10 large families of symmetric spaces.

Symmetry operations of the Tenfold Way

- Anti-unitary symmetries:
 - 1. Time reversal $T: U \oplus V \to U \oplus V$, $T^2 = (-1)^{2S}$.
 - 2. Particle-hole conjugation $C: U \oplus V \to V \oplus U$, $C^2 = Id_W$.
- Unitary symmetries include

$$\begin{split} & \mathrm{U}(1)_A \text{ symmetry (charge operator } Q), \\ & \mathrm{e}^{\mathrm{i}\theta Q}: \ u + v \mapsto \mathrm{e}^{-\mathrm{i}\theta} u + \mathrm{e}^{+\mathrm{i}\theta} v. \\ & \mathrm{SU}(2) = \mathrm{Spin}(3) \text{ spin rotations generated by } S_1, S_2, S_3 \ . \\ & \hat{R}: \ u + v \mapsto Ru + (R^{-1})^t v. \end{split}$$

Universal Model (including symmetries)

Clifford algebra (Kitaev) of pseudo-symmetries J_1, \ldots, J_s :

$$J_l J_m + J_m J_l = -2\delta_{lm} \mathrm{Id}_W, \quad J_l \in \mathrm{U}(W) \cap \mathrm{O}(W).$$

Definition. A free-fermion ground state of symmetry class s is a polarization $W = A \oplus A^c$ where the complex vector space A is subject to

- Fermi constraint: $\{A,A\} = 0$
- pseudo-symmetries: $J_1A = \ldots = J_sA = A^c$.

Example. Time-reversal symmetry (spin ½): TA = A $\bigcirc J_1 = \gamma \circ T$ ($\gamma : c \leftrightarrow c^{\dagger}$ Hermitian conj.) Indeed, $J_1A = \gamma(TA) = \gamma A = A^c$ and $J_1^2 = T^2 = -\text{Id}_W$.

Kitaev Sequence ("real" and "complex" classes)

class	symmetries	S	pseudo-syms
D	none	0	Fermi constraint
DIII	T (time reversal)	1	$J_1 = \gamma T$
AII	T, Q (charge)	2	$J_2 = i\gamma T Q$
CII	T, Q, C (ph-conj)	3	$J_3 = i\gamma CQ$
С	S_1, S_2, S_3 (spin rot)	4	see below
CI	S_1, S_2, S_3, T	5	
AI	S_1, S_2, S_3, T, Q	6	
BDI	S_1, S_2, S_3, T, Q, C	7	
class	symmetries	S	pseudo-syms
A	Q	0	Fermi constraint
AIII	Q, C	1	$J_1 = i\gamma C$

Diagonal Map

Bott-Kitaev Periodic Table

Question: does there exist a ``Diagonal Map''?

nomnas													
		Symm	netry	d									
	AZ	Θ	Ξ	Π	1	2	3	4	5	6	$\overline{7}$	8	
$\mathrm{U}/\mathrm{U} imes\mathrm{U}$	А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
U	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	Quantum Hall Effect
$O/O \times O$	AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
Ο	BDI	1	1	1	\mathbb{Z}	0		0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	He-3 (B phase)
O/U	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0		0	\mathbb{Z}	0	\mathbb{Z}_2	
U/Sp	DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		0	\mathbb{Z}	0	QSHI: Hgie
$Sp/Sp \times Sp$	AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		0	\mathbb{Z}	Majorana
Sp	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		0	
Sp/U	С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	Bi ₂ Se ₃
U/O	\mathbf{CI}	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
					•								

from Hasan & Kane, Rev. Mod. Phys. (2011):

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997)

Clean & Disordered Systems

Clean limit: translations are symmetries

Conserved momentum $k \in M \curvearrowright$ decomposition $A = \bigoplus_{k \in M} A_k$ Gapped system (insulator) $\curvearrowright \{A_k\}_{k \in M}$ vector bundle

Disorder: Non-Commutative Geometry approach, developed for IQHE by Bellissard et al. (following A. Connes)

 C^*- algebra \mathscr{A} of bounded operators Pairing between cyclic cohomology and $K_0(\mathscr{A})$

→ Hall conductance = non-commutative Chern number

Prodan, Schulz-Baldes (2013), Thiang (2014), Kellendonk; Boersema, Loring (2015), Carey et al. (2016)

Diagonal Map: heuristic

Under the decomposition $A = \bigoplus_{k \in M} A_k$ (conserved momentum) the Fermi constraint $\{A, A\} = 0$ refines to

$$\{A_k,A_{-k}\}=0$$
 (for all $k\in M$).

Thus our free-fermion ground states are vector bundles $\pi: \mathscr{A} \to M$ subject to a \mathbb{Z}_2 -equivariance condition

$$egin{array}{ccc} \mathscr{A} & \stackrel{ au_{\mathscr{A}}}{\longrightarrow} & \mathscr{A} \ \pi & & & & \ \pi & & & \ M & \stackrel{ au_M}{\longrightarrow} & M \end{array}$$

with non-trivial involution $\tau_M : M \to M, k \mapsto -k.$

Diagonal Map $(d,s) \rightarrow (d+1,s+1)$

Starting point: $\widetilde{J_1}, \ldots, \widetilde{J_s}$ and $\{\widetilde{A}_k\}_{k \in M_d}$

Preparatory step: jack up by (1,1) periodicity

 \frown New starting point: $J_1, \ldots, J_s; I, K$ and $\{A_k\}_{k \in M_d}$

Define:

$$A_{k,t} := e^{(t/2)KJ(A_k)} \cdot A_k \qquad J(A) = i(\Pi_A - \Pi_{A^c})$$

Note:

- 1. Fermi constraint: $\{A_{k,t}, A_{-k,-t}\} = 0$
- 2. Pseudo-syms: $J_1A_{k,t} = \ldots = J_sA_{k,t} = A_{k,t}^c = IA_{k,t} \checkmark$

3. Degeneration:
$$A_{k,t=\pm\pi/2} = E_{\mp i}(K)$$

Outcome: V.B. $\{A_{k,t}\}_{(k,t)\in M_{d+1}}$ in class s+1 on $M_{d+1} = \widetilde{S}(M_d)$

Diagonal Map² = Bott Map

Summary of colloquium

- Motivation: topological insulators and superconductors
- Bott periodicity theorem from Morse theory
- Free-fermion ground states with symmetries (imposed in a prescribed order) realize the complex/real Bott sequences.
- For Kitaev's Periodic Table replace Bott Map by Diagonal Map
- Reference: R. Kennedy and M.R. Zirnbauer, arXiv:1509.2537,
 Commun. Math. Phys. 342 (2016) 909—963

Thank you! (The End)