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1 Scattering theory

Literature. A good fraction of the material of this chapter, in particular the introduction and

the section on time-dependent scattering, is taken from the book by W.O. Amrein, J.M. Jauch

and K.B. Sinha, Scattering Theory in Quantum Mechanics [Benjamin, Reading (Mass.), 1977].

1.1 Preliminaries

The formalism of scattering theory plays an important role in physics, as it allows to predict

experimental observations from the fundamental interactions postulated by theory. A typical

setup, say (i), for a scattering experiment looks as follows:

Thus there is a source for a beam of particles which, after preparation of the beam kinematics,

hit a target and then get observed in a detecting device. Note that thick targets cause multiple

scattering events; while these might be hard to analyze in the case of an amorphous target, they

lead to characteristic interference patterns and thus structural information in the case of a crystal

(for the target).

Next, let us look at the symmetric situation, (ii), of a scattering experiment with two colliding

beams:

In this setting one wants to place the detector far from the collision zone for good angular reso-

lution. One does not place the detector in the forward direction of an incoming beam.

Remark. In the case of scattering of massive particles, the situation (i) can be reduced to the

situation (ii) by a change of inertial reference frame.

Here comes a list of large accelerators:

• Fermilab Chicago, Tevatron (1983; p+ p; ca. 2TeV; top quark discovered; 6 km)

• Stanford Linear Accelerator (‘SLAC’; 3 km)

• Brookhaven RHIC (relativistic heavy ion collider; quark-gluon plasma)
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• DESY Hamburg (HERA p+ e; PETRA e+ + e−)

• CERN Geneva (LEP; LHC = Large Hadron Collider, 17 TeV?)

1.2 Types of scattering process

We briefly introduce some nomenclature:

1. Elastic scattering is schematically depicted as

a+ b −→ a+ b .

In this case all energy is returned to the state of motion.

2. In the case of inelastic scattering,

a+ b −→ a′ + b′ ,

internal degrees of freedom of the particles get excited (e.g., rotational or vibrational degrees

of freedom).

3. In the general category of rearrangement scattering, the identity of the scattered particles is

altered:

a+ b −→ c+ d+ e+ . . .

An example is the break-up of the deuteron into its constituents (namely, one proton and

one neutron) during a collision with another particle. A second example is nucleon-nucleon

scattering, where one has the possibilities

plus various other “channels” not shown here. (The theoretical analysis of rearrangement

scattering requires the formalism of multichannel scattering, which will not be treated in

this lecture course.)

4. By resonance scattering one means a process that involves the formation and subsequent

decay of an unstable (but possibly very long-lived) intermediate state.

5. In scattering theory one may also consider the decay of an unstable particle (a −→ b+c+. . .).

For example, a free neutron decays into a proton, an electron, and an anti-neutrino:

n −→ p+ e+ ν̄e .
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1.3 Observables

Here are some quantities that are observable by scattering experiments:

• the (differential) scattering cross section;

• the life time of an unstable particle; the resonance width;

• branching ratios in multichannel scattering processes.

We now introduce the differential scattering cross section, assuming the situation (i) of Sect. 1.1.

Let the (probability) current density I of the incoming particles be homogeneous and directed

along the z-axis for a Cartesian coordinate system {x, y, z}:

I = i dxdy .

The physical dimension of the constant i is

[i] =
particle number

area× time
.

At large distances r =
√
x2 + y2 + z2 from the scattering region, the current density J of the

outgoing (scattered) particles becomes

J = j sin θ dθ dϕ , j = j(Ω) , Ω =
r⃗

r
(point on the unit sphere),

where the polar angle θ and the azimuthal angle ϕ relate to the axis of the incoming beam (here,

the z-axis). The coefficient j has the physical dimension

[j] =
particle number

solid angle× time
.

The differential scattering cross section is then defined as the ratio

dσ

dΩ
=
j

i
(not quite the usual derivative).

Its physical dimension is [
dσ

dΩ

]
= area .

The total scattering cross section is obtained by integrating over all solid angles (dΩ ≡ sin θ dθ dϕ):

σtot =

∫
dσ

dΩ
dΩ =

1

i

∫
S2
J.

Remark. In these lecture notes we will be concerned with the scattering of quantum mechanical

particles. We mention in passing that the notions of differential and total scattering cross section

already make sense in the setting of classical mechanics. For example, the total cross section for

hard balls (as target particles) of radius R is σtot = πR2 in the classical limit.

We now state a practical recipe by which to calculate the differential scattering cross section

for potential scattering of Schrödinger particles with energy E = ~2k⃗2/2m and wave vector k⃗.
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Prescription. Find the solution of Schrödinger’s equation Hψ = Eψ with the asymptotic form

ψ(r⃗)
|r⃗|=r→∞−→ ei⃗k·r⃗ + fE(Ω)

eikr

r
, k = |⃗k| ,

where fE(Ω) = fE(r⃗/r) is called the scattering amplitude. Then the differential cross section is

dσ

dΩ
= |fE(Ω)|2 .

Problem. Verify this formula from the definition of dσ/dΩ.

1.3.1 Classical scattering

Although our topic here is quantum scattering, let us briefly touch on the differential scattering

cross section for classical scattering. In the classical case, one has a scattering map S : R2 → S2,

which is determined by the classical dynamics and sends any impact parameter (x, y) ∈ R2 of the

incoming particles to the corresponding direction of motion r⃗/r ∈ S2 of the outgoing particles. The

situation is illustrated by the following figure from the Wikipedia entry “Cross section (physics)”.

Let us now assume that the scattering map S has an inverse, S−1 ≡ T : S2 → R2. (In

general situations, such as the cases of rainbow scattering and spiral scattering, S−1 exists only

locally; see, e.g., users.physics.harvard.edu/∼morii/phys151/lectures/Lectures07.pdf).
Now, incoming flux through A ⊂ R2 translates to outgoing flux through S(A). Given T = S−1, we

can invert the flux-to-flux correspondence to obtain
∫
T (Σ)

I =
∫
Σ
J , valid for any region Σ ⊂ S2.

It follows by the substitution rule (abstractly written as
∫
T (Σ)

I =
∫
Σ
T ∗I) that I = i dxdy ≡

i dσ transforms into J under T . To make this transformation explicit, let ξ, η be any two local

coordinates for S2, and let us write the solid-angle element as dΩ = ωξη dξ dη and express T by a

pair of functions x = f(ξ, η) and y = g(ξ, η). We then have

j dΩ ≡ J
!
= T ∗I = i T ∗(dσ) = i

∣∣∣∣∂(x, y)∂(ξ, η)

∣∣∣∣ dξ dη .
Thus the differential scattering cross section appears as the Jacobian of the transformation (by

the inverse map T = S−1) from the area element dσ for R2 to the solid-angle element dΩ for S2:

dσ

dΩ
≡ j

i
=

∣∣∣∣∂(x, y)∂(ξ, η)

∣∣∣∣ 1

ωξη

.

(This motivates the notation dσ/dΩ; indeed, j/i is seen to be a kind of generalized derivative.)
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1.4 Lippmann-Schwinger equation

Consider a time-independent system with Hamiltonian H = H0 + V where H0 is a Hamiltonian

of free motion (or some other Hamiltonian for which the solutions of Schrödinger’s equation are

already known) and V is a perturbation which is in some sense small. (To be on safe ground, we

should require bounded support or, at least, rapid decay at infinity.)

Let ψ0 be a solution of the free problem with energy E:

H0ψ0 = Eψ0 .

For ε = 0+ let G0 := (E + iε−H0)
−1 (operator inverse) the free Green operator or resolvent.

Claim. If ψ satisfies

ψ = ψ0 +G0V ψ (abstract form of Lippmann-Schwinger equation),

then ψ is a solution of Schrödinger’s equation Hψ = Eψ.

Verification. We start by rewriting the Lippmann-Schwinger equation as

ψ0 = ψ −G0V ψ = (1−G0V )ψ = G0(G
−1
0 − V )ψ.

Now let

G := (E + iε−H)−1

be the Green operator (or resolvent) of the full Hamiltonian. Then

G−1 = G−1
0 − V and ψ0 = G0G

−1ψ,

so that

ψ = GG−1
0 ψ0 = G (E + iε−H0)ψ = iεGψ0 .

It follows that

(E −H)ψ = iε
E −H

E + iε−H
ψ0

ε→0−→ 0 , since

∣∣∣∣∣∣∣∣ E −H
E + iε−H

∣∣∣∣∣∣∣∣
op

< 1 .

In other words: Hψ = Eψ as claimed.

Now let

H0 =
p2

2m
= − ~2

2m
∇2, V = V (r⃗) (“potential scattering”).

Then the operator G0 has the integral kernel (or “Green’s function”)

⟨r⃗ | G0 | r⃗ ′⟩ = − eik|r⃗−r⃗ ′|

4π|r⃗ − r⃗ ′|
2m

~2
,

and the abstract equation for ψ takes the explicit form of an integral equation:

ψ(r⃗) = ψ0(r⃗)−
2m

~2

∫
R3

eik|r⃗−r⃗ ′|

4π|r⃗ − r⃗ ′|
V (r⃗ ′)ψ(r⃗ ′) d3r′

(Lippmann-Schwinger equation in coordinate representation).

8



1.4.1 Born approximation

If ∥G0V ∥op< 1, one can expand the solution in a geometric series (called the Born series):

ψ = (1−G0V )−1ψ0 = ψ0 +G0V ψ0 +G0V G0V ψ0 + ... .

For ∥G0V ∥op≪ 1 (high energy, or weak potential) one may use the lowest-order (or first) Born

approximation,

ψ ≈ ψ0 +G0V ψ0 .

To write the first Born approximation in explicit form, let us take ψ0(r⃗) = eikz. Then

(G0V ψ0)(r⃗) = −
m

2π~2

∫
R3

eik|r⃗−r⃗ ′|

|r⃗ − r⃗ ′|
V (r⃗ ′) eikz

′
d3r′.

For V of finite range and r⃗ far from the scattering center of V we may expand

k|r⃗ − r⃗ ′| = kr

∣∣∣∣ r⃗r − r⃗ ′

r

∣∣∣∣ ≈ kr

(
1− Ω · r⃗

′

r

)
= kr − kΩ · r⃗ ′.

We then see that

(G0V ψ0)(r⃗)
r→∞−→ f

(1)
E (Ω)

eikr

r
,

where

f
(1)
E (Ω) = − m

2π~2

∫
R3

e−ikΩ·r⃗ ′+ikz′V (r⃗ ′) d3r′.

Rewriting this in a form which is independent of the choice of Cartesian basis, we obtain

f
(1)
E (Ω) = − m

2π~2

∫
R3

ei(k⃗i−k⃗f )·r⃗ ′
V (r⃗ ′) d3r′.

We thus see that the scattering amplitude in the first Born approximation, f
(1)
E (Ω), is essentially

given by the Fourier transform of the potential V .

1.4.2 Examples

Let us illustrate the first Born approximation at two examples.

1. V (r⃗) = V0λ
3δ(r⃗). Here V0 has the physical dimension of energy, and λ has the physical

dimension of length. δ is the Dirac δ-function (actually, δ-distribution), with support at

zero (the origin of the coordinate system). The Fourier transform of the δ-function is simply

a constant, so

f
(1)
E (Ω) = − m

2π~2
V0λ

3 = − λ

4π

V0
~2/(2mλ2)

,

independent of the energy E and the outgoing direction Ω. Note that Ekin = ~2/(2mλ2) is
a rough estimate of the kinetic energy of a Schrödinger particle with mass m confined to a

box of size λ. The ratio V0/Ekin is a dimensionless measure of the strength of the scattering

potential. We have written the answer for fE in a form which makes it transparent that fE

has the physical dimension of length. We notice that the scattering amplitude fE is negative

in the repulsive case (V0 > 0) and positive in the attractive case (V0 < 0).
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2. V (r⃗) = V0 λ
5∇2δ(r⃗). We first give some explanation of what it means to apply the Laplacian

∇2 to a δ-function. (As a side remark: this operation is mathematically well-defined if δ is

regarded as a Schwartz distribution.) For this purpose we use a Gaussian regularization of

the δ-function:

∇2δ(r⃗) = lim
a→0+

∇2e−
r2

2a2 /(2πa2)3/2 = lim
a→0+

(2πa2)−3/2

(
∂2

∂r2
+

2

r

∂

∂r

)
e−

r2

2a2

= lim
a→0+

(2πa2)−3/2

(
∂

∂r
+

2

r

)(
− r

2a2

)
e−

r2

2a2 = lim
a→0+

(2πa2)−3/2

(
r2

a4
− 3

a2

)
e−

r2

2a2 .

By using the rule ∇ → ik for the Fourier transform, we obtain the following expression for

the first Born approximation to the scattering amplitude:

f
(1)
E = +

m

2π~2
V0 λ

5(k⃗i − k⃗f )2 =
m

π~2
V0 λ

5k2(1− cos θ) .

If λ is the range of the scattering potential (i.e., we take the Gaussian regularization parameter a

to be λ ≡ a), then from the properties of the Fourier transform we expect the following qualitative

picture (for our second example) of the scattering cross section:
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1.5 Scattering by a centro-symmetric potential (partial waves)

In this section we consider Hamiltonians of the form

H = − ~2

2m
∇2 + V (r) , r =

√
x2 + y2 + z2,

where the potential V (r) is invariant under all rotations fixing a center (which we take to be the

origin of our Cartesian coordinate system x, y, z). We assume that V (r) decreases faster than 1/r

in the limit of r →∞.

Our goal here is to explain the ‘method of partial waves’, which is one of the standard methods

of scattering theory. To get started, we recall a few facts known from the basic course on quantum

mechanics. Using spherical polar coordinates

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ ,

we have the following expression for the Laplacian:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r
r2
∂

∂r
+

1

r2

(
∂

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
.

If the incoming wave of the scattering wave function ψ is a plane wave eikz traveling in the z

direction, then we expect the scattering amplitude to be independent of the azimuthal angle ϕ

(by the rotational symmetry of the potential V ). In fact, the azimuthal angle ϕ will never appear

in the following discussion.

We make an ansatz for the wave function of the form

ψ =
∞∑
l=0

ψl(r)Pl(cos θ) ,

where Pl is the Legendre polynomial of degree l . We recall that Legendre polynomials are eigen-

functions of the angular part of the Laplacian:

− ∂

sin θ

∂

∂θ
sin θ

∂

∂θ
Pl(cos θ) = l(l + 1)Pl(cos θ) . (1.1)

We now write the energy E of the Schrödinger particle in the form E = ~2k2
2m

. Our Ansatz for ψ

then leads to the following differential equation for the radial functions ψl(r) :(
−1

r

d2

dr2
◦ r + l(l + 1)

r2
+

2m

~2
V (r)

)
ψl(r) = k2ψl(r) . (1.2)

For large values of r this equation and its general solution simplify to

− d2

dr2
rψl = k2rψl , ψl(r) = A

eikr

r
+B

e−ikr

r
.

Now it is a basic property (called conservation of probability or ‘unitarity’ for short) of quantum

mechanics that the divergence of the probability current density j = ~
m
Im ψ̄∇ψ must vanish

everywhere in space for a solution ψ of the time-independent Schrödinger equation Hψ = Eψ.

Assuming the large-r behavior ψ = (A eikr +B e−ikr)/r, a quick computation shows that the total
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probability flux through the surface of a ball centered at r = 0 is (4π~k/m)(|A|2 − |B|2). By

Gauss’ theorem this surface integral must be equal to the integral of div j = 0 over the ball.

Hence, unitarity requires that A and B have the same magnitude |A| = |B|.
Thus the large-r asympotics of any solution of the time-independent Schrödinger equation

Hψ = Eψ with azimuthal symmetry has to be

ψ
r→∞−→

∞∑
l=0

Al e
ikr +Bl e

−ikr

2ikr
(2l + 1)Pl(cos θ) , |Al| = |Bl| . (1.3)

The factor (2l + 1)/(2ik) has been inserted for later convenience.

Our boundary conditions for the scattering problem dictate that

ψ
r→∞−→ eikz + fE(θ)

eikr

r
.

Lemma. In order for ψ to be of this asymptotic form, the amplitudes Bl in (1.3) must be

Bl = (−1)l+1.

To prove this lemma, we need an understanding of how eikz expands in partial waves. From

the basic quantum theory of angular momentum we recall that the Legendre polynomials have

the orthogonality property ∫ π

0

Pl(cos θ)Pl′(cos θ) sin θ dθ =
2 δll′

2l + 1
. (1.4)

Moreover, the Legendre polynomials form a complete system of functions on the interval [−1,+1] ∋
cos θ. We may therefore expand eikz = eikr cos θ as

eikr cos θ =
∞∑
l=0

iljl(kr) (2l + 1)Pl(cos θ) , (1.5)

jl(kr) =
i−l

2

∫ π

0

eikr cos θPl(cos θ) sin θ dθ . (1.6)

The factor of il has been inserted in order to make the function jl(kr) coincide with the so-called

spherical Bessel functions. The lowest-order spherical Bessel functions are

j0(ξ) =
sin ξ

ξ
, j1(ξ) =

sin ξ

ξ2
− cos ξ

ξ
.

For small values of the argument, the spherical Bessel functions behave as

jl(ξ) ∼ ξl.

This behavior follows from the orthogonality property (1.4) of the Legendre polynomials and the

fact that any polynomial in cos θ of degree l can be expressed as a linear combination of the

Legendre polynomials Pl′(cos θ) of degree l
′ ≤ l.

For large values of the argument, the spherical Bessel functions behave as

jl(ξ) ≃
sin(ξ − lπ/2)

ξ
. (1.7)
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We will motivate this important relation at the end of the present subsection.

Proof of Lemma. Using the expansion of eikr cos θ and the large-r asymptotics of the spherical

Bessel functions we have

eikr cos θ
r→∞−→

∞∑
l=0

il
sin(kr − lπ/2)

kr
(2l + 1)Pl(cos θ) .

The radially incoming part for angular momentum l is given by(
il
sin(kr − lπ/2)

kr

)
incoming

= −il e
−i(kr−lπ/2)

2ikr
= − eilπ

e−ikr

2ikr
.

Thus by comparing coefficients we obtain the desired result Bl = (−1)l+1. �

We now consider the difference ψ − eikz. By construction, this is a sum of radially outgoing

waves:

ψ − eikz
r→∞−→

∞∑
l=0

(Al − 1)
eikr

2ikr
(2l + 1)Pl(cos θ) ,

which is of the expected form fE(θ)e
ikr/r. We already know that by unitarity we must have

|Al| = |Bl| = 1. It is customary to put Al = e2iδl and call δl the phase shift (in the channel of

angular momentum l). We then have the following result for the scattering amplitude:

fE(θ) =
∞∑
l=0

e2iδl(E) − 1

2ik(E)
(2l + 1)Pl(cos θ) , (1.8)

where we have emphasized the energy dependence of the phase shift δl(E) and the wave number

k(E) =
√
2mE/~ .

1.5.1 Optical theorem

We now use the formula (1.8) for the scattering amplitude fE(θ) to compute the total scattering

cross section. By the orthogonality property (1.4) of the Legendre polynomials we obtain

σtot(E) =

∫
S2

dσ

dΩ
dΩ =

∫
S2
|fE(Ω)|2 dΩ =

4π

k2(E)

∞∑
l=0

(2l + 1) sin2 δl(E) . (1.9)

On the other hand, since (e2iδl − 1)/(2i) = eiδl sin δl has imaginary part sin2 δl, the imaginary part

of the scattering amplitude in the limit of looking in the forward direction is

Im fE(θ → 0) =
1

k(E)

∞∑
l=0

(2l + 1) sin2 δl(E) .

Thus the total cross section and the forward scattering amplitude are related by

σtot(E) =
4π

k
Im fE(0) . (1.10)

This relation is called the optical theorem.

13



1.5.2 Example: scattering from a hard ball

We now illustrate the method of partial waves at the example of scattering from a hard ball:

V (r) =

{
0 r > R ,
+∞ r < R .

The goal is to find the scattering phase shifts δl . Having calculated these, we get the scattering

amplitude and the cross section from the formulas of the previous subsection.

The scattering wave function must vanish identically inside the ball (r < R) where the potential

is repulsive and infinite. Outside the ball (r > R) the motion is that of a free particle. The

continuity of the wave function implies Dirichlet boundary conditions at the surface of the ball:

ψ
∣∣∣
r=R

= 0 .

In the exterior of the ball, where the motion is free, we look for solutions ψl(r)Pl(cos θ) of the

Schrödinger equation for a free particle of angular momentum l . We recall that the equation for

the radial functions ψl(r) reads(
−1

r

d2

dr2
◦ r + l(l + 1)

r2

)
ψl(r) = k2ψl(r) . (1.11)

Solutions of this equation are the spherical Bessel functions ψl(r) = jl(kr). Indeed, we know

that the plane wave eikr cos θ is a solution of the free Schrödinger equation, and by expanding

eikr cos θ =
∑

iljl(kr)(2l + 1)Pl(cos θ) and using the eigenfunction property (1.1) of the Legendre

polynomials, we see that jl(kr) solves the radial equation (1.11).

Since the radial equation is of second order, a single solution is not enough to express the

most general solution. We need a linearly independent second solution. To find it, we recall

that jl(kr) ∼ rl for r ≪ k−1. Using this, it is easy to see that Ψl(r⃗) = jl(kr)Pl(cos θ) in the

limit of r → 0 contracts to a solution of the Laplace equation ∇2Ψl = 0 . Now from the chapter

on multipole expansion in electrostatics, we know that there exists a second angular momentum

l solution r−l−1Pl(cos θ) of Laplace’s equation. (Solutions of Laplace’s equation are also called

harmonic functions.) We therefore expect that there exists a solution, say nl(kr), of the radial

equation (1.11) with the corresponding small-r asymptotics:(
−1

r

d2

dr2
r +

l(l + 1)

r2

)
nl(kr) = k2nl(kr) , nl(ξ) ∼ ξ−l−1 (ξ → 0) . (1.12)

Such a solution nl(kr) does exist, and it is called the spherical Neumann function of degree l . The

spherical Neumann functions of lowest degree are

n0(ξ) = −
cos ξ

ξ
, n1(ξ) = −

cos ξ

ξ2
− sin ξ

ξ
.

We now make an ansatz for the wave function of free motion outside the hard ball:

ψ =
∞∑
l=0

il
(
al jl(kr) + bl nl(kr)

)
(2l + 1)Pl(cos θ) (r > R) .
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The spherical Neumann functions have the following large-r asymptotic behavior:

nl(kr)
r→∞−→ − cos(kr − lπ/2)

kr
.

By using also the large-r behavior of the spherical Bessel functions we find the asymptotics

ψ
r→∞−→ (2ikr)−1

∞∑
l=0

(
(al − ibl) e

ikr − (−1)l(al + ibl) e
−ikr
)
(2l + 1)Pl(cos θ) .

Comparison with the general expression (1.3), where Al = e2iδl and Bl = −(−1)l, then yields

al − ibl = e2iδl , al + ibl = 1, and hence al = eiδl cos δl , bl = −eiδl sin δl . Thus our ansatz takes the

form

ψ =
∞∑
l=0

ileiδl
(
cos(δl) jl(kr)− sin(δl)nl(kr)

)
(2l + 1)Pl(cos θ) (r > R) . (1.13)

We now impose the Dirichlet boundary condition ψ
∣∣
r=R

= 0. This gives the following condition:

tan(δl) =
jl(kR)

nl(kR)
,

which determines the scattering phase shifts δl .

Here we specialize to the long wave length limit kR ≪ 1 . In this limit δl ∼ (kR)2l+1. Thus

scattering is appreciable only in the s-wave channel (l = 0). The exact value of the s-wave

scattering phase shift is

δ0 = arctan

(
j0(kR)

n0(kR)

)
= −kR .

From Eq. (1.9) we then have the total scattering cross section

σtot ≈
4π

k2
sin2 δ0 ≈ 4πR2.

Notice that this is larger (by a factor of four) than the geometric cross section πR2 of classical

scattering from a hard ball. (There is no inconsistency in this, as the long wave length limit

kR≪ 1 is just the opposite of the classical limit kR≫ 1.)

1.5.3 Asymptotics of the spherical Bessel functions

Here we fill in a gap which was left in the argument above: the asymptotic behavior (1.7).

For this purpose we use the following integral representation of the Legrendre polynomials:

Pl(cos θ) =

∫ 2π

0

dϕ

2π
(cos θ − i sin θ cosϕ)l , (1.14)

which can be verified by checking that the integral on the right-hand side satisfies the differential

equation (1.1). In combination with (1.6) this gives a representation of the spherical Bessel

functions as an integral over the unit sphere S2 :

jl(ξ) =
i−l

4π

∫
S2
eiξ cos θ+l ln(cos θ−i sin θ cosϕ) sin θ dθ dϕ . (1.15)

For large values of ξ , the integrand oscillates strongly everywhere on S2 with the exception of two

points: the ‘north pole’ (θ = 0) and the ‘south pole’ (θ = π). These are the points where cos θ has
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vanishing derivative. The contribution to the integral from each of these points can be calculated

by using the method of stationary phase (not explained here). Consider first the north pole θ = 0.

To compute its contribution to the integral, it is helpful to change coordinates as follows:

cos θ =
√
1− n2

1 − n2
2 , sin θ cosϕ = n1 , sin θ sinϕ = n2 , sin θ dθ dϕ =

dn1 dn2√
1− n2

1 − n2
2

.

The stationary-phase contribution to jl(ξ) from θ = 0 is then found to be

≈ eiξ

4πil

∫
R2

e−iξ(n2
1+n2

2)/2dn1dn2 =
ei(ξ−lπ/2)

2iξ
.

Similarly, the contribution from the south pole θ = π is

≈ e−i(ξ−lπ/2)

−2iξ
.

By adding these two contributions, we get the claimed behavior (1.7).

1.6 Time-dependent scattering theory

So far, our considerations have been based on the time-independent Schrödinger equation, which

is appropriate if the physical situation is stationary or approximately stationary. A more fun-

damental approach, which we adopt here, is to start from the investigation of the process of

time-dependent scattering of localized wave packets — with the option of passing to the station-

ary situation by increasing the width of the wave packet and thereby approaching the limit of a

plane wave for the incoming state.

As before, we assume that we are given two Hamiltonians: one (namely H0 , the generator

of ‘free motion’) which we understand and another one (H, including interactions) which we are

trying to understand. In the following we denote by Ut the time-evolution operator for free motion:

i~
∂

∂t
Ut = H0 Ut , Ut=0 = Id ,

and by Vt the time-evolution operator for the full interacting dynamics:

i~
∂

∂t
Vt = H Vt , Vt=0 = Id .

By construction, these time-evolution operators are unitary operators on the Hilbert space H of

our physical system with Hermitian scalar product ⟨·, ·⟩ :

∀ψ, ψ′ ∈ H : ⟨Ut ψ,Ut ψ
′⟩ = ⟨ψ, ψ′⟩ = ⟨Vt ψ, Vt ψ′⟩ .

We note that a Hilbert space comes with a norm ∥ψ∥ :=
√
⟨ψ, ψ⟩.

In scattering theory one makes the basic assumption that the dynamics generated by the

full Hamiltonian H approaches that of the free Hamiltonian H0 in the limit of the distant past

(t→ −∞) and the far future (t→ +∞). This assumption leads to the following idea.

Given a vector ψ ∈ H we look for vectors ψ± ∈ H with the approximation property

∥Vt ψ − Ut ψ± ∥
t→±∞−→ 0 ,
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i.e., evolving ψ by the full time evolution Vt for a very long time t→ ±∞ leads to the same state

as evolving ψ± by the free time evolution Ut . This idea is illustrated in the figure shown below.

It should be noted, however, that it will not always be possible to find such ψ± for every ψ.

Indeed, any free motion Ut ψ± (if it is a free motion in the usual sense) must escape to infinity.

On the other hand, if there exist bound states for H and the vector ψ has nonzero projection on

the space of bound states, then Vt ψ contains a component which does not escape to infinity.

To accommodate this complication, we use the unitarity of Vt (for finite t) to write

∥Vt ψ − Ut ψ± ∥ = ∥ψ − V †
t Ut ψ± ∥ .

Here and in what follows we assume thatH0 has no bound states. It is then reasonable to postulate

the existence of the following limits:

W± := lim
t→±∞

V †
t Ut . (1.16)

The operators W± are called Møller operators, or wave operators. They are isometric, i.e., they

satisfy ∥W±ψ ∥ = ∥ψ ∥ for all ψ ∈ H . By the remark above they are not surjective when bound

states exist for H. In other words, each ofW± has a left inverse but not necessarily a right inverse.

The definitions of Ut , Vt , and W± make sense even if the Hamiltonians H0 and/or H depend

on time. In the case of time-independent H0 and H we have the explicit formulas

Ut = e−itH0/~ , Vt = e−itH/~ , W± = lim
t→±∞

e+itH/~e−itH0/~ .

For the next step we require that the range ofW− (i.e., the image of H underW−) be contained

in the domain of definition of W †
+ :

range (W−) ⊂ domain (W †
+) .

This requirement is physically reasonable, and will be discussed in Section 1.6.3 below. If it is

met, one may form the composition W †
+W− . The situation is sketched in the following diagram.
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Definition. With the pair (H0 , H) we associate an operator

S := W †
+W− , (1.17)

called the scattering operator.

Remark. By the assumed absence of bound states for H0 , the scattering operator S exists on all

of H and always satisfies S†S = IdH . The scattering operator is unitary, i.e. has a right inverse

S−1 = S†, if domain (W †
+) = range (W−). It fails to be unitary if range (W−) is strictly smaller

than domain (W †
+).

For time-independent H0 , H one has the explicit formula

S = lim
t→∞

e+itH0/~e−2itH/~e+itH0/~.

In the case of time-independent H0 , H the Møller operators satisfy the intertwining relations

VtW± =W±Ut . (1.18)

Heuristically, these relations are motivated by the following computation:

W±Ut = lim
T→±∞

V †
TUT Ut = lim

T→±∞
V †
TUT+t = lim

T→±∞
V †
T−tUT = Vt lim

T→±∞
V †
TUT = VtW± .

As an important corollary of the relations (1.18), the scattering operator commutes with the free

time evolution:

S Ut = Ut S . (1.19)

This is proved as follows:

S Ut = W †
+W− Ut = W †

+VtW− = (V−tW+)
†W− = (W+U−t)

†W− = UtW
†
+W− = Ut S .

Now by differentiating the relations (1.19) (which are valid, as we recall, in the case of time-

independent H0 , H), we deduce that the scattering operator commutes with the free Hamiltonian:

H0 S = SH0 .

From spectral theory one then knows that H0 and S can be brought to diagonal form simultane-

ously. (Note that the eigenstates of H0 usually fail to be square-integrable. Thus they do not lie

inside the Hilbert space H.)

1.6.1 Example: potential scattering d = 1

We illustrate the above at the example of potential scattering in one dimension, with

H0 = −
~2

2m

d2

dx2
, H = H0 + V (x) ,

and V (x) vanishing (or decaying sufficiently fast) outside a finite region suppV ⊂ R . The

eigenspace of H0 with energy E > 0 is two-dimensional, being spanned by the two functions

ϕ±(x) := e±ikx, k =
√
2mE/~ > 0 .
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In order for the scattering operator S to commute with H0 , it must leave the two-dimensional

H0-eigenspace (with fixed energy E) invariant. In other words, applying S to either one of the

functions ϕ±(x) = e±ikx we must get a linear combination of the same two functions:

Sϕ+ = ρ ϕ− + τ ϕ+ , (1.20)

Sϕ− = τ ′ϕ− + ρ′ϕ+ . (1.21)

The complex numbers ρ , ρ′ (resp. τ, τ ′) are called reflection coefficients (resp. transmission coeffi-

cients). Due to S†S = IdH they satisfy the unitarity relations

|ρ|2 + |τ |2 = 1 = |ρ′|2 + |τ ′|2 , ρ̄τ ′ + τ̄ ρ′ = 0 . (1.22)

In particular, the probabilities |ρ|2 for reflection and |τ |2 for transmission sum up to unity. We

are now left with the question of how to compute the matrix elements ρ, τ, ρ′, τ ′ of the scattering

operator. This question is answered in the sequel.

We fix an energy E = ~2k2/2m > 0 . For such an energy, we know that the eigenspace of

H0 is two-dimensional, and so is the eigenspace of H. As before, let ϕ±(x) = e±ikx denote the

corresponding eigenfunctions of H0 . We now introduce two sets of basis vectors for the two-

dimensional eigenspace of H with energy E. First, consider the state vectors

ψin
± :=W−ϕ± , (1.23)

obtained by applying the Møller operator W− = limt→−∞ eiHt/~e−iH0t/~ to the plane waves ϕ± .

These functions x 7→ ψin
± (x) are solutions of the Schrödinger equation Hψin

± = Eψin
± . Indeed, by

differentiating the intertwining relation (1.18) at t = 0 we obtain

HW± = W±H0 , (1.24)

which implies that if ϕ is an eigenfunction of H0 with energy E, then W± ϕ is an eigenfunction of

H (with the same energy).

Now we can say more about the solutions ψin
± . Consider, e.g., ψin

+ = W−ϕ+. The right factor

e−itH0/~ of W− in the limit of t → −∞ sends the plane wave ϕ+(x) = eikx (after superposition of

a narrow range of k-values to form a localized wave packet) to x → −∞. The left factor eiHt/~

then returns the wave to the scattering region near x = 0 . This means that ψin
+ is a stationary

scattering state which originates from a wave e+ikx moving in the positive x-direction and coming

in from x = −∞. In particular, ψin
+ cannot have a component e−ikx at x → +∞. Thus ψin

+ must

be of the asymptotic form

ψin
+ (x)

asympt−→
{
A · e+ikx + 0 · e−ikx x→ +∞ ,
1 · e+ikx +D · e−ikx x→ −∞ .

Here we used the fact that scattering solutions of Hψ = Eψ become superpositions A eikx+B e−ikx

of plane waves in the limit of |x| → ∞.
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Similarly, ψin
− is a stationary scattering state which originates from a plane wave ϕ−(x) = e−ikx

moving in the negative x-direction and coming in from x = +∞. There cannot be any incoming

component at x→ −∞, so ψin
− must be of the asymptotic form

ψin
− (x)

asympt−→
{
A′ · e+ikx + 1 · e−ikx x→ +∞ ,
0 · e+ikx +D′ · e−ikx x→ −∞ .

One refers to ψin
± as stationary scattering states satisfying incoming-wave boundary conditions.

The second set of states, ψout
± , is defined by using the other Møller operator, W+ :

ψout
± :=W+ ϕ± .

It follows by inversion that

W †
+ψ

out
± = ϕ± .

By the intertwining relations forW+, the states ψ
out
± again solve the time-independent Schrödinger

equation Hψout
± = Eψout

± . Called scattering states with outgoing-wave boundary conditions, they

have the asymptotics

ψout
+ (x)

asympt−→
{

1 · e+ikx +B · e−ikx x→ +∞ ,
C · e+ikx + 0 · e−ikx x→ −∞ ;

ψout
− (x)

asympt−→
{

0 · e+ikx +B′ · e−ikx x→ +∞ ,
C ′ · e+ikx + 1 · e−ikx x→ −∞ .

By comparing these asymptotic forms with those of the scattering states ψin
± we directly infer that

ψin
+ = Dψout

− + Aψout
+ , (1.25)

ψin
− = D′ψout

− + A′ψout
+ . (1.26)

Finally, combining all this information we can make a statement about the scattering operator

S. By using the definition W−ϕ+ = ψin
+ and the relations (1.25) and W †

+ψ
out
± = ϕ± we compute

Sϕ+ =W †
+W−ϕ+ =W †

+ψ
in
+ = W †

+(Dψ
out
− + Aψout

+ ) = Dϕ− + Aϕ+ ,

and, similarly,

Sϕ− = D′ϕ− + A′ϕ+ .

In view of Eqs. (1.20,1.21) we arrive at the identifications

D = ρ , A = τ , D′ = τ ′ , A′ = ρ′ .
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Thus the problem of computing the matrix elements of S is reduced to finding the asymptotics of

stationary scattering states with incoming-wave boundary conditions.

Summary. If the solutions of Hψin
± = Eψin

± with incoming-wave boundary conditions are of the

asymptotic form

ψin
+ −→

{
τ · e+ikx + 0 · e−ikx x→ +∞ ,
1 · e+ikx + ρ · e−ikx x→ −∞ ,

ψin
− −→

{
ρ′ · e+ikx + 1 · e−ikx x→ +∞ ,
0 · e+ikx + τ ′ · e−ikx x→ −∞ ,

then we have Sϕ+ = ρ ϕ− + τϕ+ and Sϕ− = τ ′ϕ− + ρ′ϕ+.

1.6.2 Scattering by a centro-symmetric potential in d = 3

We return to the example (Section 1.5) of scattering by a centro-symmetric potential V = V (r)

in three dimensions. In this case the scattering operator S commutes not just with the free

Hamiltonian H0 = −~2∇2/2m but also with the square L2 of the total angular momentum and

its projection Lz on the z-axis (or any other axis):

L2 = − ~2

sin θ

∂

∂θ
sin θ

∂

∂θ
− ~2

sin2 θ

∂2

∂ϕ2
, Lz =

~
i

∂

∂ϕ
.

If Ylm denotes the spherical harmonic of angular momentum l and magnetic quantum number m,

the functions

ϕk,l,m(r, θ, ϕ) = jl(kr)Ylm(θ, ϕ)

are joint eigenfunctions of the set of operators H0 , L
2, and Lz :

H0 ϕk,l,m =
~2k2

2m
ϕk,l,m , L2ϕk,l,m = ~2l(l + 1)ϕk,l,m , Lz ϕk,l,m = ~mϕk,l,m .

The joint eigenspace Ek,l,m with these eigenvalues is one-dimensional: Ek,l,m = C·ϕk,l,m . Therefore,

since S commutes with each of H0 , L
2, and Lz , the function ϕk,l,m is an eigenfunction of S :

S ϕk,l,m = e2iδl(k)ϕk,l,m .

(In some sense, the present situation is simpler than that of d = 1, as the basis of functions ϕk,l,m

completely diagonalizes S.)

We now claim that the phases δl(k) are the phase shifts of Section 1.5. To verify this, we recall

that a scattering solution ψk,l,m(r, θ, φ) = Rk,l(r)Ylm(θ, φ) of the Schrödinger equation Hψk,l,m =

Eψk,l,m has the asymptotic behavior

Rk,l(r)
r→∞−→ (2ikr)−1

(
e2iδl(k)ei(kr−lπ/2) − e−i(kr−lπ/2)

)
.

[Warning: here we have adjusted our overall phase convention!] This solution is a solution with

incoming-wave character in the sense that its radially incoming wave component e−ikr/r is exactly

the same as the corresponding component of the free solution. We therefore expect thatW−ϕk,l,m =

ψk,l,m . Indeed, the right factor of W− = limt→−∞ eitH/~e−itH0/~ sends ϕk,l,m (or, rather a localized
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wave packet formed by superposition of k-values in a narrow range) to an incoming wave e−ikr/r at

r =∞ in the distant past, and the left factor then produces the full scattering state with a phase-

shifted radially outgoing wave component (but unchanged radially incoming wave component).

We still have to figure out what happens to ψk,l,m = W− ϕk,l,m when the adjoint Møller operator

W †
+ is applied. We know that W †

+ψk,l,m = Sϕk,l,m is a unitary number times ϕk,l,m , but what is

that number? To find it, we look at the radially outgoing wave component e2iδlei(kr−lπ/2)/(2ikr) of

ψk,l,m. The operatorW
†
+ sends this component to r =∞ by the full time evolution and then sends

it back in by the free time evolution. In this journey to infinity and back, no scattering takes

place. Therefore, whereas W− left the radially incoming wave component unchanged, it is the

radially outgoing wave component that remains unchanged under W †
+. In this way, by comparing

expressions, we see that Sϕk,l,m =W †
+ψk,l,m = e2iδl(k)ϕk,l,m .

1.6.3 On the condition range(W−) ⊂ domain(W †
+)

Let us make a small remark about the condition in the title of this subsection. For this we recall

from basic quantum theory that if U and V are Hilbert spaces with Hermitian scalar products

⟨·, ·⟩U resp. ⟨·, ·⟩V , then the adjoint of a linear operator A : U → V is the linear operator

A† : V → U , v 7→ A†v defined by

⟨A†v, u⟩U = ⟨v, Au⟩V

for all u ∈ U . Now if H is the Hilbert space of our problem with Hamiltonian H, let Hsc ⊂ H
denote the subspace of scattering states (i.e., the orthogonal complement of the subspace of bound

states). The adjoint of the Møller operator W+ : H → Hsc then is an operator

W †
+ : Hsc → H .

In other words, domain(W †
+) = range(W+) = Hsc. The condition in the title can therefore be

reformulated as

range(W−) ⊂ range(W+) . (1.27)

If the Hamiltonian H is time-reversal invariant (see the next subsection), then one can show the

identity

range(W−) = range(W+) ,

so condition (1.27) is always satisfied in that case. According to a remark made after Definition

(1.17), it follows that the scattering operator S for a time-reversal invariant system is always

unitary: S†S = IdH and SS† = IdH.
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1.7 Time reversal and scattering

We have already mentioned the fact that unitary symmetries of the Hamiltonian (UHU−1 = H

and UH0U
−1 = H0) give rise to unitary symmetries of the scattering operator (USU−1 = S).

Here we will tell a related story, describing the consequences of time-reversal symmetry (not a

unitary symmetry; see below) for scattering.

We begin with a brief discussion of time reversal in classical mechanics. In a classical phase

space with position variables q and momenta p , the operation of inverting the time (called ‘time

inversion’ or ‘time reversal’ for short) is the anti-canonical transformation Tcl defined by

Tcl : (q, p) 7→ (q,−p) .

It is anti-canonical because it reverses the sign of the Poisson bracket. Clearly, time reversal is an

involution, which is to say that T 2
cl is the identity transformation. A classical Hamiltonian system

is called time-reversal invariant if the Hamiltonian function satisfies H = H ◦ Tcl , i.e.,

H(q, p) = H(q,−p) . (1.28)

An example of a time-reversal invariant Hamiltonian function is the kinetic energy H(q, p) =

p2/2m. For charged particles in a magnetic field B this Hamiltonian function changes to

H(q, p) =
(p− eA)2

2m
,

where A is a vector potential for B. We observe that in the presence of a magnetic field, time-

reversal symmetry in the sense of (1.28) is broken. (Here we take the viewpoint of regarding the

magnetic field B as ‘external’ or fixed. Time reversal continues to be a symmetry even for B ̸= 0

if, along with transforming q and p , we also time-reverse B 7→ −B and A 7→ −A .)

The process of quantization is known to take canonical transformations of the classical phase

space into unitary transformations of the quantum Hilbert space, H. Now since time reversal fails

to be canonical in the classical theory, we should not expect it to be represented by a unitary

operator in the quantum theory.

Rather, time reversal in quantum mechanics will turn out to be an anti -unitary operator (the

definition is spelled out below). To motivate this fact, consider the time-dependent Schrödinger

equation (with position variables x and time variable t):

i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t) .

By taking the complex conjugate on both sides and inverting the time argument, we see that if

(x, t) 7→ ψ(x, t) is a solution of this equation, then so is (x, t) 7→ ψ(x,−t). We therefore expect

that the operator T of time reversal in the position representationH = L2(R3) (and for the present

case of Schrödinger particles) is simply complex conjugation:

(Tψ)(x) = ψ(x) . (1.29)
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This is in fact true.

Problem. Deduce from (1.29) that the time-reversal operator on wave functions ψ̃(p) in the

momentum representation is given by ψ̃(p) 7→ ψ̃(−p). �
We now infer two properties of the time-reversal operator T which are independent of the

representation used. The first property,

T (zψ) = z̄ Tψ (z ∈ C , ψ ∈ H) , (1.30)

is called complex anti-linearity. It says that a complex number z goes past the time-reversal

operator T as the complex conjugate, z̄ . Notice that this property distinguishes T from the usual

type of complex-linear operator, say A, which obeys the commutation rule Az = zA .

A stronger consequence of the formula (1.29) is that T preserves the Hermitian scalar product

⟨ψ, ψ′⟩ =
∫
R3

ψ(x)ψ′(x) d3x

up to complex conjugation:

∀ψ, ψ′ ∈ H : ⟨ψ, ψ′⟩ = ⟨Tψ, Tψ′⟩ = ⟨Tψ′, Tψ⟩ . (1.31)

Definition. An R-linear operator T : H → H with the property (1.31) is called anti-unitary.

Problem. (i) Show that the second property (1.31) actually implies the first property (1.30).

(ii) Show that the product of two anti-unitary operators is unitary. �
Next we observe that the operator T defined by (1.29) is an involution: T 2 = IdH . One may

ask whether there is a fundamental reason for T to be an involution. We will shortly see that the

answer is: no, there exists another possibility.

If an operator T acts on vectors ψ in Hilbert space by ψ 7→ Tψ , then it acts on quantum

observables A by conjugation A 7→ TAT−1. Now by the correspondence principle, the action on

observables should have a classical limit (~→ 0). Since time reversal in the classical theory is an

involution, we infer that the action A 7→ TAT−1 of time reversal on quantum observables must

also be an involution. Thus we must have

T 2AT−2 = A

for any A . Assuming that the algebra of observables A acts irreducibly on H, this implies that

T 2 = z IdH where z is some complex number. Since T 2 is unitary, the number z must be unitary.

The possible values of the unitary number z = eiα are further constrained by associativity of

the operator product T 2 · T = T · T 2 :

z Tψ = T 2(Tψ) = T (T 2ψ) = T (zψ) = z̄ Tψ .

It follows that our unitary number z = eiα has to be real. This leaves but two possibilities: z = 1,

and z = −1. We have already encountered a situation where z = 1. The other case of z = −1
also occurs in physics.
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Fact. The operator of time reversal on a spinor ψ =

(
ψ↑
ψ↓

)
(i.e., the wave function of a particle

with spin 1/2) is realized by

(Tψ)↑(x) = ψ↓(x) , (Tψ)↓(x) = −ψ↑(x) (1.32)

in the position representation. (This fact will be explained in the chapter on Dirac theory.)

After this brief introduction to time reversal, we turn to the consequences of time-reversal

symmetry for scattering.

Definition. A quantum Hamiltonian system is called time-reversal invariant if the Hamiltonian

stays fixed under conjugation by the time reversal operator: H = THT−1. �
We know that the scattering operator S is obtained by taking a limit of products of time

evolution operators. Therefore, we now look at what happens to time evolution operators under

conjugation by T . By using the relations T (AB)T−1 = (TAT−1)(TBT−1), T eA T−1 = eTAT−1
and

T iT−1 = −i , we get

T e−itH/~ T−1 = e+it (THT−1)/~ ,

so for a time-reversal invariant system it follows that

T e−itH/~ T−1 = e+itH/~ =
(
e−itH/~)−1

.

Let now the Hamiltonian H0 for free motion be time-reversal invariant as well. Then by the

same calculation we have T e−itH0/~ T−1 =
(
e−itH0/~

)−1
and hence

T eitH0/~ e−2itH/~ eitH0/~ T−1 =
(
eitH0/~ e−2itH/~ eitH0/~

)−1
.

By taking the limit t→∞ we conclude that

TST−1 = S−1. (1.33)

Corollary. Assume that H0 has no bound states and that H0 and H are time-reversal invariant.

Then the scattering operator is unitary on the full Hilbert space: S†S = SS† = IdH . (This

conclusion is not tied to time reversal but holds if the pair H0 , H has any anti-unitary symmetry.)

In concrete applications one usually looks at matrix elements of the scattering operator in

certain subspaces with fixed quantum numbers. One then wants to understand the consequences

of time-reversal invariance at the level of matrix elements. In this endeavor it is possible to get

confused. Indeed, you might make the following (incorrect) argument. You might say that since

T for spinless particles is just complex conjugation, the result (1.33) implies that the scattering

matrix is symmetric: St = S̄† = S̄−1 = T S̄T−1 = S. Copying from one of the standard textbooks,

you would write the scattering matrix, say for potential scattering in one dimension, as

S =

(
τ ρ′

ρ τ ′

)
.

[You would probably argue that this, not (1.22), is the ‘correct’ way of arranging the scattering

matrix elements. After all, in the limit of vanishing potential, where we have zero reflection
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ρ = ρ′ = 0 and full transmission, τ = τ ′ = 1, the scattering matrix should turn into the identity

matrix.] The symmetry S = St of the scattering matrix would then seem to imply that ρ
?
= ρ′.

This is false. The correct statement is that τ = τ ′ due to time-reversal invariance.

What went wrong with our argument? The answer is that we were not careful enough to

translate the result (1.33) for the operator S into a correct statement about the matrix of S.

Problem. Get the argument straightened out to show that τ = τ ′. �

In the sequel we will explain how the notion of ‘symmetry’ of the scattering operator S can be

formulated in an invariant (or basis-free) manner. For this purpose we take a time-out in order to

review some basic linear algebra.

1.7.1 Some linear algebra

Let V be a vector space over the number field K = C or K = R . We recall that the dual, V ∗,

of V is the vector space of linear functions f : V → K . Let now L : V → W be a K-linear

mapping between two K-vector spaces V and W . The canonical transpose of L is the mapping

Lt : W ∗ → V ∗ defined by

(Ltf)(v) := f(Lv) .

We call it the ‘transpose’ because, if L (resp. Lt) is expressed with respect to bases of V and W

(resp. the dual bases of V ∗ and W ∗), then the matrix of Lt is the transpose of the matrix of L.

Consider now the special case of W = V ∗. One then has W ∗ = (V ∗)∗ = V (for this, to be

precise, we should require the vector space dimension to be finite) and the canonical transpose of

L : V → V ∗ is another mapping Lt : V → V ∗ between the same vector spaces. In this situation

we can directly compare L with Lt and give a natural meaning to the word ‘symmetric’.

Definition. A linear mapping L : V → V ∗ is called symmetric if L = Lt. It is called skew if

L = −Lt.

Remark. In the case of V = W , there is no canonical definition of ‘symmetric’ linear map

L : V → V . (The matrix of L with respect to some basis of V may be symmetric, but this

property is not preserved by a change of basis in general.) To speak of a symmetric map in this

context, one needs an identification of V with V ∗, e.g., by a non-degenerate quadratic form on V .

Examples (for K = R):

1. Velocity in three-dimensional space is a vector v ∈ V ≡ R3. Momentum is not a vector (at

least not fundamentally so) but rather a form or linear function on vectors: p ∈ V ∗ = (R3)∗.

The invariant pairing p(v) :=
∑

i piv
i between the momentum p ∈ V ∗ and the velocity v ∈ V

of a particle has the invariant physical meaning of (twice the) kinetic energy of the particle.

The mass m (or mass tensor m in an anisotropic medium) is a symmetric linear mapping

m : V → V ∗ , v 7→ m(v) = p .

The symmetric nature of m is expressed by m(v)(v′) = p(v′) = p′(v) = m(v′)(v).
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2. A rigid body in motion has an angular velocity ω ∈ so3 (where so3 ≃ R3 is the Lie algebra

of the rotation group SO3 fixing some point, e.g., the center of mass of the rigid body). The

angular momentum L of the body is an element L ∈ so∗3 of the dual vector space. The

pairing L(ω) computes twice the energy of rotational motion of the body. The tensor I of

the moments of inertia of the body is a symmetric linear mapping

I : so3 → so∗3 , ω 7→ I(ω) = L .

3. A homogeneous electric field E is a form E ∈ V ∗ (V = R3), while a homogeneous electric

current density j is a vector j ∈ V (or can be canonically identified with a vector once a

homogeneous charge density has been given). The invariant pairing between j and E has

the meaning of power, i.e., the rate of energy transfer between the electric field and the

matter current. The d.c. electrical conductivity σ of a metal in the Ohmic regime is a linear

mapping

σ : V ∗ → V , E 7→ σ(E) = j .

If the metal has time-reversal invariance, the conductivity is symmetric: σt = σ. If time-

reversal symmetry is broken by a magnetic field, σ acquires a skew component σH = −σt
H

called the Hall conductivity. Notice that any skew (linear) mapping L : V ∗ → V for

dimV = 3 (or any other odd dimension) must have a vector e which is a null vector, i.e.,

L(e) = 0. In the case of σH this vector e coincides with the axis of the magnetic field. Since

σH(E)(E
′) = −σH(E ′)(E) = 0 vanishes for E = E ′, the Hall part of the conductivity does

not contribute to the power.

After this list of examples, we continue our review of some basic linear algebra. Let now V be

a Hermitian vector space; in other words, V is a complex vector space (K = C) equipped with a

Hermitian scalar product ⟨·, ·⟩V . We then have a canonical anti-linear bijection

cV : V → V ∗ , v 7→ ⟨v, ·⟩V . (1.34)

In the language of Dirac, this is called the ket-bra bijection, |v⟩ 7→ ⟨v|.

Definition. Let L : V → W be a complex linear mapping between two Hermitian vector spaces

V and W . The Hermitian adjoint L† : W → V is defined as the composition

L† = c−1
V ◦ L

t ◦ cW : W
cW−→ W ∗ Lt

−→ V ∗ c−1
V−→ V . (1.35)

Problem. Show that L and L† are related by the equation

⟨L†w, v⟩V = ⟨w,Lv⟩W

for all v ∈ V and w ∈ W . �
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1.7.2 T -invariant scattering for spin 0 and 1/2

We are now ready to describe in what sense the scattering operator S of a time-reversal invariant

system is symmetric. Let us associate with S : H → H a complex linear operator S̃ : H → H∗ by

S̃ = cH ◦ T ◦ S : H S−→ H T−→ H cH−→ H∗ . (1.36)

Fact. The scattering operator S of a time-reversal invariant system of particles with spin zero

(resp. spin 1/2) is symmetric (resp. skew) in the sense that S̃ = +S̃t (resp. S̃ = −S̃t).

Proof. We evaluate S̃ on a pair of vectors ψ, ψ′ ∈ H :

S̃(ψ)(ψ′) = ⟨TSψ, ψ′⟩ .

By using the relation (1.33) for a system with time-reversal invariance we obtain

⟨TSψ, ψ′⟩ = ⟨S−1Tψ, ψ′⟩ = ⟨Tψ, Sψ′⟩ ,

where the second equality results from the unitarity S−1 = S† of the scattering operator. In the

next step we use the anti-unitary property (1.31) of T :

⟨Tψ, Sψ′⟩ = ⟨T 2ψ, TSψ′⟩ = ⟨TSψ′, T 2ψ⟩ = S̃(ψ′)(T 2ψ) .

To summarize, writing T 2 = ϵT IdH we have

S̃(ψ)(ψ′) = ϵT S̃(ψ
′)(ψ) .

Thus S̃ is symmetric for spinless particles (ϵT = 1) and skew for spin-1/2 particles (ϵT = −1). �

Example. A current topic of active research are so-called topological insulators with strong spin-

orbit scattering and time-reversal invariance in d = 2 or d = 3 dimensions. The one-dimensional

boundary of such an insulator in d = 2 may house a propagating spin-1/2 mode with one right-

moving and one left-moving component. Skew symmetry constrains the scattering matrix for such

a two-component mode to be of the form

S̃ =

(
0 eiϑ

−eiϑ 0

)
.

This means that the reflection coefficient vanishes identically and the absolute value of the trans-

mission coefficient τ = eiϑ always remains unity as the length of the one-dimensional boundary is

increased. (Only the phase ϑ changes). Remarkably, this ‘perfectly conducting’ property of the

boundary channel is stable with respect to the introduction of any kind of (time-reversal invariant)

disorder.
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2 Relativistic quantum mechanics: Dirac equation

2.1 Motivation

We now turn to a very fundamental theme in relativistic quantum mechanics and quantum field

theory: the Dirac equation. Its special importance derives from the fact that all known elementary

particles of matter (the so-called leptons and quarks), are described by the Dirac equation or its

quantum field-theoretic version. The elementary particle we have in mind here, in particular, is

the electron.

We begin our motivation with the relativistic equation relating the positive energy E of a free

particle of mass m to its momentum p :

E =
√
(mc2)2 + (pc)2. (2.1)

In attempting to reconcile quantum mechanics with special relativity, one looks for a relativistic

wave equation with the property that this relation is reproduced. By the quantum-theoretic

correspondences E ↔ i~ ∂/∂t and p ↔ ~∇/i , a first proposal for a relativistic wave equation (of

the electron, say) might be

i~
∂ψ

∂t
?
=
√
(mc2)2 − (~c)2∇2 ψ .

It is, however, not clear how to make physical sense of the square root of an expression involving

the Laplacian ∇2. Defining the square root by its power series, one would end up with a ‘non-local’

differential equation (involving derivatives up to arbitrarily high order).

To avoid the problems caused by taking a square root, an alternative approach might be to

start from the energy-momentum relation (2.1) in the squared form

E2 = (mc2)2 + (pc)2. (2.2)

By using again the correspondences E ↔ i~ ∂/∂t and p↔ ~∇/i one gets the wave equation

−~2 ∂
2

∂t2
ψ = (mc2)2ψ − (~c)2∇2ψ , (2.3)

which is known as the Klein-Gordon equation. The continuity equation naturally associated to it

is ρ̇+ divj = 0 (leading to a conservation law
∫
ρ d3x = const) with

j =
~

2im

(
ψ∇ψ −∇ψ ψ

)
, ρ =

i~
2mc2

(
ψ ∂tψ − ∂tψ ψ

)
(∂t ≡ ∂/∂t) . (2.4)

For solutions with time dependence ψ ∼ e−iωt and positive frequency ω one has ρ = ~ω
mc2
|ψ|2 ≥ 0

but for ψ ∼ e+iωt the same quantity becomes negative. This means that ρ d3x in the present case,

unlike the Schrödinger case, cannot be interpreted as a probability density. (By the way: in a

quantum-field theoretic setting ρ d3x does have an interpretation as a charge density.)

It is not difficult to understand why the positivity of ρ is lacking for the Klein-Gordon equation:

it is because the expression for ρ contains the time derivative ∂t . This, in turn, is a consequence

of the Klein-Gordon equation being of second order in ∂t . (The Schrödinger equation, in contrast,

is of first order in ∂t .)
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2.2 Dirac equation

The lesson taken from the Klein-Gordon equation is that, in trying to construct a relativistic

generalization of the Schrödinger equation, one should retain the first-order-in-∂t nature of the

equation. Special relativity then suggests that the new equation should also be of first order in

the spatial derivatives ∂/∂xj . In fact, Dirac (1928) pioneered the idea of looking for a first-order

differential operator

D = βmc2 +
3∑

j=1

αj pjc , pj =
~
i

∂

∂xj
, (2.5)

with algebraic objects β, α1, α2, α3 that remain to be specified. If these satisfy the relations

β2 = 1 , βαj + αjβ = 0 , αiαj + αjαi = 2δij (i, j = 1, 2, 3) , (2.6)

then D squares to

D2 = (mc2)2 − (~c)2∇2, ∇2 =
3∑

j=1

∂2

∂x2j
. (2.7)

Moreover, if ψ is any solution of the equation

i~
∂ψ

∂t
= Dψ , (2.8)

then ψ by iteration is also a solution of the equation

−~2∂
2ψ

∂t2
= D2ψ . (2.9)

By using the formula (2.7) for D2 we see that the latter is nothing but the Klein-Gordon equation

(2.3). Thus for plane wave solutions ψ of (2.8) with frequency ω = E/~ and wave vector k = p/~
one gets the desired energy-momentum relation (2.1). (At the same time, one gets expressions for

ρ and j of a more desirable form; see below.)

The question now is whether one can realize the algebraic relations (2.6), and if so, how. It

is certainly impossible to satisfy these relations while clinging to the Schrödinger viewpoint of

complex numbers β, . . . , α3 multiplying a wave function ψ with values in C.
Therefore, following Dirac we now abandon the Schrödinger viewpoint and allow that ψ may

take values in a more general vector space, say Cn with n ≥ 1. With that generalization, we can

take β, . . . , α3 to be n × n matrices multiplying the n-component vector ψ. It then turns out to

be possible to realize the relations (2.6) for n ≥ 4. Indeed, one possible choice for n = 4 is

β =

(
1 0
0 −1

)
, αj =

(
0 σj
σj 0

)
, j = 1, 2, 3, (2.10)

where 1 ≡ 12 is the 2× 2 unit matrix and σj are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Problem. Check that the choice (2.10) satisfies the relations (2.6). �
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We will elaborate on the theoretical background behind the relations (2.6) in a later subsection.

For now, we record that there exists at least one possible realization for n = 4. In our further

arguments, we will often refer to this realization for concreteness.

Definition. The Dirac equation for a free particle of mass m reads

i~
∂ψ

∂t
= mc2βψ +

~c
i

3∑
j=1

αj
∂ψ

∂xj
, (2.11)

where ψ(x, t) takes values in C4 and the 4× 4 matrices β, α1, α2, α3 are subject to (2.6).

2.3 Relativistic formulation

For some purposes it is useful to write the Dirac equation in a form which puts space and time

on a similar footing. The standard physics convention is to introduce

x0 := ct , xj := xj , γ0 := β , γj := βαj = −αjβ (j = 1, 2, 3) . (2.12)

With these conventions, the Dirac equation (2.11) takes the relativistic form(
γ0

∂

∂x0
+
∑3

j=1
γj

∂

∂xj
+ i

mc

~

)
ψ = 0 . (2.13)

The parameter mc/~ has the physical dimension of an inverse length. Its reciprocal ~/(mc) is

called the (reduced) Compton wave length. For the electron with mass m ≈ 0.5MeV/c2 one has

~
mc

=
~c
mc2

≈ 200MeV · fm
0.5MeV

≈ 0.4× 10−12m . (2.14)

In the jargon of physics the matrices γ0, . . . , γ3 are called the gamma matrices. We note that for

the choice (2.10) they have the expressions

γ0 =

(
1 0
0 −1

)
, γj =

(
0 σj
−σj 0

)
, j = 1, 2, 3. (2.15)

It is customary to use Greek letters for space-time indices; i.e., µ = 0, 1, 2, 3.

Problem. Adopting this notation, show that the algebraic relations (2.6) take the concise form

γµγν + γνγµ = 2gµν1 , (2.16)

where 1 ≡ 14 is the 4× 4 unit matrix, and

g00 = 1 , g11 = g22 = g33 = −1 , gµν = 0 for µ ̸= ν , (2.17)

are the components of the Minkowski metric tensor. �
It is also customary in the present context to use the Einstein summation convention, which

says that repeated Greek indices are understood to be summed over.

Summary. The relativistic (or covariant) form of the free-particle Dirac equation (2.11) is(
γµ

∂

∂xµ
+ i

mc

~

)
ψ = 0 . (2.18)
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2.4 Non-relativistic reduction

Dirac’s theory is intended to be a relativistic quantum theory of the electron. We already have

a non-relativistic quantum theory of the electron, namely the Schrödinger equation or, including

spin, the Pauli equation. By the principles of theory building, in order for a new theory to be

acceptable it must be consistent with the old theory which is already known to be true (within its

limits of validity). Therefore the logical step to be taken next is to verify that the Dirac equation

reduces to the Schrödinger/Pauli equation in the non-relativistic limit.

For this purpose we write the Dirac equation in the following block-decomposed form:

0 =

(
imc
~ + 1

c
∂
∂t

∑
σj

∂
∂xj

−
∑
σj

∂
∂xj

imc
~ −

1
c
∂
∂t

)(
ψ+

ψ−

)
, ψ± =

(
ψ±,↑
ψ±,↓

)
. (2.19)

At present, the symbols ↑ and ↓ are just some fancy notation to label the two components of

ψ±(x, t) ∈ C2. (Later we will see that they do, in fact, reflect the spin of the electron.)

The non-relativistic limit is |v| ≪ c , or |k| ≪ mc/~ . By the correspondence k ↔ ∇/i
this means that the off-diagonal blocks of the matrix in (2.19) are to be considered as being much

smaller than the diagonal blocks. In zeroth-order approximation we neglect the off-diagonal blocks

altogether to obtain (
i
mc

~
+

1

c

∂

∂t

)
ψ

(0)
+ = 0 , ψ

(0)
− = 0 . (2.20)

We are setting ψ
(0)
− = 0 by fiat because we intend to identify ψ+ with the spinor wave function of

the Pauli equation, and there is no room for additional degrees of freedom in the non-relativistic

limit. (We will learn later that ψ− describes the positron, the antiparticle of the electron. In the

present context, we envisage a situation with no positrons present. Hence our choice ψ
(0)
− = 0.)

Note that the first equation in (2.20) implies that ψ
(0)
+ has the time dependence

ψ
(0)
+ ∼ e−imc2t/~.

We now turn to a first-order (or improved) approximation. For this we write the system of

equations (2.19) in the form (
A B
C D

)(
ψ+

ψ−

)
= 0 ,

or equivalently,

Aψ+ +Bψ− = 0 , Cψ+ +Dψ− = 0 .

We will see that the operator D = imc
~ −

1
c
∂
∂t

has an inverse when acting on Cψ+ . We can therefore

solve the second equation for ψ− , and by inserting the solution ψ− = −D−1Cψ+ into the first

equation we obtain an equation solely for ψ+ :

(A−BD−1C)ψ+ = 0 ,

or explicitly,(
i
mc

~
+

1

c

∂

∂t

)
ψ+ +

(∑
σj

∂

∂xj

)(
i
mc

~
− 1

c

∂

∂t

)−1(∑
σj

∂

∂xj

)
ψ+ = 0 .
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Now since we know from the zeroth-order approximation that ψ+ has the leading time dependence

ψ
(0)
+ ∼ e−imc2t/~, we have −1

c
∂
∂t
ψ+ ≈ imc

~ ψ+ , and we may replace −D−1Cψ+ by

−D−1Cψ+ =

(
i
mc

~
− 1

c

∂

∂t

)−1(∑
σj

∂

∂xj

)
ψ+ →

~
2imc

(∑
σj

∂

∂xj

)
ψ+ .

By multiplying the equation for ψ+ by i~c and slightly rearranging the terms, we then arrive at

the improved approximation ψ+ ≈ ψ
(1)
+ where ψ

(1)
+ satisfies

i~
∂ψ

(1)
+

∂t
= mc2ψ

(1)
+ −

~2

2m

(∑
σj

∂

∂xj

)2

ψ
(1)
+ .

In the final step we use the relations σjσl + σlσj = 2δjl for the Pauli matrices to find(∑
σj

∂

∂xj

)2

=
∑ ∂2

∂x2j
= ∇2.

Altogether we have

i~
∂

∂t
ψ

(1)
+ = mc2ψ

(1)
+ −

~2

2m
∇2ψ

(1)
+ . (2.21)

This is indeed the free-particle Schrödinger equation with a constant shift of the energy by the

rest mass mc2. Thus the Dirac equation has passed its first test.

Note added. At the same level of approximation, the equation ψ− = −D−1Cψ+ yields

ψ
(1)
− =

~
2imc

(∑
σj

∂

∂xj

)
ψ

(1)
+ .

Thus ψ
(1)
− is smaller than ψ

(1)
+ by, roughly speaking, a factor of ~|k|/mc or |v|/c .

2.5 Enter the electromagnetic field

In order to turn the free-particle Dirac equation (2.18) into an equation for charged particles such

as the electron, we need to introduce the coupling to the electromagnetic field. [Recall from the

course on classical electrodynamics that the electromagnetic field strength tensor, also known as

the Faraday tensor, is given by

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
, (2.22)

where Aµ are the components of the 4-vector of the electromagnetic gauge field.] The form of this

coupling is determined by the principles of gauge invariance and minimal substitution, as follows.

If χ is some space-time dependent function (of physical dimension action/charge), the Faraday

tensor is invariant under gauge transformations

Aµ → Aµ +
∂

∂xµ
χ . (2.23)

The principle of gauge invariance now says the following. If ψ is the wave function of a quantum

particle with electric charge e, then the physics of the coupled system (i.e., the particle interacting

with the electromagnetic field) must be invariant under the gauge transformation (2.23) of the

gauge field in combination with the gauge transformation

ψ → eie χ/~ψ (2.24)
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of the matter field ψ . It is easy to see that the expression(
~
i

∂

∂xµ
− eAµ

)
ψ

is gauge invariant in this sense. The principle of minimal substitution then tells us to enforce

gauge invariance by making in the Dirac equation (or any other charged quantum wave equation,

for that matter) the substitution

∂

∂xµ
ψ →

(
∂

∂xµ
− ie

~
Aµ

)
ψ . (2.25)

Doing so, we arrive at the final form of the Dirac equation.

Definition. The Dirac equation for a particle of mass m and charge e in the presence of an

electromagnetic field (described by the gauge field Aµ) is

γµ
(

∂

∂xµ
− ie

~
Aµ

)
ψ + i

mc

~
ψ = 0 . (2.26)

Problem. By following the steps of Section 2.4, show that the full Dirac equation (2.26) in the

non-relativistic limit reduces to the Pauli equation (i.e., the Schrödinger equation including the

Pauli coupling of the spin of the charged particle to the magnetic field B):

i~
∂

∂t
ψ

(1)
+ = (mc2 + eΦ)ψ

(1)
+ −

~2

2m

∑
j

(
∂

∂xj
− ie

~
Aj

)2

ψ
(1)
+ −

e~
2m

∑
j

Bj σj ψ
(1)
+ . (2.27)

Here Φ = −cA0 is the electric scalar potential, and Aj are components of the magnetic vector

potential A obeying rotA = B.

Remark. By pushing the process of non-relativistic reduction to higher order, one gets corrections

to the Schrödinger equation beyond that of the Pauli term. Of these, we wish to mention one

specific term of importance in contemporary physics: the spin-orbit interaction (or spin-orbit

coupling, SOC). It has long been understood that SOC is of relevance for nuclear structure physics,

where it affects the pattern of nuclear shell closure by lowering the energy of the j+ = l + 1/2

sub-shells relative to those of the j− = l − 1/2 sub-shells (cf. Nobel Prize in Physics 1963 for M.

Goeppert-Mayer and H. Jensen). In recent years, SOC has also acquired considerable notoriety

in condensed matter physics, as its presence may lead to band inversion, turning band insulators

into topological insulators that feature gapless surface states. A quick heuristic for SOC is to note

that the Pauli equation attributes to a Dirac particle a spin-magnetic moment of µ⃗ = −eS⃗/m
with Sl = ~σl/2. Now, special relativity demands that a spin-magnetic moment µmagn in a state

of motion with velocity v acquires an electric dipole moment µ⃗el = −µ⃗magn × v⃗/c . The electric

dipole moment due to relativistic motion is acted upon by an electric field E via the dipole-field

coupling −µ⃗el · E⃗. This coupling can be re-expressed as the triple scalar product of µ⃗magn , v⃗/c ,

and E⃗. SOC is obtained from here by implementing the spin-magnetic moment as a quantum

operator; in the case of the electron one has µ⃗magn = −e~ σ⃗/2m.
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2.6 Continuity equation

At this stage of the theoretical development, one might hope that the probabilistic interpretation of

the square |ψ|2 of the Schrödinger wave function could be carried over without any essential change

to the Dirac equation (as a single-particle theory). In the present subsection we substantiate this

optimistic thought. Later, however, we will see that there are serious problems with this inter-

pretation, and we will indicate what needs to be changed to end up with a satisfactory theory.

The probabilistic interpretation of the Schrödinger wave function |ψ|2 =: ρ rests on the continu-

ity equation ρ̇+ div j = 0 together with positivity, ρ ≥ 0 . Let us now transcribe the Schrödinger

derivation of this equation (which students know from basic quantum mechanics) to the Dirac

case. For this purpose we start from the Dirac equation (2.26) in the form(
∂

∂t
+

ie

~
Φ

)
ψ + c

∑
l

(
∂

∂xl
− ie

~
Al

)
αlψ + i

mc2

~
βψ = 0 . (2.28)

ψ has four components, as we recall, and thus takes values in C4. We now assume that the vector

space C4 is Hermitian, i.e., is equipped with a Hermitian scalar product C4×C4 → C . Using this

structure we define the Hermitian adjoint ψ† with values in the dual vector space (C4)∗, and ψ†ψ

with values in C (actually, R).
Now we observe that the matrices β and αl in (2.10) are Hermitian: β = β† and αl = α†

l

(l = 1, 2, 3). We promote this observation to an axiom of the theory, i.e., we demand that any

permissible choice of β and αl not only obeys the algebraic relations (2.6) but must also have

the property of being Hermitian. By dualizing the equation (2.28) we then obtain the following

equation for ψ† : (
∂

∂t
− ie

~
Φ

)
ψ† + c

∑
l

(
∂

∂xl
+

ie

~
Al

)
ψ†αl − i

mc2

~
ψ†β = 0 . (2.29)

Next we contract the equation (2.28) for the vector ψ with the dual vector ψ†, and similarly the

equation (2.29) for ψ† with ψ. Afterwards we add the two resulting scalar equations. The terms

containing i =
√
−1 all cancel since their signs are changed by taking the Hermitian adjoint. So

we get
∂

∂t
ψ†ψ + c

∑
l

∂

∂xl
ψ†αlψ = 0 . (2.30)

This has the form of a continuity equation ρ̇+ div j = 0 if we let

ρ := ψ†ψ , jl := c ψ†αlψ . (2.31)

Summary. We record that if ψ is a solution of the Dirac equation (with or without electromag-

netic field), then the scalar ρ = ψ†ψ and the vector j with components jl = c ψ†αlψ satisfy the

continuity equation

ρ̇+ div j = 0 . (2.32)

By a standard argument using the divergence theorem (a.k.a. Gauss’ theorem) it follows that the

total space integral
∫
ρ d3x is conserved.
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Remark. Coming from Schrödinger quantum mechanics, it is natural to think that ρ (actually,

ρ d3x) is the probability density for a relativistic electron, and j is the vector of the corresponding

probability current density. However, it will turn out that this (wishful) thinking is untenable.

Dirac’s theory in fact will have to be reformulated (in the framework of quantum field theory)

so as to give ρ the interpretation of charge density of the electron (actually of the quantum field

encompassing the electron as well as the positron).

2.7 Clifford algebra

In this and the following subsection we provide some theoretical background concerning the four-

component nature of the wave function ψ of the Dirac equation. A question which was left open

in Section 2.3 is this: how can we say a priori that the algebraic relations

γνγν + γνγµ = 2gµν

are realizable for n×n matrices with n ≥ 4 , and how can such a matrix realization be constructed?

To answer this question, we shall take the liberty of going into more detail than is offered in most

physics textbooks, as the very same formalism will turn out to be relevant for the procedure of

second quantization of many-particle quantum mechanics.

In the sequel we will be concerned with a vector space V over the real number field K = R
or the complex number field K = C . We assume that V comes with a non-degenerate symmetric

K-bilinear form (also referred to as a ‘quadratic form’ for short)

Q : V × V → K , (v, v′) 7→ Q(v, v′) = Q(v′, v) . (2.33)

Examples. We give two examples, the number field being K = R in both cases. The first example

is the Euclidean vector space V = R3 equipped with the Euclidean scalar product Q,

Q(v, v′) = |v| |v′| cos∠(v, v′) .

The second example is the example of relevance for the Dirac equation: the Lorentzian vector

space V = R4 with the Minkowski scalar product Q given by (summation convention!)

Q(v, w) = Q (vµeµ , w
νeν) = gµν v

µwν = v0w0 − v1w1 − v2w2 − v3w3 (2.34)

in any standard basis {e0, e1, e2, e3}. �
To define what is meant by the Clifford algebra of a vector space V with quadratic form Q,

we need the following basic concept.

Definition. An associative algebra is a vector space, say A , with the additional structure of an

associative product A×A → A , (a, b) 7→ ab, which distributes over addition: a(b+ c) = ab+ ac.

Remark. As usual, associativity of the product means that there is no need to use parentheses

in multiple products such as abc = (ab)c = a(bc). The main examples for an associative algebra
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are provided by matrices: the K-vector space of matrices of size n×n (say) with matrix elements

taken from K , is an associative algebra with the product being the usual matrix multiplication.

Definition. The Clifford algebra Cl(V,Q) of the vector space V with quadratic form Q is the

associative algebra generated by V ⊕K with relations

vw + wv = 2Q(v, w) . (2.35)

Remark. The words ‘associative algebra generated by V ⊕K’ mean that the elements of Cl(V,Q)

are polynomial expressions in the elements of V with coefficients taken from the number field K .

The relations (2.35) imply, e.g.,

uvw = −uwv + 2Q(v, w)u = −vuw + 2Q(u, v)w (u, v, w ∈ V ) .

Example. Let (V = R4, Q) be the Lorentzian vector space with Minkowski scalar product Q.

Take {e0, e1, e2, e3} to be some standard basis of V , so that Q(eµ , eν) = gµν where g00 = −g11 =

−g22 = −g33 = 1. Then some examples of elements in Cl(V,Q) are

e0e0 = 1 , e1e1 = −1 , e0e1 = −e1e0 , e0e1e0 = −e1 .

All this may seem abstract and unfamiliar. It can be made more tangible as follows.

Let us think of the vectors e0 , . . . , e3 as basis elements in some four-dimensional subspace

V ≃ R4 of the linear space (or vector space) of 4× 4 matrices with quadratic form

Q(v, v′) = 1
4
Tr (vv′) . (2.36)

More precisely, let

e0 =

(
1 0
0 −1

)
, ej =

(
0 −σj
σj 0

)
(j = 1, 2, 3) .

One easily verifies the scalar productsQ(eµ, eν) = gµν . Thus V ≃ R4 becomes the four-dimensional

real vector space of matrices of the form

v =


v0 0 −v3 −v1 + iv2

0 v0 −v1 − iv2 v3

v3 v1 − iv2 −v0 0
v1 + iv2 −v3 0 −v0

 . (2.37)

Because we have realized our vectors v = vµeµ as matrices, the vector space V ≃ R4 now carries

the additional structure of an associative algebra with matrix multiplication playing the role of

the product. If Id denotes the 4× 4 unit matrix, one sees that the relations

vw + wv = 2Q(v, w) Id (2.38)

are satisfied by the matrices (2.37).

Thus, in the present example Cl(V,Q) can be realized as the algebra of 4×4 matrices that arise

by multiplication of generators of the form (2.37). Using mathematical language one calls such

a concrete realization by matrices a representation of the abstractly defined algebra. Essentially
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the same representation was given in an earlier subsection [with only a minor sign difference due

to the relativistic convention of raising and lowering indices]. �

Problem. Show that if dimV = n and {e1, . . . , en} is a Q-orthogonal basis of V , then the

following Clifford algebra elements constitute a basis of Cl(V,Q) as a vector space:

1 , ej (j = 1, . . . , n) , eiej (i < j) , eiejel (i < j < l) , . . . , e0e1 · · · en . (2.39)

Count the number of these elements to deduce that dim Cl(V,Q) = 2 dimV .

2.8 Spinor representation

While the Clifford algebra Cl(V,Q) is defined abstractly as an associative algebra with certain

binary relations, we saw that Cl(V,Q) has a concrete realization by 4×4 matrices for the Minkowski

example of V = R4. This realization will be called the spinor representation of Cl(R4, Q) from

now on. In Section 2.7 we simply wrote down the spinor representation without explaining where

it came from. This gap in our theoretical development is to be closed in the present subsection.

For brevity we will only consider the special case of a real vector space V ≃ R2n of even

dimension with Euclidean scalar product Q. Given this situation, let us fix some orthonormal

basis {e1, . . . , en, f1, . . . , fn} of V .

Although everything so far is real (K = R), we are now going to consider complex linear

combinations of the vectors v ∈ V ; mathematically speaking we pass to the complexification

V ⊗R C of V . (The symbol ⊗K denotes the tensor product of vector spaces over K ; see the end

of this subsection for a quick exposition.) In the complexification V ⊗R C we then form the linear

combinations (i =
√
−1 )

cj := (ej − ifj)/2 , c∗j := (ej + ifj)/2 (j = 1, . . . , n) . (2.40)

We also introduce the complex vector spaces

P = spanC{c1, . . . , cn} , P ∗ = spanC{c∗1, . . . , c∗n} , (2.41)

and record the decomposition

V ⊗R C = P ⊕ P ∗ . (2.42)

Such a decomposition is called a polarization. [The notation indicates that P ∗ may be regarded

as the dual vector space of P via the non-degenerate pairing P ⊗ P ∗ → C by (c, c∗) 7→ Q(c, c∗).]

Notice that the Clifford relations (2.35) imply the following relations for our new generators:

cjcl + clcj = 0 , c∗jc
∗
l + c∗l c

∗
j = 0 , cjc

∗
l + c∗l cj = δjl (j, l = 1, . . . , n) . (2.43)

In physics, these relations are called the canonical anti-commutation relations (CAR). They will

play a central role in the formalism of second quantization for many-fermion systems.

To formulate the algorithm for constructing the spinor representation of Cl(V,Q), we need one

more algebraic concept.
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Definition. By the exterior algebra ∧(U) of a K-vector space U one means the associative algebra

generated by U ⊕K with relations

∀u, u′ ∈ U : uu′ + u′u = 0 . (2.44)

The exterior algebra is a direct sum of subspaces of fixed degree:

∧(U) =
dimU⊕
l=0

∧l(U) , (2.45)

where ∧0(U) ≡ K , ∧1(U) ≡ U , ∧2(U) consists of all quadratic elements
∑
uiuj , ∧3(U) consists

of all cubic elements
∑
uiujuk , and so on.

Remarks. i) Note that (2.44) implies u2 = 0 for any u ∈ U ⊂ ∧(U). ii) In physics the exterior

algebra ∧(U) is also known as the fermionic Fock space of U . (More precisely, if U is a Hilbert

space, then ∧(U) is another Hilbert space called the fermionic Fock space associated to the single-

particle Hilbert space U .) In the Fock space setting the degree has the physical meaning of particle

number. iii) The notion of exterior algebra is basic to the calculus of differential forms.

Problem. Show that the exterior algebra ∧(U) is isomorphic as a vector space to the Clifford

algebra Cl(U,Q). Hint: prove by construction of a basis that ∧(U) has dimension 2 dimU . �

We now recall the definition of the complex vector space P ∗ in (2.41) and make the important

observation that the exterior algebra of P ∗ (or P for that matter) is contained as a subalgebra in

Cl(V,Q)⊗C . By this observation the exterior algebra ∧(P ∗) can be turned into a representation

space for Cl(V,Q) as follows.

We are looking for an operation of Cl(V,Q) on ∧(P ∗),

Cl(V,Q)× ∧(P ∗)→ ∧(P ∗) , (a, ξ) 7→ a · ξ , (2.46)

which is a representation. In other words, we want a Clifford multiplication rule (2.46) which is

compatible with the associative product in the Clifford algebra in the sense that (i) the relation

(ab) · ξ = a · (b · ξ) (2.47)

holds for all a, b ∈ Cl(V,Q), ξ ∈ ∧(P ∗), and (ii) the Clifford relations (2.35) are preserved, i.e., for

all v, w ∈ V ⊂ Cl(V,Q), ξ ∈ ∧(P ∗), we have

v · (w · ξ) + w · (v · ξ)− 2Q(v, w) · ξ = 0 . (2.48)

Since Cl(V,Q) is generated by V ⊕ K it is sufficient to specify the Clifford multiplication (2.46)

for scalars k ∈ C ⊂ Cl(V,Q) and vectors v ∈ V ⊂ Cl(V,Q). In the former case the multiplication

(2.46) is the natural one and needs no explanation.

In order to describe the multiplication by vectors v ∈ V (in the following we use the alternative

word ‘action’ for it) we use the polarization V ⊗R C = P ⊕ P ∗. First, let v ∈ P ∗. The action of

such an element v ∈ P ∗ on ξ ∈ ∧(P ∗) is simply exterior multiplication:

v · ξ := vξ , (2.49)
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i.e., the product is computed in the exterior algebra ∧(P ∗). Note that the action of v ∈ P ∗

increases the degree: it maps ∧l(P ∗) into ∧l+1(P ∗).

Second, let v ∈ P . Such elements act by an operation which lowers the degree:

P ∋ v : ∧l(P ∗)→ ∧l−1(P ∗) . (2.50)

This operation is defined recursively. For the two lowest degrees l = 0, 1 one sets

l = 0 : v · 1 := 0 , (2.51)

l = 1 : v · v′ := 2Q(v, v′) . (2.52)

The action on higher-degree elements is then defined by the so-called anti-Leibniz rule:

v · (ξη) := (v · ξ) η + (−1)lξ (v · η) , ξ ∈ ∧l(P ∗). (2.53)

Claim. Equations (2.49)–(2.53) give a representation of Cl(V,Q) on ∧(P ∗). �

Since all elements of V ⊕ K ⊂ Cl(V,Q) act as linear operators and multiplication of linear

operators is associative, it is immediately clear that the compatibility condition (2.47) is satisfied.

To verify the Claim, what must be shown is that the property (2.48) holds. For this purpose we

introduce some more notation. We write the decomposition of v ∈ V by V ⊗R C = P ⊕ P ∗ as

v = vP + vP ∗ . We then denote the degree-increasing action of the P ∗-component vP ∗ by ε(vP ∗)

and the degree-lowering operation of the P -component vP as ι(vP ). [In physics one calls ε(vP ∗)

the particle creation component and ι(vP ) the particle annihilation component of v.] Thus

v · ξ = ε(vP ∗)ξ + ι(vP )ξ . (2.54)

Problem. Show that the anti-commutation relations

ε(x)ε(x′) + ε(x′)ε(x) = 0 , ι(y)ι(y′) + ι(y′)ι(y) = 0 ,

ε(x)ι(y) + ι(y)ε(x) = 2Q(x, y) Id∧(P ∗) (2.55)

hold for all x, x′ ∈ P ∗ and y, y′ ∈ P . �

Using the result (2.55) we do the following calculation:

v · (w · ξ) + w · (v · ξ)− 2Q(v, w) · ξ

=
(
ε(vP ∗) + ι(vP )

)(
ε(wP ∗) + ι(wP )

)
ξ +

(
ε(wP ∗) + ι(wP )

)(
ε(vP ∗) + ι(vP )

)
ξ − 2Q(v, w)ξ

= ε(vP ∗)ι(wP )ξ + ι(wP )ε(vP ∗)ξ + ε(wP ∗)ι(vP )ξ + ι(vP )ε(wP ∗)ξ − 2Q(v, w)ξ

= 2Q(vP ∗ , wP )ξ + 2Q(vP , wP ∗)ξ − 2Q(v, w)ξ = 0 .

Thus the condition (2.48) is indeed satisfied and our Claim is true. What we have learned is

summarized in the next statement — where we keep the assumption of even dimension of V but

drop the (unnecessary) condition that Q be a Euclidean structure.
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Definition. Let (V,Q) be an even-dimensional vector space over the reals R with polarization

V ⊗R C = P ⊕ P ∗. The spinor representation of the Clifford algebra Cl(V,Q) is defined to be the

representation on the exterior algebra ∧(P ∗) which is given by the action (2.54). �
It is now straightforward to produce a matrix representation of Cl(V,Q) by fixing a basis of

∧(P ∗) and expanding the action of the Clifford algebra elements w.r.t. this basis.

Example. We illustrate the procedure at the simple example of the Euclidean plane V = R2

with orthonormal basis {e, f}. As before, let c := (e− if)/2 and c∗ := (e + if)/2. The action of

c∗ and c on the basis {1, c∗} of ∧(P ∗) is computed to be

c∗ · 1 ≡ ε(c∗)1 = c∗ , c∗ · c∗ ≡ ε(c∗)c∗ = (c∗)2 = 0 ,

and

c · 1 ≡ ι(c)1 = 0 , c · c∗ ≡ ι(c)c∗ = 2Q(c, c∗) = 1
2
Q(e− if, e+ if) = 1 .

Thus if we make the following identifications for the basis vectors {1, c∗} of ∧(P ∗):

1 ≡
(
0
1

)
, c∗ ≡

(
1
0

)
,

then the Clifford algebra elements 1, e, f , and ef are represented by the matrices

matrix(1) =

(
1 0
0 1

)
,

matrix(e) = matrix(c+ c∗) =

(
0 1
1 0

)
= σ1 ,

matrix(f) = matrix(ic− ic∗) =

(
0 −i
i 0

)
= σ2 ,

matrix(ef) =

(
i 0
0 −i

)
= iσ3 .

Problem. By following the same procedure, construct the spinor representation of the Clifford

algebra Cl(V,Q) for the Euclidean vector space V = R4 with orthonormal basis {e1, e2, f1, f2}. �

We finish this subsection with a few final comments:

1. The same construction applied to the Lorentzian vector space V = R4 with Minkowski scalar

product gives the so-called Weyl form of the gamma matrices:

γ0 =

(
0 1
1 0

)
, γj =

(
0 σj
−σj 0

)
(j = 1, 2, 3). (2.56)

2. The spinor representation of Cl(R2n, Q) is the one and only representation of Cl(R2n, Q)

which is both non-trivial and irreducible.

3. We recall the dimension formulas dimCl(V,Q) = 2dimV and dim ∧ (P ∗) = 2
1
2
dimV . For the

case of four dimensions (V = R4) it so happens that the dimension 2
1
2
dimV = 22 of the spinor

representation is also four. This coincidence of dimensions 4 = 4 is an accident.
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2.8.1 Tensor product

In the construction of the spinor representation we used the notion of tensor product, which may

be unfamiliar to the students of this course. Therefore we add a few words of explanation.

We assume that the notion of direct product (of sets, groups, vector spaces, manifolds, etc.)

is understood. Now in the case of two K-vector spaces V and W one has a variant of the direct

product V ×W which is called the tensor product (over K) and is denoted by V ⊗KW ≡ V ⊗W .

The tensor product is distinguished by the feature that the scalars k ∈ K move between factors:

kv ⊗ w = v ⊗ kw , (2.57)

whereas (kv, w) ∈ V ×W is not the same as (v, kw) ∈ V ×W .

Example. If V,W are vector spaces over K , then Hom(V,W ) denotes the K-vector space of

linear mappings from V to W . Recall from Section 1.7.1 that V ∗ denotes the vector space dual

to V . There is a canonical isomorphism

I : W ⊗ V ∗ → Hom(V,W ) ,

which is given by

I(w ⊗ f)(v) := f(v)w .

Note that I(kw⊗ f)(v) = f(v) kw = k f(v)w = I(w⊗ kf)(v), so the tensor product W ⊗V ∗ (not

the direct product W × V ∗) in fact is the proper product to appear in this isomorphism.

A corollary of this isomorphism is the fact that every matrix of size m×n can be decomposed

uniquely (up to an ambiguity due to scalar factors moving in the tensor product) as a sum of terms

each of which is the tensor product (sometimes called a ‘dyadic’ product in physics textbooks) of

an m-component column vector with an n-component row vector:

2.9 Transforming scalar and vector fields

Our next goal is to describe the precise sense in which the Dirac equation is invariant under

Lorentz transformations, i.e., has the same form in all inertial frames. As a preparation, we cover

some basic ground concerning transformation behavior under group actions.

So let G be a group, and let M and N be G-spaces, which is to say that M and N are spaces

which carry an action of the group G. Thus there exist products G×M →M , (g, x) 7→ g · x and

G×N → N , (g, y) 7→ g · y, such that for all g, h ∈ G, x ∈M , and y ∈ N , we have

(gh) · x = g · (h · x) , (gh) · y = g · (h · y) . (2.58)
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Let now f be a mapping fromM to N . Given the G-actions onM and N , there exists an induced

action of G on such mappings f : M → N by

(g • f)(x) := g · f(g−1 · x) . (2.59)

Problem. Show that one has (gh) • f = g • (h • f). �

Now recall from special relativity that the Lorentz group G = SO1,3 acts on space-time vectors

v ∈ R4 by linear transformations v 7→ g · v which preserve the Minkowski scalar product. A

(complex) scalar field is a function f : R4 → C . The Lorentz group acts on it by

(g • f)(v) = f(g−1 · v) . (2.60)

A (space-time) vector field is a mapping X : R4 → R4. The Lorentz group acts on it by

(g •X)(v) = g ·X(g−1 · v) . (2.61)

The wave function of the Dirac equation is neither a scalar nor a vector field but a spinor field

ψ : R4 → ∧(P ∗), P = C2. In order to establish the relativistic covariance of the Dirac equation,

we will have to understand how the Lorentz group acts on spinors ξ ∈ ∧(C2).

2.10 Infinitesimal spin transformations

Further on, we will learn that there is a surprising twist to this story: the Lorentz group does not

act on spinors ; what does act is a close cousin, the so-called spin group. We again begin with

some basic material — this time from Lie theory. The goal here is to introduce the infinitesimal

transformations which generate the spin group.

Definition. A Lie algebra over K is a K-vector space, say g , equipped with a skew-symmetric

bilinear product (called the Lie bracket)

g× g→ g , (X, Y ) 7→ [X, Y ] = −[Y,X] , (2.62)

which satisfies the so-called Jacobi identity,

∀X, Y, Z ∈ g : [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]] . (2.63)

Remark. Every associative algebra can be given the structure of a Lie algebra by taking the

Lie bracket to be the commutator: [X, Y ] := XY − Y X. The Jacobi identity is automatically

satisfied in this case.

Example. The Euclidean vector space R3 equipped with the standard vector product (or cross

product)

R3 × R3 → R3 , (v, v′) 7→ v × v′ = −v′ × v ,

is a Lie algebra isomorphic to so3 , the Lie algebra of the group of proper rotations of R3. The

Jacobi identity in this case reads

v × (v′ × v′′) = (v × v′)× v′′ + v′ × (v × v′′) .
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Next we recall that a Lie group G is a group with the structure of a differentiable manifold

such that the product G×G→ G is a differentiable mapping. Every Lie group G comes with a Lie

algebra g , which has the geometric meaning of tangent space at the neutral element of G. In the

cases of interest to us, one gets for each X ∈ g a one-parameter subgroup of G by exponentiation,

R ∋ t 7→ etX . The Lie bracket of g then results from the differentiable product of G by

[X,Y ] :=
∂2

∂s∂t
esXetY e−sXe−tY

∣∣∣
s=t=0

. (2.64)

Definition. If V is a K-vector space with quadratic form Q (here non-degeneracy is important),

one defines the orthogonal group O(V,Q) as the Lie group of K-linear transformations

O(V,Q) = {g ∈ End(V ) | ∀v, v′ ∈ V : Q(gv, gv′) = Q(v, v′)} (2.65)

which leave Q invariant. The special orthogonal group SO(V,Q) ⊂ O(V,Q) is the connected

component containing the neutral element.

Examples. i) For V = R3 with Euclidean scalar product Q one has SO(V,Q) = SO3 , the group

of proper rotations of the Euclidean vector space R3. ii) If V = R4 is equipped with Minkowski

scalar product Q, then SO(V,Q) is the group of Lorentz transformations of V . �.

We now consider the Lie algebra so(V,Q) of the Lie group SO(V,Q). By setting gt := etX and

linearizing the condition Q(gtv, gtv
′) = Q(v, v′) at the neutral element t = 0 we get the following

characterization of so(V,Q) :

so(V,Q) = {X ∈ End(V ) | ∀v, v′ ∈ V : Q(Xv, v′) +Q(v,Xv′) = 0} . (2.66)

Problem. Verify from this definition that so(V,Q) is closed under the commutator, i.e., if both

X and Y are in so(V,Q), then so is [X, Y ] := XY − Y X. �

The elements of the Lie algebra so(V,Q) are skew-symmetric in the following sense. Using

that Q is non-degenerate, one has an isomorphism I : V → V ∗ by I(v) = Q(v, ·). One then

associates with every element X ∈ so(V,Q) a linear mapping X̃ : V → V ∗ by X̃ := I ◦X. By

the condition (2.66) on X this map is skew: X̃ t = −X̃.

In the case of the Euclidean vector space V = R3 with Cartesian basis {e1, e2, e3} the matrix

of X ∈ so(V,Q) = so3 has the form

matrix(X) =

 0 X12 X13

−X12 0 X23

−X13 −X23 0

 = matrix(X̃) .

In the case of the Lorentzian vector space V = R4 with Minkowski scalar product Q, the matrices

of X ∈ so(V,Q) and X̃ ∈ Hom(V, V ∗) with respect to a standard basis {e0, e1, e2, e3} look as

follows:

matrix(X) =


0 X01 X02 X03

X01 0 X12 X13

X02 −X12 0 X23

X03 −X13 −X23 0

 , matrix(X̃) =


0 X01 X02 X03

−X01 0 −X12 −X13

−X02 X12 0 −X23

−X03 X13 X23 0

 .
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We now return to considering the Clifford algebra Cl(V,Q) and in it the subspace Cl2(V,Q)

of skew-symmetrized elements of degree two:

Cl2(V,Q) := {X ∈ Cl(V,Q) | X =
∑

j
(ujvj − vjuj) ; uj , vj ∈ V } . (2.67)

Problem. Show that Cl2(V,Q) is closed under the commutator. �

Thus Cl2(V,Q) has the structure of a Lie algebra. Which Lie algebra?

Fact. Cl2(V,Q) is isomorphic as a Lie algebra to so(V,Q).

Proof. First of all, notice that Cl2(V,Q) and so(V,Q) are isomorphic as vector spaces:

dimCl2(V,Q) =
1
2
dimV (dimV − 1) = dim so(V,Q) . (2.68)

We will now proceed by explicitly constructing the claimed Lie algebra isomorphism. For this

purpose we observe that the commutator of X =
∑

(ujwj − wjuj) ∈ Cl2(V,Q) with v ∈ V ⊂
Cl(V,Q) is another element [X, v] ∈ V ⊂ Cl(V,Q) :

[X, v] = 2
∑

j
[ujwj , v] = 4

∑
j

(
Q(wj , v)uj −Q(uj , v)wj

)
∈ V .

We thus have a linear mapping

τ : Cl2(V,Q)→ End(V ) , X 7→ τ(X) := [X, · ] , (2.69)

from elements of Cl2(V,Q) to linear transformations of V . This mapping is a representation of

the Lie algebra Cl2(V,Q). Indeed,

τ(X)τ(Y )v − τ(Y )τ(X)v = [X, [Y, v]]− [Y, [X, v]] = [[X,Y ], v] = τ([X, Y ])v .

Now let {u, v} := uv + vu denote the anti-commutator and do the following calculation:

Q(τ(X)u, v) +Q(u, τ(X)v) = Q([X, u], v) +Q(u, [X, v])

= 1
2
{[X, u], v}+ 1

2
{u, [X, v]} Jacobi

= 1
2
[X, {u, v}] = 0 .

In the next to last equality we used a kind of generalized Jacobi identity, which is easily checked

to be correct. Thus we see that the condition (2.66) for τ(X) to be in so(V,Q) is satisfied.

Now the representation τ : Cl2(V,Q) → so(V,Q) is injective (we leave the verification of this

statement as a problem for the student). By the equality (2.68) of dimensions it follows that τ is

bijective and hence an isomorphism of Lie algebras. �

Summary. The subspace Cl2(V,Q) of skew-symmetrized degree-two elements of the Clifford

algebra Cl(V,Q) has the structure of a Lie algebra. We have two representations for it:

1. As a subspace of Cl(V,Q) the Lie algebra Cl2(V,Q) acts on spinors ξ ∈ ∧(P ∗) by the spinor

representation. This representation has dimension 2
1
2
dimV .

2. Via the isomorphism τ the Lie algebra Cl2(V,Q) acts on vectors v ∈ V by the fundamental

(or defining) representation of so(V,Q). The dimension of this representation is dimV .
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2.11 Spin group

By exponentiating a Lie algebra g (which sits inside an associative algebra A or acts on some

representation space R by linear operators or matrices, so that products such as Xn for X ∈ g

make sense) one gets a Lie group G :

g
exp−→ G , X 7→ eX := 1 +X +

X2

2!
+
X3

3!
+ . . .+

Xn

n!
+ . . . .

(To ensure that the exponential series converges, one poses the requirement that the associative

algebra A or the representation space R be finite-dimensional, so that the Lie algebra elements

are represented by matrices of finite size.) In order to verify that exponentiation of a Lie algebra

really does yield a group, one argues on the basis of the so-called Baker-Campbell-Hausdorff series:

eXeY = eX+Y+ 1
2
[X,Y ]+ 1

12
[X,[X,Y ]]+ 1

12
[[X,Y ],Y ]+..., (2.70)

which suggests that the product eXeY of two exponentiated Lie algebra elements is the exponential

of another Lie algebra element X+Y + 1
2
[X, Y ]+. . . . (There indeed exists a recursive construction

by which the infinite Baker-Campbell-Hausdorff series can be shown to exist and converge in the

finite-dimensional case.)

Example. By exponentiating the Lie algebra so(V,Q) in the associative algebra End(V ) we get

the Lie group SO(V,Q).

Definition. The Lie group obtained by exponentiating the Lie algebra Cl2(V,Q) in the Clif-

ford algebra is called the spin group Spin(V,Q). The representation which results from letting

Spin(V,Q) ⊂ Cl(V,Q) act on ∧(P ∗) is called the spinor representation of Spin(V,Q).

Remark. Since Cl2(V,Q) is isomorphic as a Lie algebra to so(V,Q), one might think that

Spin(V,Q) would be isomorphic as a Lie group to SO(V,Q). However, as we shall see, this is

not the case. �

We now show for the case of even-dimensional V = R2n and Euclidean Q that the group

Spin(V,Q) contains an element g = −1. For this we fix any pair e, f ∈ V of orthogonal unit

vectors and consider the element X := 1
2
(ef − fe) ∈ Cl(V,Q). For any parameter t ∈ C we have

et (ef−fe)/2 = etX = cosh(tX) + sinh(tX) .

We then compute the square of X :

X2 = 1
4
(ef − fe)2 = 1

4
(efef + fefe− effe− feef) = −1 ,

where we used the Clifford relations e2 = ee = Q(e, e) = 1, f 2 = 1, and ef = −fe . Hence,

etX = cosh(tX) + sinh(tX) = cos(t) +X sin(t) .

Thus, in particular,

eπX = −1 .
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It follows (for Euclidean V = R2n) that if g is an element of Spin(V,Q), then so is −g.
Next we consider the action of g = eX ∈ Spin(V,Q) ⊂ Cl(V,Q) on v ∈ V ⊂ Cl(V,Q) by

conjugation in the Clifford algebra:

eXv e−X = v + [X, v] +
1

2!
[X, [X, v]] +

1

3!
[X, [X, [X, v]]] + . . . =

∞∑
l=0

τ(X)l

l!
v = eτ(X)v.

Note that since τ(X) is in so(V,Q), the exponential eτ(X) is an element of the special orthogonal

group SO(V,Q). Thus we have a mapping

ρ : Spin(V,Q)→ SO(V,Q) , g 7→ ρ(g) , ρ(g)v := gvg−1 . (2.71)

This mapping is a representation of Spin(V,Q) on the vector space V . The situation is summarized

in the following commutative diagram (commutative here says that exp ◦τ = ρ ◦ exp):

Cl2(V,Q)
exp−→ Spin(V,Q)

τ
y yρ

so(V,Q)
exp−→ SO(V,Q).

Remark. The representation ρ : Spin(V,Q) → SO(V,Q) is not a bijection, but a so-called 2 : 1

covering. In the case of Euclidean V = R2n this is plausible from ρ(−g) = ρ(g).

Problem. In the special case of Euclidean V = R2n with orthonormal basis {e1, . . . , en, f1, . . . , fn}
show for X = 1

4

∑
(ejfj − fjej) that

ρ(etX) ej = ej cos t− fj sin t , ρ(etX) fj = ej sin t+ fj cos t .

2.12 Relativistic covariance of the Dirac equation

We focus now on our case of interest: the Lorentzian vector space V = R4 with Minkowski scalar

product Q. To simplify the notation we write SO1,3 := SO(V,Q) and Spin1,3 := Spin(V,Q). We

recall that we have met two representations of the spin group: the spinor representation, say

σ : Spin1,3 → GL
(
∧ (P ∗)

)
≃ GL4(C) , (2.72)

by invertible transformations (GL = general linear group) of the exterior algebra ∧(P ∗) ≃ ∧(C2) ≃
C4, and the vector representation

ρ : Spin1,3 → SO1,3 . (2.73)

If {e0, e1, e2, e3} is a standard basis of V = R4 and γ0, γ1, γ2, γ3 are the corresponding Clifford

algebra elements in the spinor representation, the two representations are related by

σ(g)γµσ(g)
−1 = ρ(g)γµ = γν ρ(g)

ν
µ . (2.74)

The gamma matrices γµ appearing in the Dirac equation differ from the γµ by the position of the

index, which is raised or lowered by using the Minkowski metric: γµ = Q(eµ, eν)γ
ν =: Qµνγ

ν and

γµ = Qµνγν where QµνQνλ = δµλ . We therefore have

σ(g)γµσ(g)−1 = ρ(g)γµ = Qµνρ(g)γν = QµνQλτγ
τρ(g)λν = ρ(g−1)µνγ

ν . (2.75)
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We now introduce a notion similar to that of scalar field and vector field.

Definition. A spinor field is a mapping ψ : R4 → ∧(P ∗) ≃ C4 from space-time (viewed as a

vector space after fixing a space-time origin) into the spinor representation space. It transforms

under the spin group as

(g · ψ)(v) := σ(g)ψ(ρ(g)−1v) , (g ∈ Spin1,3 , v ∈ R4). � (2.76)

The next statement has the implication that the wave function ψ of the Dirac equation is to

be viewed as a spinor field.

Proposition. If ψ is a solution of the Dirac equation with gauge potential A = Aµ dx
µ, then g ·ψ

for g ∈ Spin1,3 is a solution of the same equation with transformed gauge potential

(g · A)ν(v) = Aµ(ρ(g)
−1v) ρ(g−1)µν . (2.77)

Proof. Let ψ be a solution of

γµ
(
~
i

∂

∂xµ
− eAµ

)
ψ +mcψ = 0 . (2.78)

We multiply the equation from the left by σ(g) for g ∈ Spin1,3 and use (2.75) to obtain

ρ(g−1)µνγ
ν

(
~
i

∂

∂xµ
− eAµ

)
σ(g)ψ +mcσ(g)ψ = 0 . (2.79)

It remains to transform the arguments of ψ and Aµ from v to ρ(g)−1v. For this step we use that

e−ωµ
ν xν∂µ ∂λ e

ωµ
ν xν∂µ = ∂λ + ωµ

λ ∂µ + . . . = (eω)µλ ∂µ , ∂µ ≡
∂

∂xµ
, ωµ

ν ∈ R.

This formula shows that a finite rotation v 7→ eωv (generated by an infinitesimal rotation ω with

matrix elements ωµ
ν) is represented on functions by the operator e−ωµ

ν xν∂µ . Indeed, applying the

latter to a function v 7→ f(v) we get(
e−ωµ

ν xν∂µf
)
(v) = f(e−ω v) = (eω · f)(v) . (2.80)

Now we apply that very operator e−ωµ
ν xν∂µ for eω ≡ ρ(g) to Eq. (2.79). This gives

ρ(g−1)µνγ
ν

(
~
i
ρ(g)λµ

∂

∂xλ
− eA′

µ

)
(g · ψ) +mc (g · ψ) = 0 , (2.81)

where A′
µ(v) = Aµ(ρ(g)

−1v). Since ρ(g)λµ ρ(g
−1)µν = ρ(gg−1)λν = δλν we arrive at

γµ
(
~
i

∂

∂xµ
− e (g · A)µ

)
(g · ψ) +mc (g · ψ) = 0 , (2.82)

which is the desired result.

Remark. What we have shown here is that the Dirac equation is covariant under an “active”

transformation by g ∈ Spin(V,Q). Equivalently, we could have demonstrated its invariance under

the corresponding coordinate transformations (also known as “passive” transformations).
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2.13 Discrete symmetries of the Dirac equation

2.13.1 Pin group and parity transformation

Both the special orthogonal group SO(V,Q) and the spin group Spin(V,Q) are connected. (In

fact, Spin has the additional property of being simply connected, which means that every closed

path in it is contractible to a point; the latter is not the case for SO.) However the full orthogonal

group O(V,Q) has more than one connected component. In particular, the operation of space

reflection, while not contained in SO(V,Q), does belong to O(V,Q) for our case of V = R4 with

Minkowski scalar product Q. One may then ask whether there exists a group Pin(V,Q) which

is related to Spin(V,Q) in the same way that O(V,Q) is related to SO(V,Q). The answer, as it

turns out, depends on whether the quadratic form Q is definite or indefinite. In the definite (or

Euclidean) case, the answer is yes; otherwise it is only partially yes. We now briefly highlight a

few salient points in order to motivate the form of the parity operator for the Dirac equation.

The Clifford algebra comes with an automorphism α : Cl(V,Q)→ Cl(V,Q) by the Z2-degree:

α(x) = x if x is even, and α(x) = −x if x is odd. The Clifford algebra also comes with an

anti-automorphism called the transpose; this is defined by 1 = 1t, vt = v for v ∈ V , and

(xy)t := ytxt .

Definition. The Clifford group Γ(V,Q) is defined as the group of invertible elements x ∈ Cl(V,Q)

with the property that twisted conjugation

Cl(V,Q) ⊃ V ∋ v 7→ xv α(x)−1

stabilizes V , i.e., maps V into itself. The group Pin(V,Q) ⊂ Γ(V,Q) is the subgroup defined as

Pin(V,Q) = {x ∈ Γ(V,Q) | xtx = ±1} . (2.83)

Problem. Check that Pin(V,Q) contains Spin(V,Q). �

In the case of the Lorentzian vector space R1,3 (a short-hand notation for V = R4 with

Minkowski scalar product Q) any space-like or time-like unit vector u = eµ is in Pin1,3 ≡ Pin(V,Q).

Indeed, utu = eµeµ = Q(eµ, eµ) = ±1, and

uv α(u)−1 = uv
−u

Q(u, u)
= v − 2u

Q(u, v)

Q(u, u)
∈ V.

We see that the operation v 7→ uv α(u)−1 is a reflection at the hyperplane orthogonal to u .

Problem. For g ∈ Pin(V,Q) show that ρ(g) : V → V defined by ρ(g)v = gv α(g)−1 is an

orthogonal transformation, ρ(g) ∈ O(V,Q). �

Consider now the pin group element g = e1e2e3 for a Cartesian basis {e1, e2, e3} of a three-

dimensional space R3 ⊂ R1,3. The corresponding element ρ(g) ∈ O1,3 is the sequence of three

reflections at the hyperplanes orthogonal to e1, e2, and e3 . The combined effect of these reflections
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is a space reflection, i.e., the operation of inverting each of the three Cartesian coordinates. This

operation is also called a ‘parity transformation’ in physics.

In the context of the Dirac equation one wants to work with conjugation v 7→ gvg−1 rather than

twisted conjugation gv α(g)−1. To correct for the extra minus sign inflicted by twisted conjugation,

we multiply g = e1e2e3 by a pin group element x with the property that xv x−1 = −v for all v ∈ V .

If e0 with Q(e0, ej) = 0 (j = 1, 2, 3) is a time-like unit vector, the product x = e0e1e2e3 is such an

element. Thus we arrive at xg = e0 . Since e0 is represented in the spinor representation by γ0,

the next definition is well motivated.

Definition. The operator P of parity transformation acts on Dirac spinors ψ as

(P · ψ)(r⃗, t) = γ0ψ(−r⃗, t). (2.84)

We now look at what happens to the Dirac equation

γµ
(
~
i

∂

∂xµ
− eAµ

)
ψ +mcψ = 0 (2.85)

under a parity transformation. By the chain rule of differentiation, reversal ψ(r⃗, t) 7→ ψ(−r⃗, t) of
the space arguments sends the spatial derivatives ∂/∂xj to their negatives. This sign change is

compensated by conjugation γj 7→ γ0γjγ0 = −γj (j = 1, 2, 3). We thus have the following

Fact. The Dirac equation in the absence of electromagnetic fields (Aµ = 0) is parity-invariant,

i.e., if ψ is a solution, then so is P · ψ.

Problem. Show that if ψ is a solution of the Dirac equation with gauge potential A = A0 dx
0 +∑

Aj dx
j, then P · ψ is a solution of the Dirac equation with transformed gauge potential

(P · A)(r⃗, t) = A0(−r⃗, t) dx0 −
∑

Aj(−r⃗, t) dxj.

Warning. The standard procedure of constructing Pin(V,Q) from the real Clifford group Γ(V,Q)

has recently been called into question by B. Janssens, arXiv:1709.02742.

2.13.2 Anti-unitary symmetries of the Dirac equation

Going beyond parity, the Dirac equation has some discrete symmetries which do not come (not

in a physically satisfactory manner anyway) from the pin group but require complex anti-linear

operations. One of these is time reversal, T . In the standard representation (2.15) of the gamma

matrices this operation is given by

(T · ψ)(r⃗, t) = γ1γ3 ψ(r⃗,−t) . (2.86)

Note that T 2 = −1 and

γ1γ3 =

(
iσ2 0
0 iσ2

)
.

Remark. By non-relativistic reduction, this formula yields the time-reversal operator (1.32) for

spin-1/2 Schrödinger particles. Note also that T normalizes Spin1,3 (T Spin1,3 T
−1 = Spin1,3). �
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To investigate the behavior of the Dirac equation under time reversal, we take its complex

conjugate and observe that γ0, γ1 and γ3 are real matrices while γ2 is imaginary (in standard

repn). We also note that t 7→ −t sends ∂t 7→ −∂t and that γ1γ3γµ(γ1γ3)−1 = ϵ γµ where ϵ = −1
for µ = 1, 3 and ϵ = 1 for µ = 0, 2. In this way we find that T transforms a solution ψ of the

Dirac equation (2.85) into a solution of the same equation with transformed gauge potential

(T · A)(r⃗, t) = −
(
−A0(r⃗,−t) dx0 +

∑
Aj(r⃗,−t) dxj

)
.

The Dirac equation has another complex anti-linear symmetry, which is called charge conju-

gation. This operation C (again, in standard representation) is defined by

(C · ψ)(r⃗, t) = iγ2 ψ(r⃗, t) . (2.87)

The name derives from the easily verified fact that C transforms a solution ψ of the Dirac equation

into a solution C · ψ of the same equation with opposite gauge field Aµ → −Aµ (or conjugated

charge e→ −e). Notice that C2 = 1, and CP = −PC, whereas TP = PT .

Warning. It turns out that the process of re-interpreting the Dirac spinor ψ as a quantum field

converts the complex anti-linear operator C into a unitary (hence complex linear) symmetry. We

will elaborate on this subtle point in the chapter on second quantization. �

Consider now the combination of charge conjugation, parity, and time reversal:

(CPT · ψ)(r⃗, t) = γ5 ψ(−r⃗,−t) , γ5 = iγ0γ1γ2γ3. (2.88)

This combined operation is more fundamental than its individual factors in that it is defined even

in the absence of a splitting R1,3 = R⊕ R3 into time and space. Since each factor is a symmetry

of the Dirac equation, so is the product CPT . The precise statement is this: if ψ solves the Dirac

equation with gauge field A = Aµ dx
µ, then CPT · ψ is a solution with transformed gauge field

(CPT · A)µ(r⃗, t) = −Aµ(−r⃗,−t) . (2.89)

Remark. A deep result of theoretical physics is the so-called CPT theorem: any quantum field

theory which is unitary (i.e., has a Hermitian Hamiltonian for its time-evolution generator), local

(i.e., the Lagrangian contains only derivatives up to a finite order), and Lorentz-invariant, must

have CPT as a symmetry. In other words: the combined operation of running time backwards,

reflecting space, and replacing matter by anti-matter, must always be a symmetry of the funda-

mental laws of nature. Another remark is that the CPT theorem serves as important input to

the proof of the spin-statistics theorem, which says that bosons and fermions have integer and

half-integer spin, respectively.

2.13.3 Parity violation by the weak interaction

Although CPT is always a symmetry, it turns out that there do exist fundamental interactions of

nature which break one or another of the individual factors. Here we briefly indicate how parity

is broken by the weak interaction.
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In the limit of zero mass (m→ 0), the Dirac equation for the 4-component spinor ψ splits into

a pair of equations for two 2-component spinors ψL and ψR , which are called Weyl or half-spinors.

This works as follows. Based on γ25 = 1 for γ5 = iγ0γ1γ2γ3, one introduces projection operators

Π± = 1
2
(1± γ5) . (2.90)

By using γµΠ± = Π∓γ
µ, one infers from the Dirac equation (2.85) with mass m = 0 that

0 = Π±γ
µ

(
~
i

∂

∂xµ
− eAµ

)
ψ = γµ

(
~
i

∂

∂xµ
− eAµ

)
Π∓ψ . (2.91)

Thus both ψL := Π+ψ and ψR := Π−ψ are solutions of the massless Dirac equation.

To interpret the half-spinors ψR , ψL it is best to choose the so-called Weyl representation for

the gamma matrices:

γ0 =

(
0 1
1 0

)
, γj =

(
0 σj
−σj 0

)
, γ5 =

(
1 0
0 −1

)
. (2.92)

In this representation, (the non-zero part of) ψL consists of the upper two components of ψ and

ψR consists of the lower two components. The decoupled pair of equations for ψL,R then reads(
∂t + c

∑
σj ∂j

)
ψR = 0 ,

(
∂t − c

∑
σj ∂j

)
ψL = 0 (2.93)

in zero electromagnetic field. In order for ψR = ei(k⃗· x⃗−|k|ct)η to be a solution of the first equation,

the constant 2-component spinor η must be an eigenvector

σ⃗ · k⃗ η = |k| η , σ⃗ · k⃗ =

(
k3 k1 − ik2

k1 + ik2 −k3

)
,

of σ⃗ · k⃗/|k| with eigenvalue (also referred to as helicity) +1. In such an eigenvector the momentum

and spin angular momentum of the particle form a right-handed system (hence the notation ψR

and the name helicity). Similarly, in order for ψL = ei(k⃗· x⃗−|k|ct)ξ to be a solution of the second

equation, the spinor ξ must be an eigenvector of σ⃗ · k⃗/|k| with eigenvalue −1. In this case the

momentum and the spin angular momentum form a left-handed system. Note that Π+P = PΠ− ,

so that PψL = ψR and PψR = ψL , in agreement with the observation that space reflection

transforms a right-handed system into a left-handed one and vice versa.

Experiments on β-decay done in the mid-1950’s showed a strong right-left asymmetry of the

radioactive decay process. This is understood nowadays (from the so-called Standard Model of

elementary particle physics) as resulting from a peculiar feature of the electro-weak interaction:

left-handed particles carry electro-weak charge, but right-handed particles do not – a clear violation

of parity symmetry! More precisely, the left-handed component eL of the electron constitutes a

doublet of half-spinors

(
eL
νL

)
together with the electron neutrino, and an analogous doublet is
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formed by the up and down quarks. These doublets are governed by the second equation of (2.93)

with minimal substitution ∂µ → ∂µ −Aµ where Aµ , the electro-weak gauge potential, is a 2 × 2

matrix. The off-diagonal elements of Aµ quantize as the W± boson, the diagonal elements as the

Z0 boson. The right-handed component of the electron only couples to the electromagnetic field.

2.14 Dirac electron in a Coulomb potential

A major application of non-relativistic quantum mechanics is the computation of the discrete

energy spectrum of the hydrogen atom using the Schrödinger equation. In this section we carry

out a similar computation based on the Dirac equation.

The first step is to choose a gauge. We take

A = Aµ dx
µ = A0 dx

0 = −Φ dt , (2.94)

where Φ = Ze/(4πε0r) is the Coulomb potential due to a positive nuclear charge Ze placed at

the origin of the coordinate system. As usual, r =
√
x2 + y2 + z2 denotes the distance from the

origin. Adopting this gauge, the Hamiltonian for the negatively charged Dirac electron is

H =
~c
i

∑
l

αl
∂

∂xl
+ βmc2 − Ze2

4πε0 r
. (2.95)

We are going to look for bound-state solutions of the stationary Dirac equation

Hψ = Eψ. (2.96)

Our strategy is the same as in the non-relativistic case: exploiting the spherical symmetry of the

Coulomb potential, we will reduce Hψ = Eψ to a radial differential equation. The solution of the

latter equation will then be found as a power series.

Comment. By introducing λ = ~/mc (reduced Compton wavelength) and α = e2/(4πε0 ~c)
(fine structure constant) the scaled Hamiltonian H/mc2 is expressed in terms of dimensionless

coordinates ξl = xl/r as
H

mc2
= β +

1

i

∑
l

αl
∂

∂ξl
− Zα

|ξ|
.

We therefore expect the bound-state energy spectrum (in units of mc2) to be a function of Zα.

2.14.1 Using rotational symmetry

The Coulomb potential is invariant under space rotations fixing the origin (the nucleus). This

invariance will allow us to find the solution in the form of a product ansatz (separation of variables).

To begin, we recall the action of a spin group element g ∈ Spin1,3 on the spinor field ψ :

(g · ψ)(v) = σ(g)ψ(ρ(g)−1v).

Here we want this transformation law for the special case of g ∈ Spin3 ⊂ Spin1,3, ρ ∈ SO3, and

we only need it at the infinitesimal level. Hence we put gt = etX and τ(X) = ω and differentiate

with respect to the parameter t at t = 0.
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To compute the contribution from the rotation v 7→ ρ(gt)
−1v of the argument of ψ, we use the

formulas ρ(gt)
−1 = e−tω and f(e−tω•) = e−t

∑
ωkl xl ∂kf [see Eq. (2.80)],

e−t
∑

ωkl xl∂k = e−
i
~ t

∑
ωjLj , ωlk =

∑
j
ϵjkl ωj , Lj =

~
i

∑
kl
ϵjkl xk∂l =

∑
kl
ϵjkl xkpl .

Here ϵjkl is the totally anti-symmetric tensor of R3, i.e., ϵ123 = ϵ231 = ϵ312 = 1, ϵ321 = ϵ213 = ϵ132 =

−1, and the tensor vanishes if two indices coincide.

There is a second contribution to the derivative at t = 0; this comes from multiplication

ψ 7→ σ(gt)ψ = σ(etX)ψ by the spinor representation of gt . To compute it, we use the formulas

X = τ−1(ω) =
1

4

∑
kl
ωkl γlγk = −

i

2

∑
j
ωjΣj , Σj =

(
σj 0
0 σj

)
,

where γj represents the Cartesian basis vector ej ∈ R3 viewed as a generator of the Clifford algebra

(in the spinor representation). Putting everything together, we obtain

d

dt
eτ

−1(tω) · ψ
∣∣∣
t=0

= − i

~
∑

l
ωlJl ψ, J = L+ S, Sl =

~
2
Σl . (2.97)

The interpretation of this result is clear: the total angular momentum J is the sum of orbital

angular momentum L and spin angular momentum S.

Problem. Show by direct calculation that the Dirac Hamiltonian (2.95) has vanishing commu-

tator with each of the three components of the total angular momentum J = L+ S. �

It follows that [H, J2] = 0. We also have [H,P ] = 0 by the parity symmetry of the Coulomb

potential. We thus have a set of four commuting operators {H, J2, J3 , P}, and we will be looking

for joint eigenfunctions of this set. For this purpose, let

φl
jm :=

(
Yl ⊗ χ1/2

)
jm

= aljm Yl,m−1/2 ⊗
(
1
0

)
+ bljm Yl,m+1/2 ⊗

(
0
1

)
(2.98)

be a 2-component angular momentum eigenfunction:

J2φl
jm = ~2j(j + 1)φl

jm , J3 φ
l
jm = ~mφl

jm , (2.99)

L2φl
jm = ~2l(l + 1)φl

jm , S2φl
jm = ~2 1

2
(1
2
+ 1)φl

jm . (2.100)

(Note m ∈ Z + 1
2
.) The exact details of this construction will be spelled out in the chapter on

tensor invariants of the rotation group SO3 ; here we just mention/anticipate that the coefficients

aljm and bljm are so-called Clebsch-Gordan coefficients coupling orbital angular momentum (with

quantum numbers l m±1
2
) and spin angular momentum (with quantum numbers 1

2
±1

2
) to total

angular momentum (with quantum numbers j m):

aljm = ⟨l m−1
2
, 1
2

1
2
| j m⟩ , bljm = ⟨l m+1

2
, 1
2
− 1

2
| j m⟩ . (2.101)

The main result to be used in the sequel now follows from the identity

2
∑

i
Li Si = (L+ S)2 − L2 − S2 = J2 − L2 − S2.
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Using it we infer that φl
jm is an eigenfunction of the operator σ⃗ · L⃗ :=

∑
σiLi :

(σ⃗ · L⃗)φl
jm = ~

(
j(j + 1)− l(l + 1)− 3

4

)
φl
jm = −~ (1 + κ)φl

jm . (2.102)

The second equation defines the parameter κ . Note that

κ =

{
l j = l − 1

2
,

−l − 1 j = l + 1
2
.

(2.103)

2.14.2 Reduction by separation of variables

We now proceed with the solution of Hψ = Eψ by making an ansatz for the 4-component spinor

ψ as a direct sum of two 2-component spinors ξ and η :

ψ =

(
ξ
η

)
. (2.104)

The stationary Dirac equation with Coulomb potential V (r) := −Ze2/(4πε0r) then decomposes

as a pair of coupled equations for ξ and η :

(E −mc2 − V ) ξ = c σ⃗ · p⃗ η , (2.105)

(E +mc2 − V ) η = c σ⃗ · p⃗ ξ . (2.106)

At this point we recall from (2.98) the angular momentum eigenfunction φl
jm and separate the

variables by making the product ansatz

ξ = iF (r)φl
jm , η = G(r)

σ⃗ · r⃗
r

φl
jm . (2.107)

We pause briefly to subject this ansatz to a consistency check. A short calculation shows that

σ⃗ · r⃗ is invariant under infinitesimal rotations:

[Jj , σ⃗ · r⃗ ] =
[∑

ϵjkl xk pl +
1
2
~σj , σ⃗ · r⃗

]
=

~
i

∑
ϵjkl xk σl + i~

∑
ϵjkl σl xk = 0 .

On the other hand, space reflection r⃗ → −r⃗ takes σ⃗ · r⃗ into its negative. Thus σ⃗ · r⃗ is what is called
a pseudo-scalar in physics. Now a spherical harmonic Ylml

transforms under space reflection as

Yl ml
→ (−1)l Yl ml

. Therefore our ansatz has parity Pψ = (−1)lψ .

To proceed, we use the formula σjσk = δjk + i
∑
ϵjkl σl to deduce the identities

(σ⃗ · r⃗)(σ⃗ · p⃗) = r⃗ · p⃗+ iσ⃗ · (r⃗ × p⃗) = rpr + iσ⃗ · L⃗ , (2.108)

(σ⃗ · p⃗)(σ⃗ · r⃗) = p⃗ · r⃗ + iσ⃗ · (p⃗× r⃗) = −3i~+ rpr − iσ⃗ · L⃗ . (2.109)

With their help we now compute the result of applying the operator σ⃗ · p⃗ to the two-component

spinors ξ and η of (2.107):

σ⃗ · p⃗ ξ = σ⃗ · r⃗
r2

((σ⃗ · r⃗ ) (σ⃗ · p⃗ )) ξ = ~
σ⃗ · r⃗
r

(
∂

∂r
+

1 + κ

r

)
Fφl

jm , (2.110)

σ⃗ · p⃗ η =
(
(σ⃗ · p⃗ )(σ⃗ · r⃗ )

)G
r
φl
jm = i~

(
− ∂

∂r
− 2

r
+

1 + κ

r

)
Gφl

jm . (2.111)

55



Finally, by making the substitutions F = r−1f and G = r−1g we bring the pair of equations

(2.105, 2.106) into the form

(E −mc2 − V )f = ~c
(
− ∂

∂r
+
κ

r

)
g , (2.112)

(E +mc2 − V )g = ~c
(
+
∂

∂r
+
κ

r

)
f . (2.113)

We must now solve this pair of ordinary differential equations in the radial variable r.

2.14.3 Solution of radial problem

We first investigate the problem in the limit r → ∞ where the Coulomb energy V (r) ∼ 1/r and

the rotational energy κ/r become negligible and our pair of equations simplifies to

(mc2 − E)f ≈ ~c
∂g

∂r
, (mc2 + E)g ≈ ~c

∂f

∂r
.

We easily see that this pair of asymptotic equations is solved by

f ≈ (mc2 + E)1/2 e−λr , g ≈ −(mc2 − E)1/2 e−λr ,

where

λ = (~c)−1
√

(mc2)2 − E2 (2.114)

is a characteristic wave number of the problem. We observe that in the non-relativistic limit

0 < mc2 − E ≪ mc2 the expression for λ reduces to

λ = ~−1
√
2m△ , △ = mc2 − E ,

which is the de Broglie (imaginary) wave number for a bound state of binding energy △ .

These asymptotic considerations motivate the following ansatz:

f =

√
1 +

E

mc2
e−λr (A+B), g =

√
1− E

mc2
e−λr(A−B). (2.115)

with unknown functions A = A(r) and B = B(r) which behave as A → 0 and B → const for

r →∞. To process this ansatz, it is useful to introduce the following dimensionless quantities:

ρ := 2λr , kE := Zα
E

~cλ
, kM := Zα

mc2

~cλ
, α :=

e2

4πε0~c
, (2.116)

where α ≈ 1/137 is the so-called fine structure constant. (This name is of historical origin. It is

nowadays understood that α is not a constant; being the coupling of quantum electrodynamics,

α depends logarithmically on the energy cutoff or regularization scale.)

We now insert the ansatz (2.115) into (2.112, 2.113). After some trivial (if somewhat lengthy)

algebra we arrive at the following equations for A and B :

∂A

∂ρ
= A− kE

ρ
A− kM + κ

ρ
B,

∂B

∂ρ
=
kM − κ

ρ
A+

kE
ρ
B. (2.117)
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The final step is to find the solution to these equations in the form of power series. To prepare

this step, we investigate the behavior in the limit of ρ→ 0. Let

A ≃ aργ, B ≃ bργ (ρ→ 0).

By inserting this small-ρ asymptotics into (2.117) and then sending ρ→ 0, we obtain the following

system of linear equations for the numbers a and b :

(γ + kE) a+ (κ+ kM) b = 0 ,

(κ− kM) a+ (γ − kE) b = 0 .

In order for this system to have a solution other than the trivial one (a = b = 0), the determinant

of the underlying matrix must vanish:

Det

(
γ + kE κ+ kM
κ− kM γ − kE

)
= γ2 − k2E − κ2 + k2M = 0 .

From (2.116) we then see that k2M − k2E = (Zα)2. Therefore the value of γ must be

γ = γ(κ) =
√
κ2 − Z2α2 , (2.118)

which makes good sense as long as the nuclear charge Z is not too large.

We finally look for the solution in the form of two power series:

A =
∞∑
n=0

anρ
γ+n, B =

∞∑
n=0

bnρ
γ+n.

By inserting these into (2.117) and comparing coefficients we get

(n+ γ + kE) an + (κ+ kM) bn = an−1 ,

(κ− kM) an + (n+ γ − kE) bn = 0 .

The equation for n = 0 (with a−1 = 0) has a non-trivial solution for a0 and b0 by our choice

(2.118) for γ. For n ≥ 1 we eliminate bn to obtain a recursion relation for an alone:

an =

(
(n+ γ + kE)−

(κ+ kM)(κ− kM)

n+ γ − kE

)−1

an−1 =
n+ γ − kE
n2 + 2nγ

an−1 .

A sufficient condition for a bound-state solution to emerge is that the power series terminates at

some finite order n resulting in square-integrable functions f and g. The condition for termination

is that

0 = n+ γ − kE

holds for some positive integer n ≥ 1. By solving this condition for E, we arrive at the following

answer for the (discrete) energy spectrum:

En,κ =
mc2√

1 + (Zα)2

(n+γ(κ))2

. (2.119)

Problem. Show that in the non-relativistic limit c → ∞ this formula reproduces the known

energy spectrum of hydrogen as computed from the Schrödinger equation. How do n , κ relate to

the quantum numbers of the non-relativistic spectrum? �
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3 Second quantization

3.1 Bosons and fermions

We are assuming that the students of this course already have some familiarity with the quantum

mechanics of a single particle and thus with quantum theory at the simplest level. As a prepara-

tion for the more advanced formalism of ‘second quantization’ introduced in this chapter, let us

summarize by means of a table what are the key elements of the correspondence between classical

mechanics and single-particle quantum mechanics.

classical mechanics quantum mechanics

phase space Γ = T ∗R3 = R3 × (R3)∗ Hilbert space V = L2(R3)

states x ∈ Γ state vectors ψ ∈ V

observables f : Γ→ R self-adjoint operators Op(f)

Poisson bracket: commutator:

{f, g} =
∑(

∂f
∂qi

∂f
∂pi
− ∂g

∂qi

∂f
∂pi

)
[Op(f),Op(f)] = i~Op({f, g}) +O(~2)

When there is more than one particle present, new structures and phenomena related to per-

mutation symmetry appear. It turns out that the generalization to n-particle quantum mechanics

depends on whether the particles under consideration are distinguishable or indistinguishable. In

the former case the Hilbert space V of the many-particle system is simply the tensor product

V = V (1) ⊗ V (2) ⊗ · · · ⊗ V (n) (3.1)

of the Hilbert spaces V (1), . . . , V (n) for the individual particles (labeled by 1, . . . , n). Thus the wave

function for n distinguishable particles in the Schrödinger representation is a linear combination

of products of single-particle wave functions,

Ψ(r1, r2, . . . , rn) =
∑

ai1i2... in ψi1(r1)ψi2(r2) · · ·ψin(rn) , (3.2)

with complex coefficients ai1i2... in . Linear operators representing observables such as the energy

or the components of momentum, act on these wave functions in the natural way (i.e., one simply

tensors up the setting of single-particle quantum mechanics), and there isn’t a whole lot of new

material for the student to learn.

However, in the case of indistinguishable or identical particles, the many-particle Hilbert space

is spanned by wave functions which are either totally symmetric or totally anti-symmetric. Con-

sider first the latter case where we have

Ψ(r1, r2, . . . , rn) = sign(π)Ψ(rπ(1), rπ(2), . . . , rπ(n)) , (3.3)

for any permutation π ∈ Sn . [Here sign(π) = +1 if the permutation π is even and sign(π) = −1
if π is odd.] Particles with this behavior under permutations are called fermions.
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Gibbs, in the context of classical statistical mechanics, observed that symmetrization (more

precisely: reduction of statistical weight by identification of n-particle configurations that are

permutations of one another) is needed in order for the entropy to be additive. The next series of

statements gives a quantum-theoretic explanation of this observation.

Fact. The wave functions for (an indefinite number of) fermions with single-particle Hilbert space

V , e.g. V = L2(R3), form an exterior algebra, ∧(V ). The wave function for a definite number n

of fermions is an element of the degree-n subspace ∧n(V ) ⊂ ∧(V ) of the exterior algebra. If Ψp

and Ψq are totally anti-symmetric wave functions describing two subsystems of p resp. q fermions

(all of which are identical), then the wave function for the total system of p+ q identical fermions

is the exterior product Ψp ∧Ψq defined by

(Ψp ∧Ψq)(r1, . . . , rp+q) :=
1

p! q!

∑
π∈Sp+q

sign(π)Ψp(rπ(1), . . . , rπ(p))Ψq(rπ(p+1), . . . , rπ(p+q)) . (3.4)

The most general n-fermion wave function ψ ∈ ∧n(V ) can be expressed as a linear combination

of exterior products of single-particle wave functions:

Ψ =
∑

ai1i2... inψi1 ∧ ψi2 ∧ · · · ∧ ψin , (3.5)

with complex coefficients ai1i2... in . The vacuum state is 1 ∈ ∧0(V ) ≡ C. One also writes 1 ≡ |0⟩.
Wave functions of the special form Ψ = ψi1 ∧ ψi2 ∧ · · · ∧ ψin are called Slater determinants.

Problem. Show that the exterior product is associative: (Ψp ∧Ψq) ∧Ψr = Ψp ∧ (Ψq ∧Ψr) . �

We now turn to the alternative situation of totally symmetric wave functions:

Φ(r1, r2, . . . , rn) = Φ(rπ(1), rπ(2), . . . , rπ(n)) (3.6)

for any permutation π ∈ Sn . Particles with this behavior under permutations are called bosons.

Definition. If V is a K-vector space, one defines the symmetric algebra S(V ) as the associative

algebra which is generated by V ⊕ K with relations vv′ = v′v for all v, v′ ∈ V . Multiplication in

the symmetric algebra with these relations is called the symmetric product. When the symmetric

product is to be emphasized, we use the expanded notation v∨v′ = v′∨v. The symmetric algebra

is graded by the degree:

S(V ) =
⊕

n≥0
Sn(V ) , S0(V ) ≡ K , S1(V ) ≡ V. (3.7)

Problem. Assuming V to be of finite dimension dimV = N , show that dimSn(V ) =

(
N + n− 1

n

)
.

[Thus, unlike the exterior algebra ∧(V ), the symmetric algebra S(V ) has infinite dimension even

when V is finite-dimensional.]

Fact. The wave functions for (an indefinite number of) bosons with single-particle Hilbert space

V form the symmetric algebra S(V ). Any wave function for a definite number n of bosons is

an element of the degree-n subspace Sn(V ) ⊂ S(V ) of the symmetric algebra. If Φp and Φq are
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totally symmetric wave functions describing two subsystems of p resp. q bosons (all of which are

identical), then the wave function for the total system of p+ q bosons is the symmetric product

(Φp ∨ Φq)(r1, . . . , rp+q) =
1

p! q!

∑
π∈Sp+q

Φp(rπ(1), . . . , rπ(p)) Φq(rπ(p+1), . . . , rπ(p+q)) . (3.8)

The most general n-boson wave function Φ ∈ Sn(V ) can be expressed as a linear combination of

symmetric products of single-particle wave functions:

Φ =
∑

ai1i2... in ϕi1 ∨ ϕi2 ∨ · · · ∨ ϕin . (3.9)

The boson vacuum state is |0⟩ ≡ 1 ∈ S0(V ) ≡ C. �
To do many-particle quantum mechanics, one must understand how to turn physical observ-

ables into operators on the many-particle Hilbert spaces ∧(V ) for fermions and S(V ) for bosons.

The present chapter will introduce a good algebraic formalism by which to handle the situation,

namely ‘second quantization’. Second quantization for bosons is particularly suitable as a for-

malism to quantize the abelian gauge theory of electromagnetism. Another application will be

to the Dirac equation: using second quantization for fermions one reinterprets Dirac’s original

single-electron theory as a quantum field theory which remains stable and physically meaningful

even in the presence of coupling to the quantized electromagnetic field.

3.2 Weyl algebra and Clifford algebra

We now introduce a boson-type analog of the Clifford algebra.

Definition. Let U be a symplectic vector space over the number field K , i.e., U carries a non-

degenerate skew-symmetric (or alternating) K-bilinear form

A : U × U → K , A(u, u′) = −A(u′, u) . (3.10)

The Weyl algebra of U is defined to be the associative algebra,W(U,A), generated by U ⊕K with

relations

uu′ − u′u = A(u, u′) . (3.11)

Remark. Without changing the content of the theory, we could enhance the similarity with the

definition of the Clifford algebra in Section 2.7 by putting 2A instead of A on the right-hand side.

Nonetheless, in the present context we prefer to use the normalization convention (3.11).

Example 1. Consider the symplectic plane (or phase plane) U = R2 with basis vectors e, f and

symplectic form

A(e, e) = A(f, f) = 0 , A(e, f) = −A(f, e) = −1 . (3.12)

The Weyl algebra W(R2, A) then is the algebra of polynomial expressions in e and f with real

coefficients and the relation fe− ef = 1 being understood. A concrete realization of this algebra

is by a polynomials in a coordinate generator x ≡ e and its derivative d/dx ≡ f .
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Example 2. We give a second example, which is closer to the setting pursued below. Let q and

p be the position and momentum operators of a one-dimensional quantum system. Let K = C ,

U = spanC{p , q}, and take A to be the Heisenberg commutator:

A(q, q) = A(p, p) = 0 , A(q, p) = −A(p, q) = i~ . (3.13)

Then the Weyl algebraW(U,A) is the algebra of polynomials in the operators q and p . A specific

example of such a polynomial is the Hamiltonian H = p2/2m +mω2q2/2 of the one-dimensional

harmonic oscillator. Introducing the dimensionless operators

a :=
1√
2

(
q

ℓ
+ i

ℓp

~

)
, a† :=

1√
2

(
q

ℓ
− i

ℓp

~

)
, (3.14)

where ℓ =
√

~/(mω) is the oscillator length, one can also view the Weyl algebra W(U,A) as the

algebra of polynomials in the operators a and a† with commutation relations

a a† − a†a = 1 . (3.15)

The oscillator Hamiltonian is known to take the form H = ~ω(a†a+ 1
2
). �

We now start introducing the formalism of second quantization for bosons. For this we realize

the notion of Weyl algebra as follows. Let V be the single-boson Hilbert space and let V ∗ be its

dual. (We shall refrain from using the isomorphism cV : V → V ∗, v 7→ ⟨v, ·⟩V by the Hermitian

scalar product of V for the moment.) We take the direct sum U = V ⊕ V ∗ to be equipped with

the canonical alternating form A : U × U → C ,

A(v + φ, v′ + φ′) = φ(v′)− φ′(v) . (3.16)

With these definitions, the Weyl algebra W(V ⊕ V ∗, A) is the algebraic structure underlying (the

formalism of second quantization for) many-boson quantum systems.

Definition. In physics the following notational conventions are standard. One fixes some basis

{e1, e2, . . .} of the single-boson Hilbert space V with dual basis {f1, f2, . . .} of V ∗, and one writes

fi ≡ ai and ei ≡ a+i . Using the duality pairing fi(ej) = δij , one then gets the Weyl algebra

relations (3.11) in the form

[ai , a
+
j ] = δij , [ai , aj] = [a+i , a

+
j ] = 0 (i, j = 1, 2, . . .) . (3.17)

These are called the canonical commutation relations (CCR).

Remark. Later, ai and a
+
i will be acting as linear operators in the so-called bosonic Fock space

S(V ) with its canonical Hermitian scalar product. In that setting, assuming that {e1, e2, . . .} is

an orthonormal basis, the operator a+i ≡ a†i will turn out to be the Hermitian adjoint of ai .

Example. By the canonical commutation relations one has

a+i aj a
+
k al = a+i a

+
k aj al + δjk a

+
i al . � (3.18)
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In view of the close similarity between the Weyl algebra and the Clifford algebra, one may

ask whether a development parallel to that of Sections 2.10 and 2.11 exists on the bosonic side.

The answer is: yes, to a large extent. Indeed, the analog of SO(V,Q) is the symplectic Lie group

Sp(U,A), the analog of so(V,Q) is the symplectic Lie algebra sp(U,A), and the analog of Cl2(V,Q)

is the subspace

W2(U,A) := {X ∈ W(U,A) | X =
∑

i
(uivi + viui) ; ui , vi ∈ U}

of symmetrized degree-2 elements of the Weyl algebra. It is still true that W2(U,A) is a Lie

algebra which is isomorphic to sp(U,A) by letting X ∈ W2(U,A) act on u ∈ U ⊂ W(U,A) by

the commutator, and that by exponentiating this commutator action one recovers the symplectic

Lie group. There is, however, one difference: it is not possible to exponentiate W2(U,A) inside

the Weyl algebra to produce an analog of the spin group. The reason is that, by a theorem due

to Stone and von Neumann, any non-trivial realization of the Weyl algebra with relations (3.11)

must be on an infinite-dimensional representation space where the elements X ∈ W2(U,A) act as

unbounded operators. For example, the Hamiltonian H of the harmonic oscillator is an element

H ∈ W2(U,A) for our Example 2 above. The exponential e−tH exists for Re t > 0 but does not

for Re t < 0 . Nonetheless, in a suitable real framework there does exist a bosonic analog of the

spin group; it is called the metaplectic group. (For example, the quantum time evolution of the

harmonic oscillator is a one-parameter subgroup of the metaplectic group.)

This concludes our introduction of the Weyl algebra and the canonical commutation relations

for bosons. We now turn to the fermionic side: the Clifford algebra. Here we will be brief, as we

have already given a thorough discussion of the Clifford algebra in Chapter 2.

Definition. The formalism of second quantization for fermions is based on the following. Starting

from the single-fermion Hilbert space V , we take the direct sum U = V ⊕V ∗ and we equip U with

the symmetric bilinear form B : U × U → C defined by

B(v + φ, v′ + φ′) = φ(v′) + φ′(v) . (3.19)

The Clifford algebra Cl(U,B) then is the associative algebra generated by U ⊕ C with relations

uu′ + u′u = B(u, u′) . (3.20)

In physics it is customary to use the following notational conventions. Fixing any basis {e1, e2, . . .}
of the single-fermion Hilbert space V with dual basis {f1, f2, . . .} of V ∗, one writes fi ≡ ci and

ei ≡ c+i . By the duality pairing fi(ej) = δij , one then gets the Clifford algebra relations (3.20) in

the form

{ci , c+j } = δij , {ci , cj} = {c+i , c+j } = 0 (i, j = 1, 2, . . .) , (3.21)

where {u, u′} := uu′ + u′u denotes the anti-commutator. We recall from Section 2.8 that the

relations (3.21) are referred to as the canonical anti-commutation relations (CAR).
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3.3 Representation on Fock space

In Section 2.8 we learned that the abstract Clifford algebra Cl(V ⊕V ∗, B) has a concrete realization

by linear operators on the spinor representation space ∧(V ). [Actually, we constructed the spinor

representation for V = P ∗. Note that V and V ∗ are on the same footing in this context, and

exactly the same construction would go through for the choice ∧(P ∗) = ∧(V ∗) of representation

space.] We will now explain that, in a very similar way, the abstractly defined Weyl algebra

W(V ⊕ V ∗, A) has a realization by linear operators on the so-called bosonic Fock space S(V ).

Note that A(v, v′) = A(φ, φ′) = 0 vanishes for any v, v′ ∈ V and φ, φ′ ∈ V ∗. One expresses this

fact by saying that V and V ∗ are Lagrangian subspaces of the complex symplectic vector space

U = V ⊕ V ∗. It follows from the Weyl algebra relations (3.11) that vv′ = v′v and φφ′ = φ′φ.

These are the defining relations of the respective symmetric algebras, namely S(V ) and S(V ∗).

We thus see that both S(V ) and S(V ∗) are contained as subalgebras in W(V ⊕ V ∗, A).

We can now get a representation of W(V ⊕ V ∗, A) by letting it act on S(V ), or S(V ∗), or any

other subalgebra generated by a Lagrangian subspace. We focus on S(V ) for concreteness. Thus

our goal now is to define an action of W(V ⊕ V ∗, A) on S(V ),

W(V ⊕ V ∗, A)× S(V )→ S(V ) , (x, ξ) 7→ x · ξ . (3.22)

Since W(V ⊕ V ∗, A) is generated by V ⊕ V ∗ ⊕ C , it suffices to specify the Weyl multiplication

(3.22) for vectors v ∈ V and co-vectors φ ∈ V ∗. (The multiplication by scalars k ∈ C is of course

the obvious one given by the structure of a complex vector space.)

Multiplication by vectors v ∈ V is simply the symmetric product computed inside the sym-

metric algebra:

v · ξ := µ(v) ξ := v ∨ ξ ≡ v ξ . (3.23)

The notation µ(v) is used in order to distinguish the algebra element v ∈ V ⊂ W(V ⊕ V ∗, A)

from its concrete realization as a linear operator µ(v) on S(V ). Note that this multiplication

µ(v) : Sl(V )→ Sl+1(V ) increases the degree (in physics language: the number of bosons) by one.

Now consider φ ∈ V ∗. Such elements act by a degree-lowering operation δ(φ) :

δ(φ) : Sl(V )→ Sl−1(V ) , ξ 7→ φ · ξ ≡ δ(φ) ξ , (3.24)

which is called a derivation of S(V ), as it has the algebraic properties of a derivative. We define

it recursively. For the two lowest degrees l = 0, 1 we set

l = 0 : δ(φ) 1 := 0 , (3.25)

l = 1 : δ(φ) v := φ(v) . (3.26)

The action on higher-degree elements ξ ∨ η ∈ S(V ) is then defined by the product rule (or Leibniz

rule) known from differential calculus:

δ(φ) (ξ ∨ η) := δ(φ)ξ ∨ η + ξ ∨ δ(φ)η . (3.27)
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Problem. Show that the operations of symmetric multiplication µ(v) : Sl(V ) → Sl+1(V ) and

derivation δ(φ) : Sl(V )→ Sl−1(V ) satisfy the canonical commutation relations (CCR):

µ(v)µ(v′)− µ(v′)µ(v) = 0 , δ(φ)δ(φ′)− δ(φ′)δ(φ) = 0 ,

δ(φ)µ(v)− µ(v)δ(φ) = A(φ, v) IdS(V ) , (3.28)

for all v, v′ ∈ V and φ, φ′ ∈ V ∗. �

Using the canonical commutation relations, an easy calculation

(v + φ) · ((v′ + φ′) · ξ)− (v′ + φ′) · ((v + φ) · ξ)− A(v + φ, v′ + φ′) · ξ

=
(
µ(v) + δ(φ)

)(
µ(v′) + δ(φ′)

)
ξ −

(
µ(v′) + δ(φ′)

)(
µ(v) + δ(v)

)
ξ − A(v + φ, v′ + φ′)ξ

= δ(φ)µ(v′)ξ − µ(v′)δ(φ)ξ − A(φ, v′)ξ − δ(φ′)µ(v)ξ + µ(v)δ(φ′)ξ + A(φ′, v)ξ = 0 ,

shows that the relations (3.11) are satisfied for all v + φ = u and v′ + φ′ = u′. Thus we have

indeed constructed a representation of W(V ⊕ V ∗, A).

Definition. For a complex vector space V let the direct sum V ⊕ V ∗ be equipped with the

canonical alternating form A(v + φ, v′ + φ′) = φ(v′)− φ′(v). The oscillator representation of the

Weyl algebra W(V ⊕ V ∗, A) is defined by the action

(v + φ+ k) · ξ = µ(v)ξ + δ(φ)ξ + kξ (v ∈ V, φ ∈ V ∗, k ∈ C) (3.29)

on the symmetric algebra S(V ). �

Let us now give the translation into the language and notation of physics. We recall that the

symmetric algebra S(V ) is referred to as the bosonic Fock space (of the single-particle Hilbert

space V ) in this context. The neutral element 1 ∈ S0(V ) = C is called the vacuum state and is

denoted by 1 ≡ |0⟩. (To avoid confusion, we emphasize that |0⟩ is not the zero vector!) We also

recall that fixing an orthonormal basis {e1, e2, . . .} of V together with the dual basis {f1, f2, . . .} of
V ∗, one writes a+i ≡ ei and ai ≡ fi and refers to these as particle creation and particle annihilation

operators, respectively. No change of notation is made when these algebraically defined objects act

as linear operators on the bosonic Fock space. Thus ai ≡ δ(fi) and a
+
i ≡ µ(ei). The definitions

of multiplication a+i = µ(ei) : Sl(V ) → Sl+1(V ) and derivation aj = δ(fj) : Sl(V ) → Sl−1(V )

translate to

a+j ·
(
a+i1a

+
i2
· · · a+il |0⟩

)
:= a+j a

+
i1
a+i2 · · · a

+
il
|0⟩, (3.30)

aj ·
(
a+i1a

+
i2
· · · a+il |0⟩

)
:= δji1a

+
i2
a+i3 · · · a

+
il
|0⟩

+ δji2a
+
i1
a+i3 · · · a

+
il
|0⟩+ . . .+ δjila

+
i1
a+i2 · · · a

+
il−1
|0⟩. (3.31)
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The action (3.31) of the particle annihilation operator aj = δ(aj) is also defined by saying that

the canonical commutation relations (3.17) hold and

aj|0⟩ = 0 . (3.32)

This concludes, for the moment, our development of the bosonic variant of second quantization,

and we turn to a summary and adaptation of the material of Chapter 2 for the fermionic side.

Definition (Review). For a complex vector space V let the direct sum V ⊕ V ∗ be equipped

with the canonical symmetric form B(v + φ, v′ + φ′) = φ(v′) + φ′(v). The spinor representation

of the Clifford algebra Cl(V ⊕ V ∗, B) is defined by the action

(v + φ+ k) · ξ = ε(v)ξ + ι(φ)ξ + kξ (v ∈ V, φ ∈ V ∗, k ∈ C) (3.33)

on the exterior algebra ∧(V ). In physics one calls ∧(V ) the fermionic Fock space. The vacuum

is denoted by |0⟩ ≡ 1 ∈ ∧0(V ). Introducing an orthonormal basis as usual, the actions of the

particle creation operator ε(ej) ≡ c+j and particle annihilation operator ι(fj) ≡ cj are given by

c+j ·
(
c+i1c

+
i2
· · · c+il |0⟩

)
:= c+j c

+
i1
c+i2 · · · c

+
il
|0⟩, (3.34)

cj ·
(
c+i1c

+
i2
· · · c+il |0⟩

)
:= δji1c

+
i2
c+i3 · · · c

+
il
|0⟩

− δji2c+i1c
+
i3
· · · c+il |0⟩+ . . .+ (−1)l−1 δjilc

+
i1
c+i2 · · · c

+
il−1
|0⟩. (3.35)

The particle annihilation operators cj = ι(fj) annihilate the vacuum: cj|0⟩ = 0 . �

We finish the section with a tabular summary:

particle type algebra of operators Fock space

bosons Weyl algebra W(V ⊕ V ∗, A) symmetric algebra:
canonical commutation relations S(V ) =W(V ⊕ V ∗, A)/S(V ∗)

fermions Clifford algebra Cl(V ⊕ V ∗, B) exterior algebra:
canonical anti-commutation relations ∧(V ) = Cl(V ⊕ V ∗, B)/ ∧ (V ∗)
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3.4 Fock space scalar product

We are in the process of developing a quantum-theoretic formalism for many bosons and/or

fermions. What we have learned so far is how the single-particle Hilbert space V gets promoted

to a Fock space S(V ) or ∧(V ) for many particles. In order to turn Fock space into the Hilbert

space of many-body quantum theory, we still need to introduce a Hermitian scalar product on it.

Given that the single-particle Hilbert space V already carries a Hermitian scalar product ⟨·, ·⟩V ,
there is a natural way of doing this, as follows.

For bosons and fermions alike, the Fock space scalar product is diagonal in the degree or

particle number n. For bosons one defines the scalar product ⟨·, ·⟩Sn(V ) : Sn(V )× Sn(V )→ C by⟨
v1 ∨ v2 ∨ · · · ∨ vn , v′1 ∨ v′2 ∨ · · · ∨ v′n

⟩
Sn(V )

=
∑
π∈Sn

⟨v1, v′π(1)⟩V ⟨v2, v′π(2)⟩V · · · ⟨vn, v′π(n)⟩V . (3.36)

Notice that in the special case of vn = v∨v∨· · ·∨v (n factors) one has ⟨vn, v′n⟩Sn(V ) = n! ⟨v, v′⟩nV .

Using physics notation, this means that

(a+1 )
n1

√
n1!

(a+2 )
n2

√
n2!
· · · (a

+
l )

nl

√
nl!
· · · |0⟩ (3.37)

for nl ∈ N ∪ {0} (l = 1, 2, . . .) is an orthonormal basis of S(V ), provided that the standard

convention a+i = µ(ei) is in force and {e1, e2, . . .} is an orthonormal basis of V .

The Hermitian scalar product ⟨·, ·⟩∧n(V ) : ∧n(V )× ∧n(V )→ C for fermions is defined by⟨
v1 ∧ · · · ∧ vn , v′1 ∧ · · · ∧ v′n

⟩
∧n(V )

=
∑
π∈Sn

sign(π) ⟨v1, v′π(1)⟩V · · · ⟨vn, v′π(n)⟩V

= Det

⟨v1, v
′
1⟩V · · · ⟨v1, v′n⟩V

...
. . .

...
⟨vn, v′1⟩V · · · ⟨vn, v′n⟩V

 . (3.38)

It can be shown that this has all the properties required of a Hermitian scalar product; in partic-

ular, ⟨v1 ∧ · · · ∧ vn , v1 ∧ · · · ∧ vn⟩∧n(V ) is non-negative and vanishes only if v1 ∧ · · · ∧ vn is the zero

vector. The latter happens if and only if the set of vectors v1 . . . , vn is linearly dependent. This

feature is a manifestation of the Pauli exclusion principle.

Assuming again the standard physics convention c+i = ε(ei) for an orthonormal basis {e1, e2, . . .}
of V , one finds that the set of Fock space vectors

(c+1 )
n1(c+2 )

n2 · · · (c+l )
nl · · · |0⟩ (3.39)

for nl ∈ {0, 1} (l = 1, 2, . . .) constitute an orthonormal basis of ∧(V ).

Problem. We recall that for a complex vector space with Hermitian scalar product, one has a

canonically defined operation of taking the Hermitian adjoint (denoted by †). Show that (c+j )
† = cj

(fermions) and (a+j )
† = aj (bosons). �
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There exists another perspective on the Hermitian scalar product in Fock space, as follows.

We recall that the Hermitian scalar product ⟨·, ·⟩V on single-particle Hilbert space V determines

a one-to-one correspondence

γV : V → V ∗, v 7→ ⟨v, ·⟩V ,

called the Dirac ket-bra bijection and written |v⟩ 7→ ⟨v| in Dirac’s notation. Consider now the

case of fermions for definiteness (for bosons it works the same way). The map cV induces on the

fermionic Fock space ∧(V ) a mapping

γ∧(V ) : ∧(V )→ ∧(V )∗ ∼= ∧(V ∗), v1 ∧ · · · ∧ vn 7→ γV (vn) ∧ · · · ∧ γV (v1). (3.40)

(Such a mapping is called an anti-homomorphism of exterior algebras, as the order of factors is

reversed.) In physics notation (with standard conventions) this reads

γ∧(V ) : c+i1c
+
i2
· · · c+in |0⟩ 7→ ⟨0|cin · · · ci2ci1 .

The r.h.s. ⟨0|cin · · · ci1 is a linear function on the fermionic Fock space ∧(V ) and as such an element

of ∧(V )∗ in the natural way: to evaluate this linear function on a vector c+j1 · · · c
+
jn
|0⟩ in Fock space

we apply the product cin · · · ci1 and then take the vacuum component:

γ∧(V )

(
c+i1c

+
i2
· · · c+in |0⟩

) (
c+j1c

+
j2
· · · c+jn |0⟩

)
= ⟨0|cin · · · ci2ci1c+j1c

+
j2
· · · c+jn |0⟩.

By using the canonical anti-commutation relations to compute the right-hand side we obtain

γ∧(V )

(
c+i1c

+
i2
· · · c+in |0⟩

) (
c+j1c

+
j2
· · · c+jn|0⟩

)
=
∑
π∈Sn

sign(π)
n∏

l=1

δil, jπ(l)
,

in agreement with the definition (3.38). Thus we may consider the Fock space Hermitian scalar

product (3.38) as equivalent to the natural mapping (3.40).

3.5 Second quantization of one- and two-body operators

Let now L ∈ End(V ) be a linear operator on the single-particle Hilbert space V . Such an operator

is called a one-body operator in the present context. We fix some basis {e1, e2, . . .} (not necessarily
orthonormal) and denote by {f1, f2, . . .} the dual basis of V ∗.

Definition. The process of second quantization for fermions or bosons sends the one-body oper-

ator L ∈ End(V ) to the operator L̂ on Fock space ∧(V ) resp. S(V ) which is defined by

L 7→ L̂ =


∑
i

ε(Lei) ι(fi) (fermions),∑
i

µ(Lei) δ(fi) (bosons).
(3.41)

Fact. The second-quantized operator L̂ extends the one-body operator L ∈ End(V ) as a derivation

of the algebra under consideration, i.e., as a derivation of the exterior algebra ∧(V ) for the case

of fermions and of the symmetric algebra S(V ) for the case of bosons.
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Proof. Consider the case of fermions and let v ∈ V ⊂ ∧(V ) be any single-particle state. Appli-

cation of L̂ yields

L̂v =
∑

i
ε(Lei) ι(fi)v =

∑
i
fi(v) ε(Lei)1 =

∑
i
fi(v)Lei = Lv.

Thus L̂ coincides with L on the single-particle subspace V = ∧1(V ).

Now consider an n-particle state ξ = v1 ∧ v2 ∧ · · · ∧ vn which is a product of n single-particle

states. By applying the annihilation operator ι(fi) you get

ι(fi)ξ = ι(fi)v1 ∧ v2 ∧ · · · vn − v1 ∧ ι(fi)v2 ∧ · · · ∧ vn + . . .+ (−1)n−1v1 ∧ v2 ∧ · · · ∧ ι(fi)vn .

Subsequent exterior multiplication by ε(Lei) and summation over i gives

L̂ξ = Lv1 ∧ v2 ∧ · · · vn + v1 ∧ Lv2 ∧ · · · ∧ vn + . . .+ v1 ∧ v2 ∧ · · · ∧ Lvn .

This formula precisely expresses the fact that L̂ is a derivation of the exterior algebra ∧(V ).

For bosons the argument is the same albeit for some sign changes.

Problem. Show that second quantization of one-body operators is a Lie algebra homomorphism,

i.e., [̂L,M ] = [L̂, M̂ ]. �

Adopting the standard physics conventions, we now choose our basis of V to be an orthonormal

basis {|i⟩}i=1,2,... (Dirac notation), and we write ε(ei) ≡ c+i , ι(fi) ≡ ci , µ(ei) ≡ a+i , δ(fi) ≡ ai .

The second quantization rule (3.41) for fermions or bosons then takes the form

L 7→ L̂ =


∑
i,j

⟨i|L|j⟩ c+i cj (fermions),∑
i,j

⟨i|L|j⟩ a+i aj (bosons).
(3.42)

Example. Consider Schrödinger particles confined to a cube C with side length L and periodic

boundary conditions. The single-particle Hilbert space is V = L2(C) and an orthonormal basis of

V is given by the plane waves

ψk(r) = L−3/2eik·r

for the discrete set of wave vectors

k = (k1, k2, k3) ∈ (2πZ/L)3 =: Λ .

Orthonormality here means that

⟨k|k′⟩ ≡
∫
C

ψk(r)ψk′(r) d3r = δkk′ .

The one-body operator T := −~2∇2/2m of the Schrödinger kinetic energy has matrix elements

⟨k|T |k′⟩ = ~2k2

2m
δkk′ , k2 = k21 + k22 + k23 ,

and the second-quantized kinetic energy T̂ is

T̂ =
∑
k∈Λ

εk c
+
k ck , εk =

~2k2

2m
.
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The operator c+k ck is called the occupation number operator (for the single-particle state with

momentum p = ~k). It has two eigenvalues: 0 (empty state) and 1 (occupied state).

Remark. The homomorphism property [̂L,M ] = [L̂, M̂ ] does not single out (3.42) but also holds

for other schemes of second quantization. For example, if we take the fermionic (resp. bosonic)

Fock space to be ∧(V ∗) (resp. S(V ∗)) it holds for

L 7→ L̃ =


∑
i

ε(−Ltfi) ι(ei) (fermions),∑
i

µ(−Ltfi) δ(ei) (bosons).
(3.43)

The reason why this works is that End(V ) ∋ L 7→ −Lt ∈ End(V ∗) is a Lie algebra isomorphism.

In Dirac notation with c+i ≡ ε(fi), ci ≡ ι(ei), a
+
i ≡ µ(fi), ai ≡ δ(ei) the new scheme reads

L 7→ L̃ =


−
∑
i,j

⟨i|L|j⟩ c+j ci (fermions),

−
∑
i,j

⟨i|L|j⟩ a+j ai (bosons).
(3.44)

The fermionic version of this ‘hole quantization’ scheme will become relevant in the reinterpretation

of the Dirac equation as a quantum field theory. �

We now turn briefly to the scheme of second quantization for two-body operators. By definition,

a two-body operator is a linear operator

L : V ⊗ V → V ⊗ V (3.45)

defined on the tensor product of two single-particle Hilbert spaces. (While these may be different

when the two particles are distinguishable, we continue to focus on the case of identical particles

here.) If we work in the Schrödinger representation and φi(r) (i = 1, 2, . . .) is a basis of single-

particle wave functions, then the two-body matrix elements of L are expressed as

⟨ij|L|kl⟩ :=
∫
R3

∫
R3

φi(r)φj(r′)
(
L(φk ⊗ φl)

)
(r, r′) d3r d3r′. (3.46)

Example. The Coulomb interaction energy UC between two particles with charge e is the two-

body operator given by

(
UC(φk ⊗ φl)

)
(r, r′) =

e2

4πε0 |r− r′|
φk(r)φl(r

′). (3.47)

It has two-body matrix elements

⟨ij|UC|kl⟩ =
e2

4πε0

∫
R3

∫
R3

φi(r)φj(r′)φk(r)φl(r
′)

|r− r′|
d3r d3r′. � (3.48)

Second quantization sends a two-body operator L to an operator L̂ on Fock space. Given

a single-particle basis and the corresponding two-body matrix elements ⟨ij|L|kl⟩ this works as

follows:

L 7→ L̂ =


1
2

∑
ijkl

⟨ij|L|kl⟩ c+i c+j cl ck (fermions),

1
2

∑
ijkl

⟨ij|L|kl⟩ a+i a+j al ak (bosons).
(3.49)
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The factors of 1
2
and reversal of the order of annihilation operators are needed in order for the

second-quantized operator L̂ to agree with the defining operator L on the two-particle subspace

∧2(V ) or S2(V ). Note that by the commutation relations for fermions/bosons one may (anti)-

symmetrize the two-body matrix elements in the expression for L̂ :

L̂ =


1
4

∑
ijkl

(
⟨ij|L|kl⟩ − ⟨ij|L|lk⟩

)
c+i c

+
j cl ck (fermions),

1
4

∑
ijkl

(
⟨ij|L|kl⟩+ ⟨ij|L|lk⟩

)
a+i a

+
j al ak (bosons).

(3.50)

The second summand ⟨ij|L|lk⟩ is called the exchange matrix element.

3.6 Second quantization of Dirac’s theory

3.6.1 Motivation: problems with the Dirac equation

The Dirac equation was originally conceived as a relativistic wave equation for a single charged

particle, by the analogy with the Schrödinger equation. In the non-relativistic limit with weak

electromagnetic fields, the single-particle interpretation of the Dirac equation works just fine.

However, serious problems of interpretation arise in the presence of strong electromagnetic

fields. An example of a problematic situation is the following. Addressing the Dirac equation

Hψ = Eψ for stationary states in the case of an electric scalar potential with a step,

V =

{
0 z < 0 ,
V0 z > 0 ,

let us look for a plane-wave solution ψ with incoming wave boundary conditions ψin ∼ eikz. Thus

we employ an ansatz as a sum

ψ = a+e
ikz


E +mc2

0
~kc
0

Θ(−z) + a− e−ikz


E +mc2

0
−~kc
0

Θ(−z) + b eik
′z


E − V0 +mc2

0
~k′c
0

Θ(z)

of reflected and transmitted waves. [We use the spinor representation in its standard form with

gamma matrices given by (2.10).] The stationary Dirac equation Hψ = Eψ is solved by this

ansatz for z < 0 if k = (~c)−1
√
E2 − (mc2)2 and for z > 0 if

k′ = ±(~c)−1
√
(E − V0)2 − (mc2)2.

The ratios a−/a+ and b/a+ are determined by requiring continuity of the solution ψ at z = 0.

The situation of interest now occurs when V0 > E +mc2. In that case we have a transmitted

wave ∼ eik
′z with real wave number k′ > 0 and the stationary conserved probability current

j = ψ†αzψ = 2(|a+|2 − |a−|2)(E +mc2)~kc = 2|b|2(E − V0 +mc2)~k′c < 0

is negative. This phenomenon (a.k.a. the Klein paradox) implies, in particular, that the reflection

probability |r|2 = |a−/a+|2 exceeds unity! Certainly, no satisfactory interpretation of such a result

exists within the confines of unitary single-particle quantum mechanics.
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Mathematical analysis of the situation reveals that the paradoxical behavior has its reason in

the existence of stationary solutions with negative energy E − V0 < −mc2.
Furthermore, the Dirac Hamiltonian, as it stands, does not have a ground state: it is bounded

neither from below nor from above. When the interaction with the quantized electromagnetic field

is switched on, the absence of a lower bound for the Dirac Hamiltonian poses the catastrophic

threat that an infinite amount of electromagnetic energy might be released by Dirac particles

making a never ending series of transitions to states with lower and lower energy.

These problems force us to abandon the single-particle interpretation of the Dirac equation.

In fact, the correct physical interpretation of the result |a−/a+|2 > 1 above is in terms of particle

production (namely, the creation of electron-positron pairs at the potential step). The paradox

is then resolved by reinterpreting the continuity equation for (ρ, j⃗) = (ψ†ψ, ψ†α⃗ψ) – which had

originally been intended to be the law of conservation of probability – as the law of conservation

of electric charge.

3.6.2 Stable second quantization

As we have tried to indicate, there are serious problems with the original form of Dirac’s theory

due to the fact that the Dirac Hamiltonian, being unbounded from below, does not have a ground

state. Therefore, we now look for a reformulation of Dirac’s theory such that the Hamiltonian

does have a ground state. In the present section we make preparations for such a reformulation

by taking the formalism of second quantization to its most general form.

Let H ∈ End(V ) be any Hermitian Hamiltonian on a single-particle Hilbert space V ; our

interest, of course, is in Hamiltonians H which resemble the Dirac Hamiltonian in that they have

positive as well as negative spectrum neither of which is bounded. We will describe a procedure of

second quantization H 7→ Ĥ which sends H to a non-negative operator Ĥ ≥ 0 on the Fock space

∧(P ∗) for a suitably chosen subspace P ∗ ⊂ V ⊕ V ∗. Our procedure consists of two steps.

In the first step we convert H ∈ End(V ) into an element HC ∈ Cl(V ⊕ V ∗, B) of the Clifford

algebra of the direct sum V ⊕V ∗ with canonical symmetric form B(v+φ, v′+φ′) = φ(v′)+φ′(v).

To describe this step, let {e1, e2, . . .} be any basis of V and {f1, f2, . . .} be the dual basis of V ∗.

Expanding Hej =
∑

i eiHij with respect to that basis, we define

HC :=
∑
ij

Hij ei fj (3.51)
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as a quadratic element of the Clifford algebra Cl(V ⊕ V ∗, B). The Clifford algebra element HC is

seen to be invariantly defined, i.e., does not depend on the choice of basis. Note that our object

HC is still formal and abtract: we have not yet specified the space which HC will be acting on.

Our second step is to choose an exterior algebra ∧(P ∗) for Cl(V ⊕ V ∗, B) to act on. The

choice will be engineered in precisely such a manner that the second-quantized Hamiltonian Ĥ

representing HC comes out to be non-negative.

Assuming that H has no zero eigenvalue, let Π± be the uniquely defined orthogonal projection

operators for the positive and negative eigenspaces V+ = Π+V and V− = Π− of H. In formulas:

H = H+ +H− , H± = Π±HΠ± , H+ > 0 > H− . (3.52)

We now recall from Section 2.8 that a spinor representation of the Clifford algebra Cl(W,B)

is constructed by choosing a polarization

W = P ⊕ P ∗ (3.53)

by Lagrangian subspaces P, P ∗. In the present setting, one such polarization W = V ⊕ V ∗ is

given a priori. The key point, however, is that we should replace it by another one to obtain a

well-behaved second-quantized Hamiltonian Ĥ. In fact, the good choice of polarization for our

purposes is

P = V ∗
+ ⊕ V− , P ∗ = V+ ⊕ V ∗

− . (3.54)

Thus we reverse the roles of vector space and dual space (and hence the definitions of creation

and annihilation operator) when switching from the H-positive eigenspace V+ to the H-negative

eigenspace V− .

We also recall from Section 2.8 that, given a polarization W = P ⊕ P ∗, the Clifford algebra

generators w ∈ W ⊂ Cl(W,B) act by the spinor representation on ξ ∈ ∧(P ∗) as a mixture

w · ξ := ι(wP ) ξ + ε(wP ∗) ξ (3.55)

of exterior multiplication ε(wP ∗) (or particle creation) for the P ∗-component and contraction ι(wP )

(or particle annihilation) for the P -component of w.

Definition. LetH = H++H− be the decomposition of a Hermitian HamiltonianH ∈ End(V ) into

its positive and negative parts, neither of which is bounded. If V = V+ ⊕ V− is the corresponding

decomposition into H-positive and H-negative subspaces, let {ei}, {ẽk} be any two bases of V+ ,

V− , and {fj}, {f̃l} the dual bases of V ∗
+ , V ∗

− , respectively. By the positive (or stable) second

quantization of H we then mean the operator Ĥ on ∧(V+ ⊕ V ∗
−) defined by

Ĥ :=
∑
ij

(H+)ij ε(ei) ι(fj)−
∑
kl

(H−)kl ε(f̃l) ι(ẽk). (3.56)

Thus the elements of P ∗ = V+⊕V ∗
− act as particle creation operators (ε) and those of P = V ∗

+⊕V−
as particle annihilation operators (ι).
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Remark. Note that by CAR the expression (3.56) can be rewritten as

Ĥ =
∑
ij

(H+)ij ε(ei) ι(fj) +
∑
kl

(H−)kl
(
ι(ẽk) ε(f̃l)− δkl

)
. (3.57)

Written in this form, stable second quantization clearly implements the standard scheme (3.55)

but for the subtraction of an (infinite) constant
∑

kl(H−)kl δkl = TrH− . This subtraction in

combination with the adjustment of the order of operators ι(ẽk) ε(f̃l)− δkl = −ε(f̃l) ι(ẽk) is called
normal ordering.

Fact. The stable second quantization Ĥ defined by (3.56) is positive.

Proof. The operator Ĥ is a derivation of the exterior algebra ∧(P ∗). By this token it is positive

on ∧(P ∗) if it is positive on the degree-one subspace P ∗ ⊂ ∧(P ∗). Now Ĥ acts on V+ ⊂ P ∗ as

H+ > 0 and on V ∗
− as −H t

− > 0 . Therefore Ĥ is positive on P ∗ = V+ ⊕ V ∗
− as desired.

3.6.3 The idea of hole theory

In the next subsection, the mathematical idea of stable second quantization will be used to fix the

problems with the Dirac equation. Before doing so, let us give a simplified discussion.

The main physical idea is to redefine what is meant by the vacuum. To consider a very simple

example, let |0⟩ be the (naive) vacuum for a one-dimensional single-particle Hilbert space V ≃ C ,

and denote by c+ (c) the particle creation (resp. annihilation) operator as usual. The Hamiltonian

in this one-dimensional case is just a real number H = h ∈ R . If h is positive, the standard

scheme H 7→ Ĥ = h c+c ≥ 0 of second quantization is fine. On the other hand, for h < 0 the

scheme must be changed if Ĥ is to be non-negative. There exist two equivalent ways of going

about this. One is to exchange the roles of c+ ↔ c and replace c+c by cc+ − 1 = −c+c (that’s

what we did in Section 3.6.2). Equivalently, we may leave the operators the same and, instead,

adjust the definition of the vacuum:

|vac⟩ := c+|0⟩.

Indeed, by the Pauli exclusion principle c+c+ = 0 we now have c+|vac⟩ = 0 . Thus c+ acts on the

new vacuum as an annihilation operator. At the same time we have c|vac⟩ = |0⟩ ̸= 0, so c now

plays the role of a creation operator. And by subtracting a constant from the Hamiltonian

Ĥ := hc+c− h

in order to make the energy of the new vacuum vanish (which amounts to a redefinition of the

location of zero on the energy axis), we obtain

Ĥ(c|vac⟩) = −h (c|vac⟩)

and thus an excited state c|vac⟩ with positive energy eigenvalue −h > 0.

Going from this example to the setting of the Dirac equation, the idea of Dirac’s hole theory is

to define the true vacuum to be the state in which each negative-energy stationary solution of the

Dirac equation is occupied by one electron (and hence Pauli blocked), while all positive-energy
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solutions are unoccupied. The fully occupied negative-energy sector is often referred to as the

‘Dirac sea’. Although the true vacuum |vac⟩ has infinite energy and infinite charge relative to

the naive vacuum |0⟩, one still commands the freedom of shifting the observables of energy and

charge so that they vanish for |vac⟩. The elementary excitations of the true vacuum then are

particles c++|vac⟩ in positive-energy states and hole excitations c−|vac⟩ of the Dirac sea. The latter
have positive energy as well as positive charge (as the negative energy and negative charge of one

Dirac-sea electron are missing); they are interpreted as the states of a new elementary particle

predicted by this reinterpretation of the Dirac equation: the positron.

3.6.4 Mode expansion of the Dirac field

We now implement the scheme of stable second quantization for the Hamiltonian of the Dirac

equation. For pedagogical reasons, we do not emphasize the relativistic covariance of the theory

here, but fix an inertial frame and do all constructions at fixed and equal time t = 0. Therefore,

some of our normalizations will differ from those used in standard text books on relativistic

quantum mechanics. Recall now that the first step of our scheme is to convert the Hamiltonian –

in the present case, the free Dirac Hamiltonian H = mc2β + c
∑
αlpl – into a quadratic Clifford

algebra element HC . Using the basis offered by spinors ψ in the position representation, this is

achieved (in Dirac notation) by

HC :=

∫
d3r

∫
d3r′

4∑
τ,τ ′=1

ψ+
τ (r)⟨r|Hττ ′|r′⟩ψτ ′(r

′), (3.58)

where ψ henceforth is called the Dirac field. Its components obey the canonical anti-commutation

relations

{ψτ (r), ψτ ′(r
′)} = 0 , {ψ+

τ (r), ψ
+
τ ′(r

′)} = 0 , {ψτ (r), ψ
+
τ ′(r

′)} = δττ ′ δ(r− r′). (3.59)

The second step is to specify a good Fock space ∧(P ∗) for HC to act on. For this we need

the decomposition of the single-particle Hilbert space V = L2(R3) ⊗ C4 into its H-positive and

H-negative subspaces V+ and V− . By the translation invariance of H the projection operators

(Π±φ)τ (r) =

∫
d3r′

∑
τ ′

(Π±)ττ ′(r, r
′)φτ ′(r

′) (3.60)

on these subspaces V+ = Π+V and V− = Π−V have Fourier expansions

(Π±)ττ ′(r, r
′) =

∫
d3k

(2π)3
eik·(r−r′)(Π±)ττ ′(k), (3.61)
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where Π±(k) are the matrices of the projection operators at fixed wave vector k. The latter are

found by taking the Dirac Hamiltonian in the momentum representation,

H(k) =

(
mc2 ~cσ⃗ · k⃗

~cσ⃗ · k⃗ −mc2

)
, (3.62)

and diagonalizing it. The 4× 4 matrix H(k) squares to (~ω(k))2 IdC4 where

~ω(k) =
√
(mc2)2 + (~ck)2 , k = |k| . (3.63)

Its eigenvalues are ±~ω(k), each with multiplicity two. Let us(k) and vs(k) denote a corresponding

set of eigenspinors:

H(k)us(k) = +~ω(k)us(k) , H(k)vs(k) = −~ω(k) vs(k) , (3.64)

with normalization u†s(k)us′(k) = v†s(k)vs′(k) = δss′ and u†s(k)vs′(k) = 0, where † means the

adjoint w.r.t. the Hermitian structure of C4. Because of the two-fold spin degeneracy there remains

some freedom in the definition of the quantum number s. One possible choice is to take us(k) and

vs(k) to be eigenvectors of the helicity operator Σ⃗ · k⃗/k – cf. Eq. (2.97) – with eigenvalue s = ±1.
That is the choice we make here. From the eigenspinors us(k) and vs(k) we then construct the

projection matrices

Π+(k) =
∑
s=±1

us(k)⊗ u†s(k) , Π−(k) =
∑
s=±1

vs(k)⊗ v†s(k) , (3.65)

and from these in turn the momentum space representation of the Hamiltonian:

H(k) = ~ω(k)
(
Π+(k)− Π−(k)

)
. (3.66)

We are now in a position to specify the structure of fermionic Fock space ∧(P ∗) for the Dirac

field ψ in the momentum representation. To implement our general scheme, let P ∗ = V+ ⊕ V ∗
−

for V± = Π±V . We regard the positive eigenspinors us(k) as a basis for V+, with their Hermitian

adjoints u†s(k) giving the dual basis for V ∗
+. We write c++,s(k) ≡ ε

(
us(k)

)
for the creation operators

on ∧(V+), while c+,s(k) ≡ ι
(
u†s(k)

)
stands for the corresponding annihilation operators. We

say that c+, s(k) annihilates an electron with momentum ~k and helicity s. By definition, these

creation and annihilation operators satisfy CAR with the non-vanishing anti-commutators being

{c++, s(k), c+, s′(k
′)} = δss′

∫
d3r ei(k−k′)·r = δss′(2π)

3δ(k− k′). (3.67)

Turning to the negative-energy sector, we regard the eigenspinors vs(k) as a basis for V−, with

dual basis v†s(k) for V ∗
−. We write c+−,s(k) ≡ ε

(
v†−s(−k)

)
for the creation operators on ∧(V ∗

−);

the annihilation operators are c−,s(k) ≡ ι
(
v−s(−k)

)
. We say that c+−, s(k) creates a positron with

momentum ~k and helicity s. The sign reversals k→ −k and s→ −s compensate for the overall

change of sign (from L→ −Lt) in the second-quantization scheme, which affects the energy L = H

as well as the momentum L = p and the helicity L = Σ⃗ · p⃗ /p . The (anti-)commutation relations
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for c− and c+− are no different from those in the positive-energy sector; see Eq. (3.67). The true

vacuum is the line ∧0(V+)⊗ ∧0(V ∗
−) in ∧(V+ ⊕ V ∗

−) which is annihilated by all the c− and c+ .

By construction [from Eq. (3.56)], the resulting second-quantized Hamiltonian is positive:

Ĥ =

∫
d3k

(2π)3
~ω(k)

∑
s

(
c++, s(k) c+, s(k) + c+−, s(k) c−, s(k)

)
≥ 0 . (3.68)

The operator for the total momentum carried by the Dirac field is expressed as

p̂ =

∫
d3k

(2π)3
~k
∑
s

(
c++, s(k) c+, s(k) + c+−, s(k) c−, s(k)

)
. (3.69)

We finally return to the position representation to give an expression for the Dirac field ψ(r).

Decomposing ψ = Π+ψ +Π−ψ we obtain

(Π+ψ)(r) =

∫
d3k

(2π)3
eik·r

∑
s

us(k) c+, s(k) , (3.70)

(Π−ψ)(r) =

∫
d3k

(2π)3
e−ik·r

∑
s

v−s(−k) c+−, s(k) , (3.71)

which is called the mode expansion of the Dirac field. Altogether we have

ψ(r) =

∫
d3k

(2π)3
eik·r

∑
s

(
us(k) c+, s(k) + vs(k) c

+
−,−s(−k)

)
. (3.72)

The corresponding expression for the dual field ψ+ is

ψ+(r) =

∫
d3k

(2π)3
e−ik·r

∑
s

(
c++, s(k)u

†
s(k) + c−,−s(−k) v†s(k)

)
. (3.73)

Problem 1. Show that the mode expansion (3.72, 3.73) obeys CAR [Eqs. (3.59)]. �

This concludes our discussion of the procedure of second quantization for the free Dirac field.

What happens in the presence of an electromagnetic field will be explained in a later section.

Problem 2. From the first-quantized Dirac theory we recall the continuity equation ρ̇+divj = 0

for jl = cψ†αlψ and ρ = ψ†ψ ≥ 0, which results in the conservation law Q =
∫
d3rψ†ψ = const

(independent of time). Show that the second-quantized expression for Q is

Q =

∫
d3k

(2π)3

∑
s

(
c++, s(k) c+, s(k)− c+−, s(k) c−, s(k)

)
. (3.74)

Concluding comment. Dirac’s first intention was to formulate a relativistic quantum theory

with positive probability density ρ = ψ†ψ ≥ 0 and conserved Q =
∫
d3r ψ†ψ = 1. This original

plan had to be abandoned because it led to serious problems due to the sign-indefinite nature of

the (first-quantized) Dirac Hamiltonian H. By going to the second-quantized version (or quantum

field-theoretic re-interpretation) of the Dirac Hamiltonian one trades the sign-indefiniteness of H

for the sign-indefiniteness of Q. The latter is then re-interpreted as the electric charge, which may

be positive or negative.
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3.6.5 Charge conjugation symmetry

In Sect. 2.13.2 we learned about charge conjugation C as a complex anti-linear symmetry of the

Dirac equation. Having re-interpreted the Dirac equation as an equation for the Dirac field ψ, we

are now ready for a different perspective on C: by passing to the second-quantized formulation,

charge conjugation is turned into a complex linear operator and hence a unitary (as opposed to

anti-unitary) symmetry of the Dirac Hamiltonian, in the absence of electromagnetic fields.

The principle by which this happens does not depend on the specifics of the Dirac theory, but

is universal. We will now sketch that principle for the case of a generic Hamiltonian. The main

tool to be introduced for this purpose is that of a particle-hole transformation.

Definition. For simplicity, let V be a single-particle Hilbert space of finite dimension N . Then

a particle-hole transformation is a complex anti-linear mapping Φ (defined for all 0 ≤ n ≤ N)

Φ : ∧n(V )
h−→ ∧n(V )∗

ω−1

−→ ∧N−n(V ), (3.75)

where the first map is the obvious map h : Ψ 7→ ⟨Ψ, · ⟩∧(V ) given by the Hermitian structure of

Fock space, and the second map is the inverse of a C-linear isomorphism ω : ∧N−n(V )→ ∧n(V )∗.

For the latter one fixes some state of total occupation Ψ ∈ ∧N(V ) in order to determine a pairing

Ω : ∧N−n(V )× ∧n(V )→ C by

Ω(ξ, ξ′)Ψ = ξ ∧ ξ′. (3.76)

For ξ ∈ ∧N−n(V ) one then sets ω(ξ) := Ω(ξ, · ) ∈ ∧n(V )∗. We remark that by particle-hole

transforming an operator L : ∧n(V ) → ∧n+k(V ) that changes the degree by k, one gets an

operator ΦLΦ−1 : ∧N−n(V )→ ∧N−n−k(V ) that changes the degree by −k.

Problem. Show that for any |v⟩ ∈ V , ⟨u| ∈ V ∗, and a , b ∈ C one has

Φ
(
a c+|v⟩ + b c⟨u|

)
Φ−1 = a c⟨v| + b c+|u⟩, (3.77)

independent of the choice of Ψ ∈ ∧N(V ).

Fact. The second quantization Â of any Hermitian and traceless one-body operator A is odd

under particle-hole transformation

ΦÂΦ−1 = −Â, (3.78)

on the fermionic Fock space ∧(V ). This statement is verified as follows. Let Â =
∑

ij⟨i|A|j⟩ c
+
i cj

be an arbitrary one-body operator. Its particle-hole transform is computed to be

Φ
(∑

⟨i|A|j⟩ c+i cj
)
Φ−1 =

∑
⟨i|A|j⟩ cic+j =

∑
⟨j|A†|i⟩(−c+j ci + δij).

Thus if A† = A and TrVA = 0, the claimed property (3.78) follows. �

Let now A ≡ H = H† be a first-quantized Hamiltonian, and assume that there exists an

anti-unitary operator C : V → V with the property

CHC−1 = −H. (3.79)
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It follows that if |v⟩ ∈ V is an eigenvector of H with eigenvalue E, then C|v⟩ is an eigenvector of

H with eigenvalue −E. Thus C is a spectrum-inverting operation (not a symmetry!) for H. In

particular, it follows that H is traceless (TrVH = 0).

By second quantization, the spectrum-inverting operation C gives rise to a complex anti-linear

operation Ĉ : ∧n(V )→ ∧n(V ) for all 0 ≤ n ≤ N . The property (3.79) then transcribes to

ĈĤĈ−1 = −Ĥ, (3.80)

and by combining Eq. (3.80) with (3.78) we arrive at

(Φ ◦ Ĉ)Ĥ(Φ ◦ Ĉ)−1 = +Ĥ. (3.81)

Thus the concatenation Φ◦ Ĉ commutes with the second-quantized Hamiltonian Ĥ; it is therefore

a symmetry of Ĥ. Since both Φ and Ĉ are complex anti-linear, the symmetry is complex linear

and in fact unitary. Note, however, that Φ◦Ĉ maps ∧n(V ) to ∧N−n; thus it relates the eigenvalues

and eigenvectors of the Hamiltonian for different particle numbers, n and N − n.
To reap full benefit from the symmetry Φ ◦ Ĉ one assumes that kerH = 0 (i.e., H has no

zero eigenvalues). As a consequence, the dimension N must be even. For even better results, one

assumes that H has a spectral gap around zero energy. The ground state of Ĥ in the distinguished

sector of particle number N/2 (called “half filling”) then is the complex line in ∧N/2(V ) with all

negative-energy states occupied (the analog of the filled Dirac sea). This ground state transforms

into itself under the application of Φ ◦ Ĉ. A one-particle excited state with positive energy E in

∧N/2+1(V ) transforms under Φ ◦ Ĉ in a one-hole excited state with the same positive energy E in

∧N/2−1(V ). Thus Φ ◦ Ĉ is a true unitary symmetry of the system at half filling.

So much for the generic situation. To apply the discussion above to the relativistic case of Dirac

fermions, one identifies the spectrum-inverting operation C with the complex anti-linear charge

conjugation operator C : ψ → iγ2ψ̄ of the first-quantized Dirac theory. Indeed, the free Dirac

Hamiltonian H = mc2β + c
∑

l αlpl (zero electromagnetic field) obeys CHC−1 = −H, assuming

the standard representation for β and αl. To account for the fact that dimV is now infinite, the

definition (3.75) of particle-hole transformation Φ must be adapted. The main idea here is to set

n = N/2 + q, N − n = N/2 − q and excise the infinite Dirac sea at half filling, ∧N/2(V ). The

particle-hole operator Φ is then defined as a complex anti-linear transformation from the sector

with q particles to the sector with q holes (relative to the sea at half filling).

The concatenation Φ ◦ Ĉ leaves the true vacuum (i.e., the infinite Dirac sea at half filling)

invariant and maps a physical electron state with excitation energy ε to a physical positron

state with the same energy ε. By construction, this complex linear operation Φ ◦ Ĉ is a unitary

symmetry of the free Dirac Hamiltonian. [It becomes the charge conjugation symmetry of quantum

electrodynamics when understood to act on the electromagnetic field as (E,B) 7→ (−E,−B).]
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3.7 Quantization of the electromagnetic field

Quantization of the electromagnetic field proceeds by the formalism of second quantization for

bosons. Let us review that formalism and bring it into a form well suited to our present goals.

3.7.1 Review and consolidation

The general starting point of second quantization for bosons is a real vector space W — the phase

space of generalized positions and momenta — with symplectic form α : W × W → R . (We

here renege on our earlier practice of using the symbol A , as A in the present context stands for

the electromagnetic gauge field.) More generally, in geometric quantization one would start from

a symplectic manifold W , but since the Maxwell theory of the electromagnetic field is a linear

theory, it suffices for our purposes to assume the setting of a vector space. We recall from Section

3.2 that the symplectic vector space (W,α) determines a Weyl algebra W(W,α).

To quantize the theory and construct a quantum mechanical Hilbert space, it does not suffice

just to have a symplectic structure α on W . One also needs a (compatible) complex structure J ,

i.e., a linear mapping

J ∈ End(W ) , J2 = −IdW , (3.82)

subject to the requirement that J induces a Euclidean scalar product

g : W ×W → R , (w,w′) 7→ g(w,w′) = g(w′, w) , g(w,w) ≥ 0 , (3.83)

by the formula

∀w,w′ ∈ W : g(w,w′) = α(w, Jw′). (3.84)

(In the more general case of a symplectic manifold W , the complex structure J is to induce a

Riemannian metric and a compatible Kähler structure.)

Problem. Deduce from (3.84) that g(Jw, Jw′) = g(w,w′) and α(Jw, Jw′) = α(w,w′). �

The choice of g isn’t a big issue as long as dimW < ∞ , but it does become essential in the

case of an infinite-dimensional phase space W where different choices of g lead to inequivalent

quantizations. In our treatment of the quantized electromagnetic field, the Euclidean structure g

will be provided by the electromagnetic energy, which is a positive function.

Example. Consider the symplectic plane

W = spanR{eq , ep} ≃ R2

with generators eq and ep . The symplectic form (dual to the Poisson bracket) is

α(ep , eq) = −α(eq , ep) = 1 , α(eq , eq) = α(ep , ep) = 0 .

You should think of the dual basis functions q , p as the variables of position and momentum. In

the language of differential forms, one writes α = dp ∧ dq.
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We now equip the vector space W with a Euclidean structure g (i.e., a Euclidean scalar

product g) by picking some harmonic oscillator Hamiltonian H = p2/2m+mω2q2/2 and adopting

the natural interpretation of H as a quadratic form H : W → R to set

g(eq , eq) :=
2

ω
H(eq) = mω , g(ep , ep) :=

2

ω
H(ep) = (mω)−1,

and g(eq , ep) = g(ep , eq) = 0 . The complex structure J ∈ End(W ) is then given by

Jeq = −mω ep , Jep = (mω)−1eq ,

or equivalently, in terms of the canonical transpose J t ∈ End(W ∗) of J ,

J tq = (mω)−1p , J tp = −mωq .

Note that J is the operator of time evolution by one quarter of the oscillator period. �
We continue with the general development. The complex structure J determines a polarization

W ⊗ C = V ⊕ Ṽ (3.85)

by complex subspaces V and Ṽ which are acted upon by J as J |V = +i and J |Ṽ = −i (hence
the name ‘complex structure’). Thus V and Ṽ are the eigenspaces of J corresponding to the

eigenvalues +i and −i respectively. The complex vector space Ṽ is called the holomorphic part of

W ⊗ C , while V is the anti-holomorphic part. Note the characterization

V = {w − iJw | w ∈ W} , Ṽ = {w + iJw | w ∈ W}. (3.86)

Thus V is isomorphic to W as a real vector space by W
∼→ V , w 7→ w − iJw , and an analogous

statement holds for Ṽ .

Let the complex linear extension of α to W ⊗ C still be denoted by the same symbol α .

Problem. Show that the pairing

α : V ⊗ Ṽ → C , v ⊗ ṽ 7→ α(v, ṽ) , (3.87)

between V and Ṽ is non-degenerate. Show also that the subspaces V and Ṽ are Lagrangian, i.e.,

α(v, v′) = α(ṽ, ṽ′) = 0 for any two vectors v, v′ ∈ V and ṽ, ṽ′ ∈ Ṽ . �

By the pairing between the complex vector spaces V and Ṽ we may identify Ṽ with the dual

vector space V ∗ of V . Planck’s constant ~ has not appeared in the discussion so far, but it now

does. The point is that there is some freedom in making the identification Ṽ ≃ V ∗. Concretely

put, one has the freedom of inserting a multiplicative constant (−i/~) in the isomorphism

I : Ṽ → V ∗, ṽ 7→ − i

~
α(ṽ, ·). (3.88)

By this choice of quantization constant we henceforth identify Ṽ ∋ ṽ ≡ I(ṽ) ∈ V ∗.

Problem. In the context of our example (the symplectic plane), show that

I (eq + iJeq) =
i

~
(p− iJ tp).
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The interpretation of this result is that p = −i~ I(eq) = ~
i
∂
∂q

. �

Definition/Fact. The holomorphic Lagrangian subspace Ṽ ⊂ W ⊗C carries a Hermitian scalar

product h : Ṽ × Ṽ → C by

h(ṽ, ṽ′) ≡ h(w + iJw,w′ + iJw′)
def
= − i

~
α(w − iJw,w′ + iJw′). (3.89)

Remark. The same can be done on V . Concerning h on Ṽ , notice that

Reh(ṽ, ṽ′) =
2

~
g(w,w′), Imh(ṽ, ṽ′) = −2

~
α(w,w′). (3.90)

It follows that h has the required properties h(ṽ, ṽ′) = h(ṽ′, ṽ) and h(ṽ, ṽ) ≥ 0 . �

The definition (3.89) turns Ṽ ≃ V ∗ into a complex Hilbert space. The bosonic Fock space then

is the symmetric algebra S(V ∗) equipped with the Hermitian scalar product which is induced by

that of V ∗ ≃ Ṽ ; see Section 3.4 for the details. The Weyl algebra of the symplectic vector space

(W,α) acts on S(V ∗) by

w · ξ = δ(wV ) ξ + µ(wV ∗) ξ , w ∈ W, ξ ∈ S(V ∗). (3.91)

As before in Section 3.4, the symbol δ(wV ) stands for the operator of derivation by the V -compo-

nent of w, and µ(wV ∗) means multiplication by the V ∗-component of w.

Problem. Returning to our previous example, namely the symplectic plane W = spanR{eq , ep}
with mass parameter m and oscillator frequency ω, show that

Ṽ ≡ V ∗ = C · a+, a+ =
1√
2

(
q

ℓ
− i

ℓp

~

)
, ℓ =

√
~
mω

.

Using the isomorphism V ∗ ≃ Ṽ and the Hermitian scalar product h prove that a+ is a unit vector:

h(a+, a+) = 1. Finally, use the Fock space scalar product induced by h to compute the Hermitian

adjoint of a+ and show that

(a+)† = a =
1√
2

(
q

ℓ
+ i

ℓp

~

)
. �

To turn our quantization procedure into a tool available for direct use, we must take into

account that physical observables are functions (not points) on the phase spaceW . The elementary

functions on W are the linear functions of position q : W → R and momentum p : W → R. For
such a function φ ∈ W ∗ we now ask how it becomes an operator φ̂ on the Fock space S(V ∗). For

later use, the answer will be written in components with respect to a basis. Thus let {eλ} and

{ẽλ} be orthonormal bases of V and Ṽ , with dual bases {fλ} and {f̃λ} of V ∗ and Ṽ ∗, respectively.

We arrange for f̃λ = I(eλ) and fλ = −I(ẽλ) by the isomorphism (3.88). A general element φ ∈ W ∗

then expands as

φ =
∑

λ

(
φ(eλ)fλ + φ(ẽλ)f̃λ

)
. (3.92)

Quantization on S(V ∗) sends fλ → µ(fλ) ≡ a+λ and f̃λ → δ(eλ) ≡ aλ . Hence,

φ̂ =
∑

λ

(
φ(eλ) a

+
λ + φ(ẽλ) aλ

)
. (3.93)
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3.7.2 More preparations

Beginning with a quick reminder of some relevant material from classical electrodynamics, we now

apply the general formalism of (second) quantization to the electromagnetic field.

The electromagnetic gauge field is a one-form A = −Φ dt +
∑
Aj dxj . From it one obtains

the electromagnetic field strength, a two-form F = B + E ∧ dt , by taking the exterior derivative

F = dA . In components one has

Ej = −
∂Φ

∂xj
− ∂Aj

∂t
, Bij =

∂Aj

∂xi
− ∂Ai

∂xj
. (3.94)

The components of the excitations D =
∑

i<j Dij dxi ∧ dxj and H =
∑
Hj dxj are given by

Dij = ε0
∑

k
ϵijk Ek , Bij = µ0

∑
k
ϵijkHk , (3.95)

where ε0 and µ0 are called the dielectric constant and magnetic permeability of the vacuum,

respectively (and ϵijk is an orientation-twisted variant of the totally anti-symmetric tensor on R3).

A short-hand form of these so-called constitutive laws is

D = ε0 ⋆ E , B = µ0 ⋆ H , (3.96)

or ⋆D = ε0E, ⋆B = µ0H. The fields D and B are subject to the constraints dB = 0 and dD = ρ ,

where ρ = ρ̃ d3r is the three-form of the electric charge density. The dynamical equations of

motion are Faraday’s law Ḃ = −dE of induction and the Ampere-Maxwell law Ḋ = +dH.

Notation. Using the traditional vector notation, one expresses the two-form components Dij =

−Dj i asDij =
∑
ϵijkDk and combines the three components into a vectorD := (D1, D2, D3). The

same convention is used for the magnetic field strength B. With this convention, the constitutive

laws read D = ε0E and B = µ0H . The constraints are divB = 0 and divD = ρ̃ , and the

equations of motion are Ḃ = −rotE and Ḋ = rotH. �

We will be using the Hamiltonian formalism (as opposed to the Feynman path integral formal-

ism). The standard textbook approach is to work with the gauge field A and choose the temporal

gauge Φ = 0 . In this case the magnetic vector potential A =
∑
Aj dxj plays the role of the

position variable q of Hamiltonian mechanics, and the electric field strength E = −Ȧ acquires the

meaning of (minus the) velocity q̇ . The electric excitation D corresponds to the momentum p .

However, the general framework developed in Section 3.7.1 is rather flexible: it allows us to

circumvent the introduction of the gauge field (and the ensuing need for gauge fixing) and instead

work with the physically observable field strengths and excitations directly. This is what we shall

do in the sequel. The equations will be set up in a way that likens the electric excitation D to the

position variable and the magnetic field strength B to the momentum variable.

The first step of quantization is to identify the phase space of the electromagnetic field. This

will be the space W of all solutions to Maxwell’s equations. W is an affine space, as the difference

of two solutions in the presence of sources (i.e., electric charges) is a solution of the vacuum

Maxwell equations, which form a linear system. In the current section, we will address only the
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somewhat simplified problem of quantizing the electromagnetic field in the absence of charged

matter, in which case W is a vector space. (Indeed, the sum of two vacuum solutions is another

vacuum solution).

3.7.3 Symplectic structure

To quantize the theory following the general scheme of Section 3.7.1, we need a symplectic and a

complex structure on the space W of vacuum solutions. We begin with the symplectic structure.

Because every solution is determined by a set of initial data, say B|t=0 and D|t=0 , one can

compute the symplectic structure α as an integral over the Euclidean space R3 at the initial time

t = 0 . For mathematical simplicity, let us assume that the electromagnetic field is confined to

a bounded region U ⊂ R3 with Dirichlet boundary conditions D|∂U = 0 = B|∂U at the surface

∂U . (For a precise treatment, one might also take the domain U to be connected and simply

connected.) The following definition of the symplectic structure is modeled after the expression

α = dp ∧ dq (or α = p ∧ q = −q ∧ p in the case of a linear system) of Section 3.7.1.

Notation. If B is the two-form of the magnetic field strength (or, for that matter, any closed

two-form) then by d−1B we mean any one-form A such that dA = B. Equivalently, using the

language of vector calculus, if B is the magnetic field (or, for that matter, any divergenceless

vector field) then by rot−1B we mean any magnetic vector potential A such that rotA = B.

Fact. Let D and B be closed (i.e. dD = dB = 0). Then the integral∫
U

D ∧ d−1B =

∫
U

D · rot−1B d3r

is independent of the choice of one-form d−1B provided that D vanishes on ∂U . Indeed, if A

and A′ satisfy B = dA = dA′ then by the Poincaré lemma there exists a function f such that

A− A′ = df and ∫
U

D ∧ A−
∫
U

D ∧ A′ =

∫
U

D ∧ df =

∫
∂U

fD −
∫
U

fdD = 0 .

In vector notation, the same computation for the case of a gauge transformation A = A′ +gradf

looks as follows:∫
U

D · (A−A′) d3r =

∫
U

D · gradf d3r =
∫
∂U

f D · d2n−
∫
U

f divD d3r = 0 .

Remark 1. From magnetostatics one knows that if the equation B = rotA is solved for A in the

Coulomb gauge divA = 0 (or, in the language of differential forms, B = dA with d ⋆ A = 0) then

one has (for U = R3)

A(r) =

∫
R3

rotB(r′)

4π|r− r′|
d3r′.

Thus with this choice of gauge we obtain the expression∫
R3

D · rot−1B d3r =

∫
R3

D(r) · rotB(r′)

4π|r− r′|
d3r′d3r.
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Remark 2. Under certain special circumstances the integral
∫
D ∧ d−1B has a beautiful ge-

ometric (actually, topological) interpretation. Suppose that both D and B are localized inside

tubular neighborhoods of two curves, say γ and γ̃ respectively. Suppose further that these tubular

neighborhoods do not intersect each other. Then it is possible to show that our integral coincides

with the Gauss linking number G(γ, γ′) of the two curves, multiplied by the product of electric

(ΦD =
∫
D) and magnetic (ΦB =

∫
B) fluxes circulating in the tubular neighborhoods of the two

curves: ∫
U

D ∧ d−1B = ΦD ΦB G(γ, γ
′).

Fact. The symplectic structure α on the space W of vacuum solutions, as represented by the

initial data D ≡ D|t=0 and B ≡ B|t=0 , is expressed by

α
(
(D,B), (D ′, B ′)

)
=

∫
U

(D ′ ∧ d−1B −D ∧ d−1B ′)

=

∫
U

(D′ · rot−1B−D · rot−1B′) d3r . (3.97)

In particular, α is non-degenerate on W . �

How do we know that α as defined in (3.97) is the proper symplectic form to use? The answer

is that α in combination with the Hamiltonian function (the electromagnetic energy) gives the

correct Hamiltonian equations of motion, Ḃ = −dE and Ḋ = dH.

To conclude this subsection, we make a dimension check. Recall that D and B have the

physical dimensions

[D] = charge , [B] = [A] = energy/current . (3.98)

Equivalently, the components have the physical dimensions

[Dij] = charge/area , [Bij] = energy/(current×area) , [Aj] = energy/(current×length) .

It follows that
∫
D ∧ d−1B has the physical dimension of

charge× energy

current
= energy× time = action . (3.99)

The process of quantization makes α dimensionless by measuring it in units of Planck’s constant.

3.7.4 Complex structure

The complex structure on the space W of vacuum solutions is determined by considering the total

electromagnetic energy,

H =
1

2

∫
U

(D ∧ E +B ∧H) =
1

2ε0

∫
U

|D|2 d3r + 1

2µ0

∫
U

|B|2 d3r ≥ 0 , (3.100)
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which is the classical Hamiltonian function of the theory. The details are as follows.

The equations of motion Ḃ = −dE and Ḋ = dH for the electromagnetic field on the bounded

domain U have a fundamental system of periodic solutions, the so-called normal modes. Explicit

expressions for these can be given if U has a simple regular shape such as a cube or a ball;

otherwise one is only assured of their existence and needs a numerical algorithm (typically involving

discretization on a grid) to compute them. To find the normal modes, one looks for solutions of

the wave equation (
1

c2
∂2

∂t2
−∆

)
ft = 0 , ft

∣∣
∂U

= 0 , (3.101)

of stationary type. (∆ is the Laplacian, and c = 1/
√
ε0µ0 is the speed of light.) The ansatz

ft = f e−iωt leads to the Helmholtz equation(
ω2/c2 +∆

)
f = 0 , f

∣∣
∂U

= 0 . (3.102)

For the type of domain U which we envisage, solutions of this equation exist only for a discrete

set of characteristic frequencies ωλ .

Problem. Show that if D is a closed electric-type two-form solution of the Helmholtz equation

with frequency ω, then d ⋆ D = ε0 dE is a closed magnetic-type two-form solution with the same

frequency. In vector notation, the statement is that by taking the curl of a divergenceless vector

solution D one gets a divergenceless (axial) vector solution rotD . �

In the following, let (Dλ, Bλ) denote the electric and magnetic initial data of any two-form

solution of the Helmholtz equation with frequency ωλ . Such a pair (Dλ, Bλ) is called a normal

mode. The normal modes for a fixed characteristic frequency ωλ form a vector space Wλ . If there

are no degeneracies in the spectrum of the Laplacian (that’s the generic situation for a domain U

of arbitrary shape which we henceforth assume) Wλ is two-dimensional. The symplectic form α

on W restricts to a non-degenerate symplectic form αλ on Wλ . In fact, one has

α
(
(0, d ⋆ Dλ), (Dλ, 0)

)
=

∫
U

Dλ ∧ ⋆Dλ =

∫
U

|Dλ|2 d3r ̸= 0 ,

and similarly, α
(
(d ⋆ Bλ, 0), (0, Bλ)

)
̸= 0, unless Dλ = Bλ ≡ 0.

The complex structure J acts diagonally w.r.t. the decompositionW = ⊕Wλ by normal modes.

To compute its action on any one of the subspaces Wλ ⊂ W , one computes the time evolution of

the initial data (Dλ, Bλ) ⊂ Wλ for one quarter of the period Tλ = 2π/ωλ .

We are now in a position to get specific.

Definition/Fact. The complex structure acts on Wλ as

J
(
Dλ, Bλ

)
=

(
d ⋆ Bλ

ωλ µ0

, −d ⋆ D
λ

ωλ ε0

)
, J

(
Dλ,Bλ

)
=

(
rotBλ

ωλ µ0

, −rotDλ

ωλ ε0

)
. (3.103)

Problem. Verify from the equations of motion Ḋ = d ⋆B/µ0 and Ḃ = −d ⋆D/ε0 that J(Dλ, Bλ)

as specified is indeed the quarter-period time evolution of (Dλ, Bλ). Show also that J2 = −Id .
(Hint: for the latter, the key step is to show that (d⋆)2 agrees with the Laplacian −∆ on closed

two-forms. In vector notation this means that rot ◦ rot = −∆ on divergenceless vector fields.)
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3.7.5 Fock space: multi-photon states

With the symplectic and complex structures in hand, we now take a look at the induced Euclidean

scalar product g. By implementing the general prescription of (3.84) we obtain

g
(
(Dλ, Bλ), (Dλ, Bλ)

)
= α

(
(Dλ, Bλ), J(Dλ, Bλ)

)
=

1

ωλ ε0

∫
U

Dλ ∧ ⋆Dλ +
1

ωλ µ0

∫
U

Bλ ∧ ⋆Bλ =
2

ωλ

H(Dλ, Bλ) ≥ 0 , (3.104)

for any normal mode (Dλ, Bλ) ∈ Wλ . Thus the Euclidean length squared of a normal mode is

equal to (twice) the electromagnetic energy of that mode divided by its characteristic frequency.

Problems. (i) Show that the normal mode subspaces Wλ are orthogonal to one another with re-

spect to the Euclidean structure g. (ii) Verify the validity of the invariance properties g(Jw, Jw′) =

g(w,w′) and α(Jw, Jw′) = α(w,w′) in the present context. �

Next we use the complex structure J to polarize the complexified phase space W ⊗C = V ⊕ Ṽ
by two complex Lagrangian subspaces V = ⊕Vλ and Ṽ = ⊕Ṽλ . This can be done separately for

each normal mode λ . Hence, for every λ let Ṽλ be the complex one-dimensional space

Ṽλ = C ·
(
(Dλ, Bλ) + iJ(Dλ, Bλ)

)
(3.105)

spanned by any (non-vanishing) normal mode (Dλ, Bλ) ⊂ Wλ . Without loss of generality we may

single out the purely electric normal mode in Wλ . A special generator,

ẽλ :=
1√
2

(
(Dλ

0 , 0) + iJ(Dλ
0 , 0)

)
∈ Ṽλ , (3.106)

is then fixed by normalizing to the oscillator ground state energy:

H(Dλ
0 , 0) =

1
2
~ωλ . (3.107)

By recalling the Hermitian scalar product h which is given by Reh = 2g/~ and Imh = −2α/~
on the holomorphic subspace Ṽ (cf. Section 3.7.1), we see that the normalized mode ẽλ is a unit

vector of h. The corresponding generator of the anti-holomorphic part Vλ ⊂ Wλ ⊗ C is

eλ :=
1√
2

(
(Dλ

0 , 0)− iJ(Dλ
0 , 0)

)
. (3.108)

We now form the orthogonal sums V := ⊕λVλ and Ṽ := ⊕λṼλ and thus have a polarization

W ⊗ C = V ⊕ Ṽ (3.109)

by Lagrangian holomorphic and anti-holomorphic subspaces. Next, we recall from Sect. 3.7.1 our

notation {fλ} for the dual basis of V ∗ ≃ Ṽ . The Hilbert space of the quantized electromagnetic

field is the symmetric algebra S(V ∗) completed to an L2-space by the Fock space Hermitian scalar

product due to h. The state vectors in the degree-n subspace Sn(V ∗) are called n-photon states.

As usual, the multiplication operators a+λ = µ(fλ) act on the Fock space S(V ∗) as photon creation

operators a+λ : Sn(V ∗) → Sn+1(V ∗), the derivations aλ = δ(eλ) : Sn(V ∗) → Sn−1(V ∗) are photon
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annihilation operators. The Fock space has a vacuum 1 ∈ C = S0(V ∗) which is denoted by |0⟩ in
Dirac notation. The commutation relations are the canonical ones (CCR):

[aλ , a
+
λ′ ] = δλλ′ , [a+λ , a

+
λ′ ] = 0 , [aλ , aλ′ ] = 0 . (3.110)

Based on the general formula (3.93), we can now express the quantized electromagnetic field

in the form of a normal mode expansion:(
D̂(r), B̂(r)

)
=
∑

λ

(
eλ(r) a

+
λ + ẽλ(r) aλ

)
. (3.111)

By separating the right-hand side into electric and magnetic parts we get

D̂(r) =
1√
2

∑
λ

Dλ
0 (r)

(
a+λ + aλ

)
, B̂(r) =

i√
2

∑
λ

d ⋆ Dλ
0

ωλε0
(r)
(
a+λ − aλ

)
. (3.112)

Note that in the construction above we could have singled out the purely magnetic normal mode

(0, Bλ
0 ) = J(Dλ

0 , 0) instead of (Dλ
0 , 0). This would have led to modified photon creation operators

b+λ and annihilation operators bλ by the modified choice of basis vectors in Eqs. (3.106, 3.108).

The quantization procedure would have resulted in

D̂(r) =
−i√
2

∑
λ

d ⋆ Bλ
0

ωλµ0

(r)
(
b+λ − bλ

)
, B̂(r) =

1√
2

∑
λ

Bλ
0 (r)

(
b+λ + bλ

)
. (3.113)

This is the same as (3.112) because Bλ
0 = −(ωλε0)

−1d ⋆ Dλ
0 and iaλ = bλ, ib

+
λ = a+λ . Finally,

inserting the expansion (3.112) of the quantum fields D̂, B̂ into the expression (3.100) for the

electromagnetic energy, we obtain the quantum Hamiltonian of the electromagnetic field as

Ĥ ?
= 1

2

∑
λ
~ωλ

(
a+λ aλ + aλ a

+
λ

)
. (3.114)

3.7.6 Casimir energy

We are now confronted with the same situation that already existed in the case of the Dirac field:

an infinite constant must be subtracted from the Hamiltonian Ĥ in order to make it well-defined

on the Fock space S(V ∗). Indeed, applying (3.114) to the Fock vacuum |0⟩ , which is annihilated

by each of the aλ , we get an infinite ground state energy

1
2

∑
λ
~ωλ =∞ . (3.115)

The infinite constant to be subtracted (by the procedure of normal ordering) is universal in

the sense that it does not depend on the cavity U under consideration: it is the infinite ground

state energy of the electromagnetic field for the basic situation that U covers all of space and the

boundary conditions are pushed to the edge of the universe. For the case of a finite cavity U ,

this universal vacuum energy differs by a finite amount EC from the infinite ground state energy

(3.115). Thus the correct formula for the quantum Hamiltonian Ĥ = ĤU is

ĤU =
∑

λ
~ωλ a

+
λ aλ + EC(U). (3.116)
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EC is called the Casimir energy. We mention in passing that over the last decade, advanced

techniques have been developed to compute EC(U) accurately for a cavity U of general shape.

A simple dimensional estimate of EC can be had for the case of a cavity of high symmetry, say

a ball BL of radius L. For this purpose we note that the characteristic frequencies ωλ secretly carry

a factor of c (speed of light). Therefore EC must be proportional to ~c, which has the physical

dimension of energy×length. Since the ball radius L is the only length scale in the problem, there

exists only one energy that can be formed:

EC(BL) ∼
~c
L
. (3.117)

Thus EC(BL) = K~c/L, where K is a constant. K turns out to be negative.

The Casimir energy tends to lead to an attractive force between surfaces. This so-called

Casimir effect is predicted to be a challenge for future developments of nano-technology, as the

attractive Casimir force makes nano-particles clump together, whereas the nano-engineer would

like them to be freely movable.

3.7.7 Mode expansion for the torus geometry

Let us now consider a geometry which is simple enough to make it possible for the mode expansion

to be given in explicit form: we choose for U a 3-torus T3, i.e., a cubic domain

T3 = [0, L1]× [0, L2]× [0, L3]

with periodic boundary conditions in each direction. Aside from being a mathematical idealization

that does not correspond to the real world, this choice has a certain drawback: on T3 there exist

harmonic two-forms, i.e., solutions of the Laplace equation ∆D = 0 = ∆B. Such solutions require

a separate treatment beyond that of Section 3.7.5. For brevity, we will ignore this issue here.

For better overall balance of presentation, we now adopt the vector notation for the electro-

magnetic field (dropping the bold-face convention for vectors). Our main task then is to construct

divergenceless vector field solutions of the Helmholtz equation and thus the unit normal modes

eλ and ẽλ. It is a standard fact that the Helmholtz equation (∆+ k2)f = 0 for functions f on T3

has a complete orthonormal system of solutions by plane waves

fk(r) :=
eik·r√
vol

= (L1L2L3)
−1/2ei(k1x1+k2x2+k3x3) , kj ∈ 2πZ/Lj .

To obtain the desired solutions for the divergenceless vector fields D and B, we proceed as

follows. For every wave vector k = (k1, k2, k3) we choose two so-called polarization unit vectors

ϵs(k) (s = 1, 2) with two properties: (i) they form an orthonormal basis of the plane perpendicular

to the wave vector k, and (ii) the 3-bein (ϵ1(k), ϵ2(k), k) is a right-handed system. (Let us mention

in passing that such a choice does not exist in a globally smooth manner in the k-continuum.

Indeed, on topological grounds any smooth vector field k 7→ ϵs(k) tangent to the two-sphere must

have at least two zeroes. This obstacle is of no concern to us here, as our set of wave vectors is
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discrete due to the periodic boundary conditions.) For every (k, s) we then introduce a constant

vector field d k,s
0 as

d k,s
0 =

√
~c|k| ε0 ϵs(k). (3.118)

Problem. Show that the complex vector field D k,s
0 (r) = d k,s

0 fk(r) is divergenceless (divD
k,s
0 = 0)

and solves the Helmholtz equation (∆ + ω2/c2)D k,s
0 = 0 with characteristic frequency ω = c|k|.

Verify also that the total energy of the real vector field
√
2ReD k,s

0 viewed as an electric excitation

field D is equal to the oscillator zero point energy 1
2
~ω. �

Using the information from the Problem above and from Section 3.7.5, especially Eq. (3.106),

we compute the “holomorphic” unit normal mode ẽk,s with wave vector k and polarization s as

ẽk,s =
1√
2

(
(D k,s

0 , 0) + iJ(D k,s
0 , 0)

)
=

1√
2

(
D k,s

0 ,−i rotD
k,s
0

c|k| ε0

)
. (3.119)

The curl in the magnetic component of ẽk,s simplifies as rotD k,s
0 = ik ×D k,s

0 (vector product).

We turn to the construction of the “anti-holomorphic” unit vector ek,s ∈ Vk,s. While this follows

in principle from the defining expression for ẽk,s by the substitution +iJ → −iJ , we wish to arrange

for the dual basis vectors fk,s and f̃k,s to quantize as mutual Hermitian adjoints: µ(fk,s) = a+s (k)

and δ(f̃k,s) = as(k). Since we have chosen to work with the complex-valued exponential fk(r) ∝
eik·r, we must deviate slightly from the blueprint of Section 3.7.5, where we constructed the normal

modes over the real number field (in the present context this would correspond to working with

the real-valued functions Re eik·r and Im eik·r), we start from D̃ k,s
0 (r) = d k,s

0 fk(r), which is still in

the normal mode space of frequency ω = c|k|, and obtain

ek,s =
1√
2

(
(D̃ k,s

0 , 0)− iJ(D̃ k,s
0 , 0)

)
=

1√
2

(
D̃ k,s

0 ,
k × D̃ k,s

0

c|k| ε0

)
. (3.120)

From the general prescription given by the formula (3.111) we now have(
D̂(r), B̂(r)

)
=
∑
k,s

(
ek,s(r) a

+
s (k) + ẽk,s(r) as(k)

)
. (3.121)

Separating this into electric and magnetic parts and introducing the axial vector

b k,s0 =
k × d k,s

0

c|k| ε0
(3.122)

for short, we arrive at the mode expansion in final form:

D̂(r) =
1√
2 vol

∑
k, s

d k,s
0

(
e−ik·ra+s (k) + eik·ras(k)

)
, (3.123)

B̂(r) =
1√
2 vol

∑
k, s

b k,s0

(
e−ik·ra+s (k) + eik·ras(k)

)
. (3.124)

Note that here [as(k), a
+
s′(k

′)] = δss′δkk′ , as is appropriate for the present setting with discrete k.
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3.8 Matter-field interaction

We have discussed in some detail the quantization of the free Dirac field and the free electro-

magnetic field. Let us add here a few words about the full interacting theory (called quantum

electrodynamics, or QED) of the Dirac field coupled to the electromagnetic field.

For the purpose of writing a formula for the interaction, one introduces a magnetic vector

potential A ∈ rot−1B. (Let us mention in passing that the introduction of A is not forced. One

can also work with the physical electric and magnetic fields, by parametrizing the charged matter

current by polarization and magnetization fields.) To eliminate the redundant gauge degrees of

freedom one fixes the gauge, say by choosing the Coulomb gauge

divA = 0 . (3.125)

By direct transcription from (3.123) one then has the mode expansion (still for U = T 3)

Â(r) =
i√
2 vol

∑
k, s

d k,s
0

c|k| ε0
(
e−ik·ra+s (k)− eik·ras(k)

)
. (3.126)

It is easy to check that div Â = 0 and rot Â = B̂.

In the presence of electric charges it is no longer possible to choose the gauge Φ = 0 . Instead,

one takes Φ to be the (instantaneous) Coulomb potential determined by Poisson’s equation

∆Φ(r) = −ρ̃(r)/ε0 = −e ψ†(r)ψ(r)/ε0 . (3.127)

The quantized Hamiltonian of the coupled theory then is

Ĥ =

∫
ψ̂†
(∑

l

αl

(~
i

∂

∂xl
− eÂl

)
+ βmc2

)
ψ̂ d3r +

1

2

∫ ∑
l

(
D̂lÊl + B̂lĤl

)
d3r, (3.128)

where the quantum field D̂ of the electric excitation is subject to the Gauss-law constraint dD̂ = ρ̂ .

The matter-field interaction here is in the term
∑
Âl ĵl coupling the magnetic vector potential to

the electric current density. By inserting the respective mode expansions, one obtains contributions

to the interaction Hamiltonian of the schematic form (omitting spin and polarization)

c†+(k1) c
†
−(k2) a(k1 + k2) , a†(k1 + k2) c−(k2) c+(k1) . (3.129)

The first of these creates an electron with momentum k1 and a positron with momentum k2 while

annihilating a photon with momentum k1 + k2 . The second does the reverse (or adjoint). There

are also terms of the schematic form

c†+(k1) c+(k2) a(k1 − k2) , a†(k1 − k2) c†+(k2) c+(k1) , (3.130)

and similar with c+ → c− . These cause scattering of electrons and positrons by the processes of

absorption or emission of a photon.
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3.9 γ-decay of excited states

We finish the chapter by briefly indicating how one computes the electromagnetic decay rate of

unstable states in many-body systems such as molecules, atoms, nuclei, etc. This is a problem of

fermions (electrons, nucleons) coupled to bosons (photons). Thus the Hilbert space to work with

is a tensor product

V = ∧(VF )⊗ S(VB) (3.131)

of Fock spaces for fermions and bosons, and the Hamiltonian is a sum of three terms:

H = Hmatter +Hradiation +Hcoupling . (3.132)

We have seen in the previous section how this Hamiltonian (H ≡ Ĥ) looks in a situation requiring

relativistic treatment. The matter part (the Hamiltonian for the free Dirac field) operates on

the fermionic Fock space ∧(VF ) and is trivial on S(VB). (For many purposes it is of course good

enough to treat the Dirac field by non-relativistic reduction in the Schrödinger approximation.)

The radiation part (the Hamiltonian for the free electromagnetic field) operates on the bosonic

Fock space S(VB) and is trivial on ∧(VF ). The coupling Hamiltonian
∑

l

∫
jl ⊗ Al d

3r has factors

jl operating on ∧(VF ) and factors Al operating on S(VB).

Consider now some excited state of matter, ψi , which decays to another state ψf (e.g., the

ground state) by the emission of a single photon with wave vector k. The transition or decay rate

Γ
(
ψf ⊗ 1γ(k)← ψi ⊗ 0γ

)
can be computed by using Fermi’s golden rule:

Γ
(
ψf ⊗ 1γ(k)← ψi ⊗ 0γ

)
=

2π

~
∣∣⟨ψf ⊗ 1γ(k) | Hc | ψi ⊗ 0γ

⟩∣∣2 δ(Ef + ~ωk − Ei) , (3.133)

where Hc ≡ Hcoupling =
∫ ∑

jlAl d
3r is the interaction part of the Hamiltonian. The transition

matrix element⟨
ψf ⊗ 1γ(k) | Hc | ψi ⊗ 0γ

⟩
=

∫
d3r

⟨
ψf | jl(r) | ψi

⟩ ⟨
1-photon(k) | Al(r) | 0-photon

⟩
(3.134)

is essentially the Fourier transform of the transition current density
⟨
ψf | jl(r) | ψi

⟩
since⟨

1-photon(k) | Al(r) | 0-photon
⟩
∼ e−ik·r. (3.135)

The typical situation is that this Fourier transform can be calculated by multipole expansion. Let

us look at the case of a heavy atomic nucleus, for example. The wave length of the emitted photon

is

λ =
2π

|k|
= 2π

~c
~ωk

≈ 2π
200MeV fm

Ei − Ef

. (3.136)

By inserting the typical excitation energy of a low-lying nuclear excited state, one gets a value for

λ which is very much bigger than the radius R ∼ 5 fm of a heavy nucleus such as 208Pb . Therefore,

if the transition operator jl(r) is expanded in multipoles, the leading contributions to the decay

rate come from the multipoles of lowest order which are compatible with the angular momenta of

the initial and final states of the decay.

The multipole expansion proceeds in terms of so-called tensor operators TJM . Learning more

about these is a major motivation for the next chapter.
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the fermionic Fock space ∧(VF ) and is trivial on S(VB). (For many purposes it is of course good

enough to treat the Dirac field by non-relativistic reduction in the Schrödinger approximation.)

The radiation part (the Hamiltonian for the free electromagnetic field) operates on the bosonic

Fock space S(VB) and is trivial on ∧(VF ). The coupling Hamiltonian
∫
jlAl d

3x has factors jl

operating on ∧(VF ) and factors Al operating on S(VB).

Consider now some excited state of matter, ψi , which decays to another state ψf (e.g., the

ground state) by the emission of a single photon with wave vector k. The transition or decay rate

Γ
(
ψf ⊗ 1γ(k)← ψi ⊗ 0γ

)
can be computed by using Fermi’s golden rule:

Γ
(
ψf ⊗ 1γ(k)← ψi ⊗ 0γ

)
=

2π

~
∣∣⟨ψf ⊗ 1γ(k) | Hc | ψi ⊗ 0γ

⟩∣∣2 δ(Ef + ~ωk − Ei) , (3.116)

where Hc ≡ Hcoupling =
∫ ∑

jlAl d
3x is the interaction part of the Hamiltonian. The transition

matrix element⟨
ψf ⊗ 1γ(k) | Hc | ψi ⊗ 0γ

⟩
=

∫
d3x

⟨
ψf | jl(x) | ψi

⟩ ⟨
1-photon(k) | Al(x) | 0-photon

⟩
(3.117)

is essentially the Fourier transform of the transition current density
⟨
ψf | jl(x) | ψi

⟩
since⟨

1-photon(k) | Al(x) | 0-photon
⟩
∼ eik·x . (3.118)

The typical situation is that this Fourier transform can be calculated by multipole expansion. Let

us look at the case of a heavy atomic nucleus, for example. The wave length of the emitted photon

is

λ =
2π

|k|
= 2π

~c
~ωk

≈ 2π
200MeV fm

Ei − Ef

. (3.119)

By inserting the typical excitation energy of a low-lying nuclear excited state, one gets a value for

λ which is very much bigger than the radius R ∼ 5 fm of a heavy nucleus such as 208Pb . Therefore,

if the transition operator jl(x) is expanded in multipoles, the leading contributions to the decay

rate come from the multipoles of lowest order which are compatible with the angular momenta of

the initial and final states of the decay.

The multipole expansion proceeds in terms of so-called tensor operators TJM . Learning more

about these is a major motivation for the next chapter.

4 Invariants of the rotation group SO3

4.1 Motivation

The students of this course already have some familiarity with the quantum theory of angular

momentum. Building on this, in the present chapter we will introduce some further material

related to quantized angular momentum and the theory of group representations in general.

One of the results we wish to explain is the Wigner-Eckart theorem. Its statement is that the

matrix elements of a tensor operator (e.g., the operator for an electromagnetic transition from

an excited state to the ground state of a many-body system) between states of definite angular

86



momenta separates as a product of two factors: a so-called Wigner 3j-symbol (or Clebsch-Gordan

coefficient) determined by geometry, and a reduced matrix element containing the information

about the intrinsic structure of the many-body states.

4.2 Basic notions of representation theory

We assume the mathematical notions of group and group action to be understood. In the following,

GL(V ) denotes the group of invertible K-linear transformations of a K-vector space. (Depending

on the situation, V may be a vector space over K = R or K = C.)
Let G be a group. A (linear) representation of G consists of two pieces of data: (i) a vector

space V and (ii) a mapping ρ : G→ GL(V ) with the property

∀g1 , g2 ∈ G : ρ(g1g2) = ρ(g1)ρ(g2) . (4.1)

In mathematical parlance one says that ρ is a group homomorphism from G into GL(V ). The

trivial representation is the representation ρ(g) ≡ IdV mapping all group elements to the identity.

Examples.

1. The simplest group is G = {e, π} with multiplication table e2 = e, eπ = πe = π, and π2 = e.

This group has a representation on V = R by ρ(e) = +1 and ρ(π) = −1.

2. Let G be a finite group, and take V to be the vector space of all scalar-valued functions

f : V → K . The right regular representation, R ≡ ρR , of G is defined as

R : G→ GL(V ) ,
(
R(g0)f

)
(g) := f(gg0) . (4.2)

The left regular representation L ≡ ρL : G→ GL(V ) is(
L(g0)f

)
(g) := f(g−1

0 g) . (4.3)

3. Let S2 ⊂ R3 be the unit sphere in three dimensions. The rotation group SO3 acts on S2 in the

fundamental way by

SO3 × S2 → S2 , (g, v) 7→ g · v .

This action yields a representation of SO3 , say on the Hilbert space L2(S2) of square integrable

functions f : S2 → C, by
(ρ(g)f

)
(v) := f(g−1 · v) . � (4.4)

A general construction of great importance in representation theory is what is called the

induced representation allowing you to build from a known representation of a small group a

(new) representation of a bigger group, as follows. Let G be a group and H ⊂ G a subgroup.

H acts on G by right or left multiplication; here we will be concerned with the right action.

Assume that you are given a representation (W,π) of the small group H. Then consider the space

Func(G,W )H of H-invariant functions from G to W , i.e., all functions f : G → W with the

property

f(g) = π(h)f(gh) . (4.5)
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Since the operators π(h) are linear transformations of a vector space, our space of functions

V := Func(G,W )H is still a vector space. V carries a representation ρ of G by left multiplication:

(ρ(g0)f)(g) = f(g−1
0 g) . (4.6)

This representation is referred to as the induced representation IndG
H(π).

Examples.

1. If you take for H the trivial group H = {e} then IndG
{e}(trivial) = L is the left regular

representation of G.

2. Let G = SO3 , and let H = SO2 ⊂ G be the subgroup of rotations about a fixed axis, say the z-

axis. Take π to be the trivial H-representation, and let W = K = C . Then Func(SO3 ,C)SO2 can

be identified with the vector space of complex-valued functions on the unit sphere S2 ≃ SO3/SO2 .

If we require the functions to be square-integrable, the induced representation IndG
H(π) is the

representation of Example 3 above. �

Remark. Frobenius reciprocity – a central result in the representation theory of finite groups –

is a statement about the induced representation. �

After this brief introduction to the notion of induced representation, let us return to the

basics. We wish to explain what is meant by a unitary irreducible representation. Let us begin

with the adjective ‘unitary’. For this one requires the representation space V of a G-representation

ρ : G→ GL(V ) to be Hermitian, i.e., V has to be a complex vector space with Hermitian scalar

product ⟨·, ·⟩. The representation ρ is then called unitary if

⟨v, v′⟩ = ⟨ρ(g)v, ρ(g)v′⟩ (4.7)

holds for all g ∈ G and v, v′ ∈ V .

Example. Let the space of complex-valued functions f : S2 → C on the unit sphere be equipped

with the Hermitian scalar product

⟨f1, f2⟩ :=
∫
S2
f2(v) f1(v) d

2v , (4.8)

where d2v = sin θ dθ dϕ is the solid-angle two-form. The SO3-representation given by the space

L2(S2) of square-integrable functions on S2 is unitary:

⟨ρ(g)f1, ρ(g)f2⟩ =
∫
S2
f2(g−1 · v) f1(g−1 · v) d2v =

∫
S2
f2(v′) f1(v

′) d2v′ = ⟨f1, f2⟩ .

The second equality follows from the substitution v′ := g−1 · v by the SO3-invariance of d2v. �

Next we explain what is meant by saying that a representation is irreducible. For this purpose

we need the following preparation of language. Let ρ : G→ GL(V ) be a representation. Then a

vector subspace U ⊂ V is called G-invariant if

∀g ∈ G : ρ(g)U ⊂ U . (4.9)
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U is called a proper subspace of V if U is neither the zero vector space nor identical with V .

Definition. A representation ρ : G → GL(V ) is called irreducible if there exist no G-invariant

proper vector subspaces of V .

Example. The unitary representation of the previous example is not irreducible as the vector

space of, say, the constant functions is an SO3-invariant proper subspace of L2(S2) of dimension

one. However, irreducible SO3-representations do arise from it by restriction to subspaces of

definite total angular momentum. Let

VL := spanC{YL,L , YL,L−1 , . . . , YL,−L+1 , YL,−L} , (4.10)

where YL,M denotes the spherical harmonic of total angular momentum L and magnetic quantum

number M . One has dimVL = 2L+ 1. The SO3-representation ρL : SO3 → GL(VL) by

(ρL(g)YL,M)(v) := YL,M(g−1 · v) =
L∑

M ′=−L

YL,M ′(v)DL
M ′,M(g) , (4.11)

is known to be irreducible. The matrix elements g 7→ DL
M ′,M(g) of the representation are referred

to as Wigner D-functions in physics. They satisfy the relation

DL
M ′,M ′′(g1g2) =

L∑
M=−L

DL
M ′,M(g1)DL

M,M ′′(g2) , (4.12)

due to the representation property ρL(g1g2) = ρL(g1)ρL(g2). �
We move on to yet another basic definition. For a group G, let there be two representations

ρj : G→ GL(Vj) (j = 1, 2).

Definition. The representations (V1, ρ1) and (V2, ρ2) are called isomorphic if there exists a linear

bijection φ : V1 → V2 intertwining the representations:

∀g ∈ G : φ ◦ ρ1(g) = ρ2(g) ◦ φ . � (4.13)

Isomorphy of representations is an equivalence relation. The equivalence classes of this equiv-

alence relation are called isomorphism classes. For example, all irreducible representations of SO3

for a fixed total angular momentum L belong to the same isomorphism class.

We now come to an often cited fundamental result of representation theory.

Schur’s lemma. For a group G, let there be two finite-dimensional irreducible representations

ρ1 : G → GL(V1) and ρ2 : G → GL(V2). If φ ∈ Hom(V1, V2) intertwines these representations,

i.e., φ ◦ ρ1(g) = ρ2(g) ◦ φ for all g ∈ G, then one has a dichotomy: either (i) φ is the zero map, or

(ii) φ is invertible.

Proof. Let the linear mapping φ : V1 → V2 be an intertwiner of the irreducible representations

(V1 , ρ1) and (V2 , ρ2). Then kerφ ⊂ V1 is a G-invariant subspace. Indeed, if v ∈ kerφ then the

intertwining property yields

0 = φ(v) =⇒ 0 = ρ2(g)φ(v) = φ(ρ1(g) v) ,
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so ρ1(g)v ∈ kerφ . Now since V1 is irreducible, the G-invariant subspace kerφ by definition cannot

be a proper subspace. Thus there exist only two possibilities: (i) kerφ ≡ V1 , in which case φ

is the zero map, or (ii) kerφ ≡ {0}, in which case φ is injective. In the latter case φ is also

surjective. Indeed, by similar reasoning as before, imφ ⊂ V2 is a G-invariant subspace of the

irreducible G-representation space V2 , so either imφ ≡ V2 or imφ = {0}. The latter possibility is

ruled out by the known injectivity of φ for the case (ii) under consideration.

Corollary. Let (V, ρ) be a finite-dimensional irreducible G-representation over the complex num-

bers C. Then every C-linear map φ ∈ End(V ) with the property φ◦ρ(g) = ρ(g)◦φ (for all g ∈ G)
is a scalar multiple of the identity.

Proof. Over the complex number field, any linear transformation φ ∈ End(V ) has at least

one eigenvalue, say λ . By the definition of what it means for λ to be an eigenvalue, the linear

transformation φ−λ·IdV is not invertible. On the other hand, φ−λ·IdV intertwines the irreducible

representation (V, ρ) with itself by assumption. Therefore, Schur’s lemma implies that φ− λ · IdV

must be identically zero. Hence φ = λ · IdV as claimed.

Problem. If ρj : G → GL(Vj) (j = 1, 2) are two finite-dimensional irreducible representations

over C , show that the linear space HomG(V1 , V2) of intertwiners φ is at most one-dimensional.

4.2.1 Borel-Weil Theorem.

Let us briefly offer a more advanced perspective on induced representations, as follows. If G

is a group with subgroup H, the equivalence classes of the right action of H on G are called

cosets, and these form a so-called coset space, G/H. Now, given a vector space W carrying an

H-representation π, the group H also acts on the direct product G×W by

h · (g, w) :=
(
gh−1, π(h)w

)
. (4.14)

The equivalence classes [g;w] ≡ [gh−1;π(h)w] of thisH-action constitute a so-called vector bundle,

G×H W , over the base manifold G/H. The equivalence classes [g;w] for a fixed coset gH ∈ G/H
form a vector space which is isomorphic to W by [g;w] 7→ w; it is called the fiber over gH. A

section of the vector bundle is a mapping s : G/H → G ×H W with the property that for each

gH ∈ G/H the value s(gH) of the section is a vector [g;w] in the fiber over gH. (Depending on

the situation, one may require that s is continuous, or differentiable, or analytic, or holomorphic,

etc.). The space of sections s of the vector bundle G×H W is denoted by Γ(G×H W ).

Problem. Show that the mapping Func(G,W )H → Γ(G ×H W ), f 7→ s, defined by s(gH) =

[g; f(g)], is a bijection. �

Thus we have an alternative way of thinking about the induced representation IndG
H(π): we

may view it as the representation

(ρ(g0)s)(gH) := s(g−1
0 gH) (4.15)

on sections s ∈ Γ(G ×H W ). This viewpoint has many applications. We mention an especially

important one. Let G be a connected and semisimple compact Lie group, and let T ⊂ G be a
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maximal Abelian subgroup (a so-called maximal torus). The coset spaceG/T can then be shown to

be a complex space. (In fact, G/T is a phase space in the sense of Section 3.7.1: it has the attributes

of symplectic and complex structure which are required for the geometric quantization procedure

described there.) If one is now given any one-dimensional representation π : T → GL(W ) on

W = C, then one has a vector bundle G×T W ; it is called a complex line bundle because its fibres

are copies of C. The sections of such a line bundle are maps from a complex space into another

complex space. One can therefore speak of the subspace of holomorphic sections.

The following theorem holds in the mathematical setting of a connected, semisimple, compact

Lie group G as described above.

Borel-Weil Theorem. There is a one-to-one correspondence between (isomorphism classes of)

irreducible representations of G and the spaces of holomorphic sections of complex line bundles

over G/T . In particular, for every irreducible G-representation ρ : G → GL(V ) there exists a

one-dimensional T -representation π : T → GL(W ) such that ρ can be identified with the induced

representation IndG
T (π) restricted to the subspace of holomorphic sections of the complex line

bundle G×T W .

Example. Every irreducible representation (VL , ρL) of the rotation group G = SO3 arises in

this way. For this purpose one takes T := SO2 , the subgroup of rotations about the z-axis, and

has G/T = SO3/SO2 = S2, the unit sphere, which is a complex space. (The complex structure

J is rotation by π/2 = 90o in the tangent plane). To get the representation (VL , ρL) for any

total angular momentum L ∈ N ∪ {0}, one takes π : SO2 → GL(W ) to be the one-dimensional

representation on the space of states W := C · |L,L⟩} with maximal projection of the angular

momentum:

π
(
Rz(ϕ)

)
= eiLϕ ,

where Rz(ϕ) is the rotation about the z-axis with rotation angle ϕ . The (2L + 1)-dimensional

irreducible representation (VL , ρL) can then be seen as the space of holomorphic sections of the

complex line bundle SO3×SO2 C · |L,L⟩. Details of its construction (using ladder operators L+ and

L−, but omitting the relation to holomorphic sections of a complex line bundle) were discussed

in the basic course on quantum mechanics. In particular, the 3-dimensional SO3-representation

corresponding to angular momentum L = 1 is the same as the representation of SO3 on the space

of holomorphic vector fields or sections of the tangent bundle

T (S2) ≃ SO3 ×SO2 C · |L = 1,M = 1⟩ .

An example of a holomorphic vector field is the vector field of infinitesimal rotation about the

z-axis (or any other axis for that matter).

4.3 Invariant tensors

Let (Vj , ρj) (j = 1, . . . , n) be representations of a group G. Then the tensor product

V := V1 ⊗ V2 ⊗ · · · ⊗ Vn (4.16)
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is a G-representation space in the natural way:

g · (v1 ⊗ v2 ⊗ · · · ⊗ vn) := (ρ1(g)v1)⊗ (ρ2(g)v2)⊗ · · · ⊗ (ρn(g)vn) . (4.17)

This definition makes sense because the operators ρj(g) are linear transformations.

A tensor of the form v1⊗ v2⊗ · · · ⊗ vn is called a pure tensor. The most general tensor T ∈ V
is a linear combination of pure tensors. In fact, if {e(j)i } is a basis of Vj we can express T as

T =
∑

Ti1, i2,..., in e
(1)
i1
⊗ e(2)i2

⊗ · · · e(n)in
. (4.18)

The action G× V → V on general tensors is defined by linear extension of (4.17).

Definition. A tensor T ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn is called G-invariant if g · T = T for all g ∈ G.

Example. Let V = R3 be the fundamental representation space of G = SO3 . As usual, the

SO3-representation on the dual vector space V ∗ = (R3)∗ is defined by (ρ(g)φ)(v) = φ(g−1v).

Consider now the tensor product V ∗⊗ V ∗. The Euclidean scalar product Q : V ⊗ V → R can be

regarded as an SO3-invariant tensor in V
∗ ⊗ V ∗: if {e1, e2, e3} is a Cartesian basis of V = R3 and

fi = Q(ei, ·) ∈ V ∗ are the dual basis forms, then

Q =
3∑

i=1

fi ⊗ fi ,

and this satisfies g · Q = Q due to Q(gv, gv′) = Q(v, v′) for g ∈ SO3 . Another SO3-invariant

tensor is the triple product Ω ∈ V ∗⊗V ∗⊗V ∗. While the Euclidean scalar product is a symmetric

tensor, Ω is totally antisymmetric:

Ω = f1 ∧ f2 ∧ f3 =
∑
π∈S3

sign(π) fπ(1) ⊗ fπ(2) ⊗ fπ(3) =
∑

ϵijk fi ⊗ fj ⊗ fk .

Ω is SO3-invariant because g · Ω = Det(g)−1 Ω and Det(g) = 1 for g ∈ SO3 . �

4.3.1 Invariant tensors of degree 2

The situation for degree 2 is rather easy to understand by using Schur’s lemma. To that end we

recall from Section 2.8.1 the isomorphism

µ : V2 ⊗ V ∗
1 → Hom(V1 , V2) (4.19)

which is determined by

µ(v ⊗ f)(u) := f(u) v . (4.20)

If V1 and V2 are G-representation spaces, the mapping µ takes G-invariant tensors T ∈ V2 ⊗ V ∗
1

into G-equivariant linear transformations µ(T ) ∈ HomG(V1 , V2). Indeed:

Problem. Show that the invariance property g · T = T for T ∈ V2 ⊗ V ∗
1 translates via µ into the

intertwining property ρ2(g)µ(T ) = µ(T )ρ1(g). �
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In the special case of V1 = V2 = V the isomorphism µ : V ⊗ V ∗ → Hom(V, V ) = End(V )

provides us with a canonical G-invariant tensor T ∈ V ⊗ V ∗. This is the inverse image of the

identity:

µ−1(IdV ) =
∑
i

ei ⊗ fi , (4.21)

where {ei} and {fi} are bases of V resp. V ∗ which are dual to each other by fi(ej) = δij . This

G-invariant tensor µ−1(IdV ) is canonical in the sense that it exists for any representation (V, ρ).

Next, consider the general case of V1 ̸= V2 and assume that both representation spaces V1

and V2 are G-irreducible. Then there exist only two possibilities for the space HomG(V1 , V2) of

intertwiners: if V1 and V2 belong to different isomorphism classes, then HomG(V1 , V2) = 0 ; and if

V1 and V2 are isomorphic, then HomG(V1 , V2) ≃ C by Schur’s lemma (cf. the Problem at the end

of Section 4.2). In the former case V2 ⊗ V ∗
1 has no G-invariant tensors; in the latter case there

exists a complex line of G-invariant tensors.

In the following we focus on the important case of V2 = V and V1 = V ∗; i.e., we look for

G-invariant tensors in V ∗ ⊗ V ∗ (or V ⊗ V ; it makes no big difference). This case is relevant, e.g.,

for the question whether (and if so, how) a rotationally invariant state can be formed from a pair

of states carrying angular momentum L in both cases.

We will use the fact that by the isomorphism µ : V ∗ ⊗ V ∗ → Hom(V, V ∗) the G-invariant

tensors T ∈ V ∗⊗V ∗ are in one-to-one correspondence with intertwiners µ(T ) ≡ φ ∈ HomG(V, V
∗).

Concerning the latter recall that HomG(V, V
∗) ≃ C if V and V ∗ are irreducible and belong to

the same isomorphism class. Let SymG(V, V
∗) and AltG(V, V

∗) denote the G-invariant linear

transformations from V to V ∗ which are symmetric resp. skew (or alternating).

Lemma. If an irreducible G-representation V is isomorphic to its dual V ∗, then one has either

(i) HomG(V, V
∗) = SymG(V, V

∗) ≃ C or (ii) HomG(V, V
∗) = AltG(V, V

∗) ≃ C .

Proof. We recall from Section 1.7.1 that for a linear transformation φ : V → V ∗ there exists a

canonical adjoint φt : V → V ∗ (the transpose). If 0 ̸= φ ∈ HomG(V, V
∗) is an intertwiner, let

φs :=
1
2
(φ + φt) and φa := 1

2
(φ− φt) be the symmetric and alternating parts of φ . Both φs and

φa intertwine the G-representation on V with the G-representation on V ∗. Since V is irreducible,

we know that the space of such intertwiners is one-dimensional. Now φs = +φt
s and φa = −φt

a

cannot both be non-zero and lie on the same complex line. Therefore we must have either (i)

φa = 0 or (ii) φs = 0 .

The next statement is an immediate deduction from the isomorphism V ∗ ⊗ V ∗ ≃ Hom(V, V ∗)

of G-representation spaces and the fact that a G-invariant tensor T ∈ V ∗ ⊗ V ∗ is the same as a

G-invariant bilinear form Q : V ⊗ V → C .

Corollary. If a complex vector space V is an irreducible representation space for a group G,

then there exists a trichotomy of possibilities for the space, say Q, of G-invariant bilinear forms

Q : V ⊗ V → C: (i) Q = 0 is trivial, or (ii) Q is generated by a symmetric bilinear form, or (iii)

Q is generated by an alternating bilinear form.
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4.3.2 Example: SO3-invariant tensors of degree 2

To illustrate the general statements of Section 4.3.1, we now specialize to the case of G = SO3 .

We have already met the irreducible SO3-representations on the vector spaces

VL = spanC {YL,M}M=−L, ... ,L ,

which are spanned by the spherical harmonics YL,M of total angular momentum L.

Fact. The tensor product VL⊗VL of irreducible representations of angular momentum L contains

an SO3-invariant symmetric tensor,

T =
+L∑

M=−L

(−1)M YL,M ⊗ YL,−M . (4.22)

All other SO3-invariant tensors in VL ⊗ VL are scalar multiples of it.

Remark. The property of SO3-invariance here means that (g · T )(v1 , v2) = T (g−1v1 , g
−1v2) =

T (v1 , v2) for T (v1 , v2) =
∑

(−1)M YL,M(v1)YL,−M(v2). Viewed as (the angular part of) the wave

function for a pair of particles with spherical positions v1 and v2 , the tensor (or wave function) T

carries total angular momentum zero. �
We will spend the rest of this subsection explaining where the invariant tensor (4.22) comes

from. Let us begin the discussion with the observation that if (V, ρ) is a unitary representation of

a group G, then (by the very definition of unitarity) the Hermitian scalar product is G-invariant:

⟨ρ(g)v1 , ρ(g)v2⟩ = ⟨v1 , v2⟩ .

Alas, the Hermitian scalar product alone cannot deliver an invariant tensor in the sense of the

Definition given at the beginning of Section 4.3, as it involves an operation of complex conjugation

in the left argument. To repair this feature and produce a complex bilinear form

Q : V ⊗ V → C , v1 ⊗ v2 7→ ⟨τv1, v2⟩ , (4.23)

we need an anti-unitary operator τ : V → V (akin to the time-reversal operator). We know from

Section 1.7.2 that Q is symmetric if τ 2 = IdV and alternating if τ 2 = −IdV . If the anti-unitary

operator τ commutes with the G-action, i.e., τρ(g) = ρ(g)τ for all g ∈ G, then the complex

bilinear form Q is G-invariant.

Given a G-invariant complex bilinear form Q, we obtain a G-invariant tensor T ∈ V ∗ ⊗ V ∗ by

starting from the canonical invariant µ−1(IdV ) =
∑
ei ⊗ fi and defining

T =
∑

f̃i ⊗ fi , (4.24)

where the f̃i are determined by the equation

f̃i = Q(ei , ·) = ⟨τei , ·⟩ . (4.25)

We claim that when the formula (4.24) for the invariant tensor T ∈ V ∗ ⊗ V ∗ is specialized to the

case of G = SO3 and V ∗ = VL , one arrives at the invariant tensor T ∈ VL ⊗ VL of (4.22).
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What is still missing for this argument is the origin and nature of the SO3-invariant anti-unitary

operator τ : VL → VL needed for the construction of T . In the remainder of the subsection, we

shall introduce τ . The point here will be that, although the SO3-representation space VL spanned

by the degree-L spherical harmonics is complex, this representation can actually be constructed

entirely over the real numbers (without ever using C). We now indicate how this goes.

The one-dimensional representation space V0,R for L = 0 is simply given by the constant

functions on the unit sphere S2. The three-dimensional representation space V1,R ≃ R3 for L = 1

is spanned by the three Cartesian coordinate functions x1 , x2 , x3 restricted to S2:

x1
∣∣
S2 = sin θ cosϕ , x2

∣∣
S2 = sin θ sinϕ , x3

∣∣
S2 = cos θ .

To construct the five-dimensional irreducible representation V2,R for L = 2, one starts from the

six-dimensional space S2(V1,R) (degree-2 part of the symmetric algebra) of functions xi xj for i ≤ j .

This space contains a generator x21 + x22 + x23 which becomes trivial upon restriction to S2. One

therefore removes it by passing to a quotient of vector spaces:

V2,R := spanR {xi xj}1≤i≤j≤3

/
R · (x21 + x22 + x23) .

(To simplify the notation, restriction to S2 will henceforth be understood.)

Problem. The degree-n subspace Sn(RN) of the symmetric algebra of RN is the space of states

of n bosons distributed over N single-boson states. Show that dim Sn(RN) =
(
N+n−1

n

)
. �

For angular momentum L = 3 , one starts from the space S3(V1,R) of cubic monomials and

quotients out the three-dimensional subspace of functions xl (x
2
1 + x22 + x23) for l = 1, 2, 3 :

V3,R := spanR {xi xj xk}1≤i≤j≤k≤3

/
spanR

{
xl (x

2
1 + x22 + x23)

}
l=1,2,3

.

By now it should be clear how to continue this construction. For a general value L ≥ 2 of the

angular momentum, one takes the space SL(V1,R) of degree-L monomials and quotients out the

subspace SL−2(V1,R) · (x21 + x22 + x23) ⊂ SL(V1,R) :

VL,R := SL(V1,R)
/
SL−2(V1,R) · (x21 + x22 + x23) . (4.26)

This quotient space has dimension

dimVL,R = dimSL(V1,R)− dimSL−2(V1,R) =

(
L+ 2

L

)
−
(

L

L− 2

)
= 2L+ 1 . (4.27)

Why is VL,R a representation space for SO3 ? The answer is provided by the following:

Problem. Let V be a G-representation space. Show that if U ⊂ V is a G-invariant subspace,

then the quotient space V/U is a representation space for G. �

It is a true fact stated here without proof (a standard reference is Hermann Weyl’s famous trea-

tise The Classical Groups) that the SO3-representation space VL,R is irreducible. This concludes

our quick overview of the theory of real representations of SO3 .
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Now the complex representation spaces VL are obtained by complexification:

VL = VL,R ⊕ iVL,R , (4.28)

and the action SO3 × VL → VL is defined by C-linear extension of the action SO3 × VL,R → VL,R :

ρL(g) · (u+ iv) := ρL(g)u+ i ρL(g)v (g ∈ SO3 ; u, v ∈ VL,R) . (4.29)

For example, for L = 1 one has Y1,0 ∝ x3 , Y1,1 ∝ x1 + ix2 , Y1,−1 ∝ −x1 + ix2 .

We are now in a position to say what is the complex anti-linear operator τ needed for the

construction of the SO3-invariant tensor (4.22): it is just the well-defined operation of complex

conjugation with respect to the real structure VL,R ⊂ VL :

τ(u+ iv) := u− iv . (4.30)

Defined in this way, the operator τ commutes with the G-action on VL because the latter is

already defined on the real subspace VL,R ⊂ VL . Here ends our effort to explain the mathematical

background behind (4.22).

4.3.3 Example: SU2-invariant tensors of degree 2

We have seen that all SO3-invariant tensors of degree 2 are symmetric. For further illustration

of the Corollary at the end of Section 4.3.1, we will now describe a related situation in degree 2

where one also finds skew-symmetric tensors.

Our example will be built on the compact Lie group SU2 of special unitary 2× 2 matrices,

SU2 = {g ∈ GL(C2) | g−1 = g† ; Det(g) = 1} . (4.31)

An equivalent description of SU2 is as follows:

SU2 =

{(
α β
−β̄ ᾱ

) ∣∣∣α, β ∈ C ; |α|2 + |β|2 = 1

}
. (4.32)

This description shows that SU2 is isomorphic as a manifold to the three-sphere S3 ⊂ R4 ≃ C2 of

solutions of the equation

(Reα)2 + (Imα)2 + (Re β)2 + (Im β)2 = 1 .

Let U1 ⊂ SU2 be the one-parameter subgroup defined by

U1 =

{(
α 0
0 ᾱ

) ∣∣∣α ∈ C ; |α|2 = 1

}
. (4.33)

The coset space G/T = SU2/U1 then is a complex manifold isomorphic to the two-sphere S2.

Consider the representation πN : U1 → GL(C) by

πN

(
α 0
0 ᾱ

)
= αN (N ∈ N ∪ {0}) . (4.34)
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Then according to Section 4.2 there exists an irreducible SU2-representation on the space of

holomorphic sections of the complex line bundle SU2 ×U1 C over S2, where U1 acts on C by πN .

By the Borel-Weil theorem, all irreducible representations of SU2 arise in this way asN = 0, 1, 2, . . .

runs through the non-negative integers.

We give a short cut to the outcome of the Borel-Weil construction, as follows. Let SU2 act on

a fundamental pair of coordinate functions z1 , z2 for C2 by

g ·
(
z1
z2

)
≡
(
α β
−β̄ ᾱ

)(
z1
z2

)
:=

(
αz1 + βz2
−β̄z1 + ᾱz2

)
. (4.35)

This naturally induces an action of SU2 on homogeneous polynomials

P (z1 , z2) =
N∑

n=0

an z
N−n
1 zn2 = zN1 P (1, z2/z1)

of degree N . The SU2-action on the ratio z := z2/z1 is

g · z = ᾱz − β̄
βz + α

, g−1 · z = β̄ + αz

ᾱ− βz
.

By setting P (z1 , z2) = zN1 φ(z2/z1) one then obtains an SU2-action ρN on holomorphic polynomials

φ(z) =
∑N

n=0 anz
n as (

ρN(g)φ
)
(z) := (ᾱ− βz)Nφ

(
β̄ + αz

ᾱ− βz

)
, (4.36)

which turns out to be none other than the induced SU2-representation on holomorphic sections φ

of the complex line bundle SU2 ×U1 C given by the U1-representation πN .

Let us look at the infinitesimal or Lie algebra form of this representation. The representation

of the Lie algebra su2 = Lie(SU2) is defined by linearization at unity,

(ρN∗(X)φ)(z) :=
d

dt

(
ρN(e

tX)φ
)
(z)
∣∣∣
t=0

. (4.37)

For the generators of su2 = Lie(SU2) we take iσ1 , iσ2 , iσ3 where σj are the standard Pauli

matrices. Actually, it is more convenient to work in the complexification sl2 = su2 ⊕ i su2 , as

this allows us to present the answer in terms of the sl2-generator σ3 and the ladder operators

σ± = 1
2
(σ1 ± iσ2). A short computation gives

ρN∗(σ3) = 2z
d

dz
−N, ρN∗(σ+) = −z2

d

dz
+Nz , ρN∗(σ−) =

d

dz
. (4.38)

We observe that for N = 0 there exists only one function φ(z) = const, which spans the trivial

representation. For N = 1 we have a pair of basis functions(
1
0

)
∧
= {z 7→ φ↑(z) = z} ,

(
0
1

)
∧
= {z 7→ φ↓(z) = 1} .

These furnish the fundamental representation of SU2 , where

ρ1∗(σ3) = σ3 =

(
1 0
0 −1

)
, ρ1∗(σ+) = σ+ =

(
0 1
0 0

)
, ρ1∗(σ−) = σ− =

(
0 0
1 0

)
.
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For a general value of N ≥ 0 our representation space is spanned by the functions φN,n(z) = zn

for n = 0, 1, . . . , N . We denote it by VN ≡ V SU2
N . Notice that

ρN∗(σ3)φN,n = (2n−N)φN,n , ρN∗(σ+)φN,n = (N − n)φN,n+1 , ρN∗(σ−)φN,n = nφN,n−1 .

In particular, ρN∗(σ+)φN,N = 0 and ρN∗(σ−)φN, 0 = 0 ; these are called the states of highest resp.

lowest weight of the representation VN .

Problem. Show that the representation space VN has no SU2-invariant proper subspaces (the

implication being that the representation on VN is irreducible). �

We now turn to the subject proper of this subsection: the construction of an SU2-invariant

tensor in the tensor product VN ⊗ VN . From the general theory of Section 4.3.1 we know that

there exists at most one such tensor (up to multiplication by scalars). Let us find one.

By linearization of the group action (4.17) on tensors, any Lie algebra element X ∈ su2 acts

on VN ⊗ VN as

ρ
(2)
N∗(X) = ρN∗(X)⊗ IdVN

+ IdVN
⊗ ρN∗(X) . (4.39)

Now the elements of the tensor product VN ⊗ VN can be realized as polynomials in two complex

variables z and z′. Adopting this realization we get from (4.38) the expressions

ρ
(2)
N∗(σ3) = 2z

d

dz
+ 2z′

d

dz′
− 2N ,

ρ
(2)
N∗(σ+) = −z

2 d

dz
− z′2 d

dz′
+N(z + z′) , ρ

(2)
N∗(σ−) =

d

dz
+

d

dz′
. (4.40)

We then look for an SU2-invariant tensor T ∈ VN ⊗ VN by the ansatz

T =
N∑

m,n=0

aN ;m,n z
nz′

m
(4.41)

as a polynomial in the two variables z and z′.

Problem. Show that the problem posed by the conditions of infinitesimal invariance,

ρ
(2)
N∗(σ3)T = ρ

(2)
N∗(σ+)T = ρ

(2)
N∗(σ−)T = 0 ,

has the solution

aN ;m,n = δm,N−n (−1)n
(
N

n

)
. �

It follows that ρ
(2)
N∗(X)T = 0 for every X ∈ su2 . Since the Lie group SU2 = exp(su2) is the

exponential of its Lie algebra, we conclude that g · T = T for all g ∈ SU2 .

A neat way of writing the SU2-invariant tensor T is this:

T = (z − z′)N . (4.42)

From it we immediately see that our invariant tensor T is symmetric for even N and skew for odd

N . This concludes our illustration of the Corollary (end of Section 4.3.1) at the example of SU2 .
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We finish the subsection by relating the result (4.42) to that of Section 4.3.2. Although the Lie

groups SU2 and SO3 have identical Lie algebras su2 ≃ so3 , they are not the same group. It turns

out that the relation between them is qualitatively the same as the relation between Spin2n and

SO2n (cf. Section 2.11). As a matter of fact, SU2 = Spin3 . (In other words, SU2 = Spin3 can be

obtained by exponentiating the Lie algebra su2 = spin3 ≃ Cl2(R3) of skew-symmetrized degree-2

elements in the Clifford algebra of the Euclidean vector space R3.)

This means that there exists a 2 : 1 covering map SU2 → SO3 . It is constructed just like

the 2 : 1 covering map Spin2n → SO2n . Let us recall this construction. We conjugate the Pauli

matrices σj (taking the role of the gamma matrices γµ) by g ∈ SU2 . The result gσj g
−1 of

conjugation is a traceless Hermitian 2× 2 matrix. It is therefore expressible in terms of the Pauli

matrices:

gσj g
−1 =

∑
i

σiRij(g) . (4.43)

The real expansion coefficients can be arranged as a real 3 × 3 matrix R(g) := {Rij(g)}i,j=1,2,3 .

By construction, the correspondence g 7→ R(g) is a group homomorphism: R(g1g2) = R(g1)R(g2).

Problem. Show that the linear transformation R(g) with matrix elements Rij(g) has the prop-

erties R(g)t = R(g)−1 and DetR(g) = 1 of a rotation r ≡ R(g) ∈ SO3 . �

From the definition (4.43) one sees that R(−g) = R(+g). This is good evidence for the true

fact (not proved here) that R : SU2 → SO3 is a 2 : 1 covering of Lie groups. By this covering map,

every representation r 7→ ρL(r) of SO3 corresponds to a representation g 7→ ρL(R(g)) of SU2 . One

actually has V SU2
2L ≃ V SO3

L , expressing the fact that the angular momentum L translates to the

quantum number N = 2L in the present notation.

The converse is not true: the SU2-representations for odd N do not correspond to rep-

resentations of SO3 . Morally speaking, they carry half-integer angular momentum (or spin)

S = N/2 ∈ Z+ 1
2
. In physics texts it is sometimes said that they are ‘double-valued’ representa-

tions of SO3 .

4.3.4 Invariant tensors of degree 3

After this rather exhaustive discussion of the situation for degree 2, we turn to degree 3. Here

our main analytical tool will be the so-called Haar measure. In the following statement, the word

‘compact Lie group’ is to be interpreted in its widest sense (which includes finite groups).

Fact. For every compact Lie group G there exists a measure dg (called Haar measure) with the

properties of invariance under right and left translation by any group element g0 ∈ G :∫
G

f(g) dg =

∫
G

f(gg0) dg =

∫
G

f(g0g) dg . (4.44)

Here f is any integrable function on G.

Remark. The space of Haar measures for a compact Lie group G is one-dimensional [the in-

variance property (4.44) is stable under multiplication by scalars]. We fix the normalization by

demanding the total mass to be unity:
∫
G
dg = 1.
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Examples.

1. In the case of a finite group G of order ord(G), the integral with Haar measure is a sum∫
G

f(g) dg :=
1

ord(G)

∑
g∈G

f(g) . (4.45)

The invariance (4.44) under right and left translations here follows directly from the fact that the

mappings g 7→ gg0 and g 7→ g0g are one-to-one.

2. Let G = U1 = {z ∈ C | z̄z = 1} be the group of unitary numbers in C . Writing z = eiφ, the

unit-mass Haar measure for U1 is given by dφ/2π:∫
U1

f(g) dg =
1

2π

∫ 2π

0

f(eiφ) dφ =
1

2π

∫ 2π

0

f(eiφ+iφ0) dφ . (4.46)

3. Let the rotation group G = SO3 be parameterized by Euler angles:

g = R3(ϕ)R1(θ)R3(ψ) , (4.47)

where Rj(α) means an angle-α rotation around the j-axis. The Haar measure for SO3 in these

coordinates is expressed by∫
SO3

f(g) dg =
1

8π2

2π∫
0

π∫
0

2π∫
0

f
(
R3(ϕ)R1(θ)R3(ψ)

)
dψ sin θ dθ dϕ . (4.48)

The proof of invariance requires some knowledge of the theory of Lie groups. �

Let now G be a compact Lie group with Haar measure dg and consider the tensor product

V1 ⊗ V2 ⊗ V3 of three (finite-dimensional) representations ρl : G→ GL(Vl) (l = 1, 2, 3). In terms

of bases for the factors Vl , the most general tensor T ∈ V1 ⊗ V2 ⊗ V3 is expressed as

T =
∑

i,j,k
Tijk e

(1)
i ⊗ e

(2)
j ⊗ e

(3)
k .

We can produce from T a G-invariant tensor Tav by taking the Haar average of its G-translates:

Tav :=

∫
G

(g · T ) dg =
∑
i,j,k

Tijk

∫
G

(
ρ1(g)e

(1)
i

)
⊗
(
ρ2(g)e

(2)
j

)
⊗
(
ρ3(g)e

(3)
k

)
dg . (4.49)

Problem. Check the invariance g · Tav = Tav for all g ∈ G. �
In the following, if V is a vector space carrying a representation ρ : G → GL(V ), then we

denote by V G ⊂ V the subspace of G-invariants in V . Thus if V1 , V2 , V3 are G-representation

spaces, then (V1⊗V2⊗V3)G means the subspace of G-invariants in the tensor product V1⊗V2⊗V3 .
Now with a tensor T ∈ V1 ⊗ V2 ⊗ V3 we associate a mapping µ(T ) : V ∗

3 → V1 ⊗ V2 in the

canonical way. This correspondence T ↔ µ(T ) is one-to-one. Moreover, if T = g ·T is G-invariant,

then the homomorphism µ(T ) is G-equivariant, i.e.,

∀g ∈ G : µ(T )(φ) = g · µ(T )(φ ◦ g−1) . (4.50)

Thus µ restricts to an isomorphism between the vector space (V1⊗V2⊗V3)G of G-invariant tensors

and the vector space HomG(V
∗
3 , V1 ⊗ V2) of G-equivariant homomorphisms.
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4.4 The case of SU2 : Wigner 3j-symbol, Clebsch-Gordan coefficient

We now specialize to the case of G = SU2 = Spin3 and recall from Section 4.3.3 that the space

VN = spanC{1, z , z2, . . . , zN} (4.51)

of degree-N polynomials in a complex variable z is an irreducible representation space for SU2 .

The generators σ3 , σ+ , σ− of the complex Lie algebra sl2 = su2 ⊕ i su2 are represented on VN by

ρN∗(σ3) = 2z
d

dz
−N, ρN∗(σ+) = −z2

d

dz
+Nz , ρN∗(σ−) =

d

dz
. (4.52)

VN is called the SU2-representation for spin J = N/2. Its dimension is dimVN = N +1 = 2J +1.

The eigenvalues of the generator ρN∗(σ3/2) are J, J − 1, . . . ,−J + 1,−J .
In this section we investigate the space of invariant tensors

(VN1 ⊗ VN2 ⊗ VN3)
SU2 ≃ HomSU2(V

∗
N3
, VN1 ⊗ VN2) . (4.53)

The following can be regarded as a statement about the dimension of HomSU2(V
∗
N3
, VN1 ⊗ VN2).

Fact. The tensor product VN1 ⊗ VN2 of two irreducible SU2-representation spaces decomposes as

VN1 ⊗ VN2 ≃ VN1+N2 ⊕ VN1+N2−2 ⊕ . . .⊕ V|N1−N2| . � (4.54)

To verify this, one starts from the general result (not proved here) that a tensor product of

irreducible representations for a compact Lie group G is (isomorphic to) a direct sum of finitely

many irreducible G-representations. In the present case, the irreducible summands occurring in

VN1 ⊗ VN2 can be identified by the following counting procedure. Let

φn1, n2 = zn1
1 z

n2
2 , 0 ≤ n1 ≤ N1 , 0 ≤ n2 ≤ N2 ,

be a basis of homogeneous polynomials for VN1 ⊗ VN2 , and let V k ⊂ VN1 ⊗ VN2 be the eigenspace

of eigenvalue k for the (shifted) polynomial-degree operator

(ρN1∗ + ρN2∗)(σ3) = 2z1
∂

∂z1
+ 2z2

∂

∂z2
−N1 −N2 .

The next table lists the dimension of V k as a function of k :

k dimV k

−N1 −N2 1
−N1 −N2 + 2 2
...

...
−N1 −N2 + 2min {N1 , N2} min{N1 , N2}+ 1
...

...
−N1 −N2 + 2max {N1 , N2} min{N1 , N2}+ 1
...

...
N1 +N2 − 2 2
N1 +N2 1

We see that dimV k increases linearly with k until it reaches a plateau extending from min{N1 , N2}
to max{N1 , N2}; after that it decreases linearly in such a way that dimV k = dimV −k.
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By inspection of these dimensions it follows that VN1 ⊗ VN2 contains one multiplet of states

with spin Jmax = 1
2
(N1 + N2), one with spin J = 1

2
(N1 + N2) − 1, and so on, until we reach the

plateau for the spin value Jmin = 1
2
|N1 −N2|. This establishes the decomposition (4.54).

Corollary. A statement equivalent to the decomposition (4.54) is

HomSU2(VN3 , VN1 ⊗ VN2) ≃
{

C if |N1 −N2| ≤ N3 ≤ N1 +N2 , N1 +N2 +N3 ∈ 2N ,
0 else .

(4.55)

So far there was never any need to specify a Hermitian scalar product on VN ; now is a good

place to fill this gap. Let φn = zn and

⟨φn , φn′⟩VN
:= δn, n′

(
N

n

)−1

. (4.56)

Problem. Show that with the choice (4.56) of Hermitian scalar product one has

ρN∗(σ−)
† = ρN∗(σ+) , (4.57)

which means that the SU2-representation ρN on VN is unitary. �
In the sequel we address the problem of coupling two spins J1 = N1/2 and J2 = N2/2 to total

spin J . This problem is the same as that of constructing the following object.

Definition. A unitary SU2-equivariant isomorphism

ϕN1, N2 :

min{N1, N2}⊕
n=0

VN1+N2−2n → VN1 ⊗ VN2 (4.58)

is called a Clebsch-Gordan coefficient (for SU2). Here the tensor product VN1 ⊗ VN2 is equipped

with the natural Hermitian structure

⟨v1 ⊗ v2 , ṽ1 ⊗ ṽ2⟩VN1
⊗VN2

= ⟨v1 , ṽ1⟩VN1
⟨v2 , ṽ2⟩VN2

(4.59)

induced by the Hermitian scalar products on VN1 and VN2 . �

The problem of computing explicit expressions for all Clebsch-Gordan coefficients of SU2 was

solved by the theoretical physicist Racah (Jerusalem, 1948). It seems to be difficult if not impos-

sible to locate a transparent account of Racah’s computation in the physics literature. Indeed,

typical statements found in textbooks are “... and after some heavy analysis along these lines,

Racah succeeded in reducing the expression for the Clebsch-Gordan coefficient to the following [re-

sult]”. As will be shown below, verification of Racah’s formula is quite straightforward, provided

that the problem is approached from a good mathematical perspective.

To construct the Clebsch-Gordan coefficients of SU2 explicitly, let (N1 , N2 , N3) ∈ (N ∪ {0})3

be any triple of non-negative integers subject to the constraints

|N1 −N2| ≤ N3 ≤ N1 +N2 , N1 +N2 +N3 ∈ 2N . (4.60)

We then use the isomorphism (4.53) along with VN3 ≃ V ∗
N3

to look for an invariant tensor

T ∈ (VN1 ⊗ VN2 ⊗ VN3)
SU2 (4.61)
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by a general ansatz of the form

T =

N1∑
n1=0

N2∑
n2=0

N3∑
n3=0

Tn1, n2, n3 z
n1
1 z

n2
2 z

n3
3 . (4.62)

As usual, invariance means g · T = T for all g ∈ SU2 . By linearizing this equation at g = Id and

passing to the complexified Lie algebra sl2 ≃ C3, we obtain three linearly independent conditions:

σ3 · T =
3∑

j=1

(
2zj

∂

∂zj
−Nj

)
T = 0 , σ− · T =

3∑
j=1

∂T

∂zj
= 0 ,

σ+ · T =
3∑

j=1

(
−z2j

∂

∂zj
+Nj zj

)
T = 0 . (4.63)

The first one is easy to implement: it just says that the coefficient Tn1, n2, n3 vanishes unless

n1 + n2 + n3 =
1
2
(N1 +N2 +N3) . (4.64)

The second condition amounts to

k1 Tk1, k2−1, k3−1 + k2 Tk1−1, k2, k3−1 + k3 Tk1−1, k2−1, k3 = 0 (4.65)

for all triples (k1 , k2 , k3) ∈ Z3 subject to k1 + k2 + k3 = 1
2
(N1 + N2 + N3) + 2. Finally, the last

condition implies that

(N1 − l1)Tl1, l2+1, l3+1 + (N2 − l2)Tl1+1, l2, l3+1 + (N3 − l3)Tl1+1, l2+1, l3 = 0 (4.66)

for all triples (l1 , l2 , l3) ∈ Z3 subject to l1 + l2 + l3 =
1
2
(N1 +N2 +N3)− 2.

Eqs. (4.65) and (4.66) constitute a system of linear equations for the coefficients Tn1, n2, n3

with indices constrained by (4.64). We know from Corollary (4.55) that the solution space of

this system is one-dimensional. Since the equations (4.65) and (4.66) connect only three of the

unknowns Tn1, n2, n3 at a time, one can construct the solution by a recursive procedure. The

following diagram shows how one might proceed for the example of N1 = 5, N2 = 4, N3 = 3 .

Inspired by Racah’s explicit formula, we can actually express the solution in closed form:
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Proposition. Let Jl ≡ Nl/2 for l = 1, 2, 3 and

T =
∑

s1, s2, s3

(−1)s1+s2+s3 zJ1−s2+s3
1 zJ2−s3+s1

2 zJ3−s1+s2
3

(s1 − J1)! (s2 − J2)! (s3 − J3)! (J1 + J2 − s3)! (J3 + J1 − s2)! (J2 + J3 − s1)!
(4.67)

where the sum runs over all triples s1 , s2 , s3 such that the argument of each of the factorials is a

non-negative integer. This tensor is invariant: T = g · T for all g ∈ SU2 .

Proof. It is clear that the polynomial (4.67) is homogeneous of total degree J1 + J2 + J3 and

thus satisfies the constraint (4.64). Let us now show that it also satisfies the condition (4.65) or,

equivalently, the second equation in (4.63). Introducing

AJ(x1, x2, x3 ; y1, y2, y3) :=

(−1)x1+x2+x3

(x1 − J1)! (x2 − J2)! (x3 − J3)! (J1 + J2 − y3)! (J3 + J1 − y2)! (J2 + J3 − y1)!

we have

T =
∑

s1, s2, s3

AJ(s1, s2, s3 ; s1, s2, s3) z
J1−s2+s3
1 zJ2−s3+s1

2 zJ3−s1+s2
3 ,

and application of the lowering operator σ− gives

σ− · T =
∑

s1, s2, s3

(
J1 − s2 + s3

z1
+
J2 − s3 + s1

z2
+
J3 − s1 + s2

z3

)
×AJ(s1, s2, s3 ; s1, s2, s3) z

J1−s2+s3
1 zJ2−s3+s1

2 zJ3−s1+s2
3 . (4.68)

Now, by using the relation

J1 − s2 + s3 = (J3 + J1 − s2) + (s3 − J3) ,

we get the following identity:

(J1 − s2 + s3)AJ(s1, s2, s3 ; s1, s2, s3) = AJ(s1, s2, s3 ; s1, s2 + 1, s3)− AJ(s1, s2, s3 − 1; s1, s2, s3) .

Two more identities of the same kind result from cyclic permutations of the index set {1, 2, 3}.
Next, in (4.68) we make a shift of summation index s3 → s3 − 1 for the second term (z−1

2 ) and

s2 → s2+1 for the third term (z−1
3 ), in order to pull out common powers of z1, z2, z3 and combine

the various contributions. In this way we recast the expression (4.68) as

σ− · T =
∑(

AJ(s1, s2, s3 ; s1, s2 + 1, s3)− AJ(s1, s2, s3 − 1; s1, s2, s3)

+AJ(s1, s2, s3 − 1; s1, s2, s3)− AJ(s1 − 1, s2, s3 − 1; s1, s2, s3 − 1)

+AJ(s1, s2 + 1, s3 ; s1 + 1, s2 + 1, s3)− AJ(s1, s2, s3 ; s1, s2 + 1, s3)
)

×zJ1−s2+s3−1
1 zJ2−s3+s1

2 zJ3−s1+s2
3 .

We see that the second term cancels the third one, and the first term cancels the last one. The

fourth term cancels the fifth one on making a common shift sj → sj + 1 (j = 1, 2, 3) which leaves

the powers of z1, z2, z3 unchanged. This already completes the proof that σ− · T = 0 .
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Problem. By an adaptation of the calculation above, show that σ+ · T = 0 . �

Recall that by the choice (4.56) of Hermitian scalar product for VN , the basis vectors φN,n = zn

of VN have squared length

⟨φN,n , φN,n⟩ =
(
N

n

)−1

=
n! (N − n)!

N !
.

The standard practice in physics is to work with orthonormal bases. Therefore, we now introduce

the unit vectors

eJ,M :=

(
2J

J +M

)1/2

φ2J, J+M =

√
(2J)! φ2J, J+M√

(J +M)! (J −M)!
∈ V2J (4.69)

for M = −J,−J + 1, . . . , J − 1, J .

Definition. Let Tn1, n2, n3 ≡ TN1,N2,N3
n1, n2, n3

be the coefficients which are determined by comparing the

ansatz (4.62) with the solution (4.67). The Wigner 3j-symbol

(
J1 J2 J3
M1 M2 M3

)
is defined as

(
J1 J2 J3
M1 M2 M3

)
:= T 2 J1 , 2 J2 , 2 J3

J1+M1, J2+M2, J3+M3

√
△(J1 J2 J3)

×
√
(J1 +M1)! (J1 −M1)! (J2 +M2)! (J2 −M2)! (J3 +M3)! (J3 −M3)! (4.70)

where

△(J1 J2 J3) :=
(J1 + J2 − J3)! (J2 + J3 − J1)! (J3 + J1 − J2)!

(J1 + J2 + J3 + 1)!
(4.71)

is called a triangle coefficient.

Remark. Note that by (4.64) the Wigner 3j-symbol vanishes unless M1 +M2 +M3 = 0 . Note

also that the Wigner 3j-symbol is just a scalar multiple of the coefficients of our tensor T given

in (4.67). The following conclusion is therefore immediate.

Corollary. The tensor ∑
M1,M2,M3

(
J1 J2 J3
M1 M2 M3

)
eJ1,M1 ⊗ eJ2,M2 ⊗ eJ3,M3 (4.72)

is SU2-invariant. �

By the isomorphism (4.53) in conjunction with the identification V ∗
N3
≃ VN3 due to the invariant

pairing VN ⊗ VN → C (cf. Section 4.3.3), we finally arrive at what is called the Clebsch-Gordan

coefficient for SU2 . It is given by the formula

⟨J1J2 ;M1M2 | J1J2 ; J3M3⟩ := (−1)J1−J2+M3
√
2J3 + 1

(
J1 J2 J3
M1 M2 −M3

)
. (4.73)

The sign change M3 → −M3 reflects the isomorphism V ∗
N3
≃ VN3 determined by the mapping

fJ3,M3 → (−1)J3−M3eJ3,−M3 (dual basis fJ,M). The remaining sign factor (−1)J1−J2−J3 is due

to what is known as the phase convention of Condon and Shortley. The normalization factor
√
2J3 + 1 is motivated by the properties (4.75) and (4.76) below. A simplified notation is

⟨J1J2 ;M1M2 | J1J2 ; J3M3⟩ ≡ ⟨J1J2M1M2 | J3M3⟩ . (4.74)
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The Dirac-style notation for the Clebsch-Gordan coefficient indicates that it effects a change of

orthonormal basis |J1J2 ; J3M3⟩ → |J1M1⟩ ⊗ |J2M2⟩.

Problem. Show that the Clebsch-Gordan coefficient obeys the following relations of orthonor-

mality and completeness:∑
M1M2

⟨J1J2M1M2 | J3M3⟩ ⟨J1J2M1M2 | J ′
3M

′
3⟩ = δJ3 , J ′

3
δM3 ,M

′
3
, (4.75)∑

J3M3

⟨J1J2M1M2 | J3M3⟩ ⟨J1J2M ′
1M

′
2 | J3M3⟩ = δM1 ,M

′
1
δM2 ,M

′
2
. � (4.76)

From an informed mathematical perspective, the Clebsch-Gordan coefficient provides us with

an SU2-equivariant homomorphism ϕJ1J2 ∈ HomSU2(V2J3 , V2J1 ⊗ V2J2) by

ϕJ1J2(eJ3,M3) =
∑

M1+M2=M3

⟨J1J2M1M2 | J3M3⟩ eJ1,M1 ⊗ eJ2,M2 ; (4.77)

thus it describes explicitly how the representation V2J3 occurs in the tensor product V2J1 ⊗ V2J2 .

4.5 Integrals of products of Wigner D-functions

For a compact Lie group G let ρ : G→ GL(V ) be an irreducible representation. Fix a basis {el}
of V and define the matrix elements Dkl(g) of the representation by

ρ(g) el =
∑
k

ekDkl(g)

as usual. Let dg be Haar measure of G with total mass
∫
G
dg = 1. In the following we will use

that fact that Haar measure is invariant under inversion, i.e.
∫
G
f(g) dg =

∫
G
f(g−1) dg.

Fact. The matrix elements of an irreducible representation satisfy the orthogonality relation∫
G

Dkl(g)Dl′k′(g
−1) dg =

δkk′δll′

dimV
. (4.78)

Proof. Applying g ∈ G to any tensor v ⊗ φ ∈ V ⊗ V ∗ we have

g · (v ⊗ φ) = ρ(g)v ⊗ φ ◦ ρ(g)−1.

The Haar average of all translates g · (v ⊗ φ) is a G-invariant tensor in V ⊗ V ∗. Because V is

irreducible, there exists only one such tensor; this is the canonical invariant µ−1(IdV ) =
∑
ei⊗fi ;

see Eq. (4.21) of Section 4.3.1. It follows that there exists a number c(v, φ) ≡ c such that∫
G

ρ(g)v ⊗ φ ◦ ρ(g)−1dg = c
∑
i

ei ⊗ fi .

Now we specialize this relation to v = el and φ = fl′ and then pass to components on each side

using fk(ρ(g)el) = Dkl(g) and fl′(ρ(g)
−1ek′) = Dl′k′(g

−1). The result is∫
G

Dkl(g)Dl′k′(g
−1) dg = c(el, fl′) δkk′ .
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Next we use the invariance of Haar measure dg under inversion g 7→ g−1 to exchange the roles of

the index pairs kk′ and ll′ and infer that c(el, fl′) = c0δll′ .

The constant c0 is determined by setting k = k′, l = l′, and summing over l :

1 =

∫
G

dg =

∫
G

∑
l

Dkl(g)Dlk(g
−1) dg = c0

∑
l

δll = c0 dimV,

which gives the desired result c0 = (dimV )−1.

Remark. If D
(1)
kl (g) and D

(2)
l′k′(g

−1) are the matrix coefficients for two irreducible representations

V1 ̸= V2 in different isomorphism classes, then the integral
∫
G
D

(1)
kl (g)D

(2)
l′k′(g

−1) dg vanishes for all

k, l, k′, l′. Indeed, any non-zero value of the integral would imply a G-invariant tensor in V1 ⊗ V ∗
2 ,

but we know from Section 4.3.1 that no such tensor exists. �

From now on we restrict the discussion to the case of G = SU2 , where we use the notation

DJ
MN(g) ≡ fJ,M(ρJ(g) eJ,N) for the matrix elements (also known in physics as the Wigner D-

functions) of the irreducible representation of spin J . For future reference we record that∫
SU2

DJ
MN(g)DJ ′

N ′M ′(g−1) dg = δJJ ′
δMM ′ δNN ′

2J + 1
. (4.79)

In the remainder of this section, we are going to derive a formula for the Haar integral of a prod-

uct of three Wigner D-functions. To that end, we consider the Haar average of all SU2-translates

of some tensor X ∈ V2J1 ⊗ V2J2 ⊗ V2J3 in the tensor product of three irreducible representations

with spins J1 , J2 , J3 . Since the Haar-averaged tensor
∫
(g ·X) dg is SU2-invariant and there exists

only one such tensor, namely that of Corollary (4.72), we have∫
SU2

(g ·X) dg = c3(X)
∑

M1,M2,M3

(
J1 J2 J3
M1 M2 M3

)
eJ1,M1 ⊗ eJ2,M2 ⊗ eJ3,M3 ,

with some unknown number c3(X) . Now let X = eJ1, N1 ⊗ eJ2, N2 ⊗ eJ3, N3 . By passing to compo-

nents with respect to the chosen basis we obtain∫
SU2

DJ1
M1N1

(g)DJ2
M2N2

(g)DJ3
M3N3

(g) dg = c3(eJ1, N1 ⊗ eJ2, N2 ⊗ eJ3, N3)

(
J1 J2 J3
M1 M2 M3

)
. (4.80)

Our next step is to exchange the roles of vectors and co-vectors. A quick (if dirty) way of doing

this is to take the complex conjugate of both sides of the equation and exploit the unitarity of the

representation:

DJ
MN(g) = DNM(g−1) .

Haar measure dg does not change under the substitution of integration variable g → g−1 (this is

an immediate consequence of Haar measure being unique). Since the Wigner 3j-symbol is real it

follows that∫
SU2

DJ1
M1N1

(g)DJ2
M2N2

(g)DJ3
M3N3

(g) dg = c3(eJ1,M1 ⊗ eJ2,M2 ⊗ eJ3,M3)

(
J1 J2 J3
N1 N2 N3

)
.

By comparing this with (4.80) we are led to the following conclusion.
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Fact. For the Haar integral of a product of three Wigner D-functions one has the formula∫
SU2

DJ1
M1N1

(g)DJ2
M2N2

(g)DJ3
M3N3

(g) dg =

(
J1 J2 J3
M1 M2 M3

)(
J1 J2 J3
N1 N2 N3

)
. (4.81)

Proof. Our previous considerations imply (4.81) up to an unknown constant of proportionality.

It remains to show that this constant is unity. For that purpose we set Ml = Nl (l = 1, 2, 3) and

sum over magnetic quantum numbers. On the right-hand side we get

∑
M1M2M3

(
J1 J2 J3
M1 M2 M3

)2

=
∑
M3

∑
M1M2

(2J3 + 1)−1 ⟨J1J2M1M2 | J3 −M3⟩2 =
∑
M3

(2J3 + 1)−1 = 1

from (4.73) and the orthonormality property (4.76) for the Clebsch-Gordan coefficient. To do the

integral on the left-hand side, we use the relation

χJ1(g)χJ2(g) =

J1+J2∑
J=|J1−J2|

χJ(g) , χJ(g) :=
J∑

M=−J

DJ
MM(g) , (4.82)

which follows rather easily from

χJ(e
iθσ3) =

J∑
M=−J

eiMθ =
sin
(
(2J + 1)θ/2

)
sin(θ/2)

. (4.83)

Thus our integral after summation over magnetic quantum numbers becomes∫
SU2

χJ1(g)χJ2(g)χJ3(g) dg =

J3∑
J=|J1−J2|

∫
SU2

χJ(g)χJ3(g) dg =

∫
SU2

χJ3(g)
2 dg = 1 ,

where in the last two steps we used the orthogonality (4.79).

Fact. A variant of the integral above is∫
SU2

DJ1
M1N1

(g)DJ2
M2N2

(g)DJ3
M3N3

(g) dg =
⟨J1J2M1M2 | J3M3⟩ ⟨J1J2N1N2 | J3N3⟩

2J3 + 1
. (4.84)

Proof. Using completeness (4.76) of the Clebsch-Gordan coefficients we invert the relation (4.77):

eJ1, N1 ⊗ eJ2, N2 =
∑
JN

⟨J1J2N1N2 | JN⟩ ϕJ1J2(eJ,N) .

We then apply any transformation g ∈ SU2 to obtain∑
M1M2

eJ1,M1 ⊗ eJ2,M2 DJ1
M1N1

(g)DJ2
M2N2

(g) =
∑
JNM

⟨J1J2N1N2 | JN⟩ ϕJ1J2(eJ,M)DJ
MN(g) .

On the right-hand side we insert the expression (4.77) for ϕJ1J2(eJ,M) and pass to components:

DJ1
M1N1

(g)DJ2
M2N2

(g) =
∑
JMN

⟨J1J2N1N2 | JN⟩ ⟨J1J2M1M2 | JM⟩ DJ
MN(g) .

Finally, we integrate both sides against DJ3
M3N3

(g) = DJ3
N3M3

(g−1) with Haar measure dg. The

desired result (4.84) then follows by using the orthogonality relation (4.79) on the right-hand side.

108



4.6 Tensor operators, Wigner-Eckart Theorem

Recall the action of g ∈ SU2 = Spin3 on the basis vectors eJ,M ∈ V2J of the representation for

spin J :

g · eJ,N =
∑
M

eJ,M DJ
MN(g) .

The following definition is motivated by the quantum mechanical fact that if quantum states

transform as ψ 7→ g ψ then quantum operators transform by conjugation Op 7→ gOp g−1.

Definition. By an irreducible tensor operator of rank J one means a set of operators {TJM}M=−J,...,J

transforming under rotations g ∈ SU2 = Spin3 as

g TJN g
−1 =

∑
M

TJM DJ
MN(g) . (4.85)

Example. The operation of multiplying (the angular part of the wave function) by a spherical

harmonic YLM is an irreducible tensor operator of rank J = L. Important examples of tensor

operators are furnished by the problem of expanding, say, the charge density operator ρ̂ by mul-

tipoles with respect to a distinguished point (typically the center of mass). The three (spherical)

components of the dipole part of ρ̂ form a tensor operator of rank J = 1, the five components of

the quadrupole part of ρ̂ form a tensor operator of rank J = 2, and so on. �

If Jx , Jy , Jz are the operators of total angular momentum, and J± = 1
2
(Jx ± iJy), then the

infinitesimal version of (4.85) reads

[Jz , TJM ] = ~M TJM , [J± , TJM ] = ~
√

(J ∓M)(J ±M + 1) TJ,M±1 . (4.86)

Wigner-Eckart theorem. Let TJM be (the components of) an irreducible tensor operator. Its

matrix elements between two quantum mechanical states of definite spin and spin projection are

products

⟨J2M2 | TJM | J1M1⟩ = ⟨J1JM1M | J2M2⟩ ⟨J1 ∥ TJ ∥ J2⟩ (4.87)

of a Clebsch-Gordan coefficient and a so-called reduced matrix element.

Remark. The dependence of the matrix element on the quantum numbers M1 ,M,M2 is given

entirely by the Clebsch-Gordan coefficient. The main task (possibly difficult) in practical appli-

cations is to compute the reduced matrix element ⟨J1 ∥ TJ ∥ J2⟩.

Proof. We begin by writing

⟨J2M2 | TJM | J1M1⟩ =
⟨
J2M2 | g−1

(
g TJM g−1

)
g | J1M1

⟩
.

Then we expand g |J1M1⟩ =
∑
|J1N1⟩ DJ1

N1M1
(g) and

⟨J2M2| g−1 = ⟨g · (J2M2)| =
∑
N2

⟨J2N2| DJ2
N2M2

(g) ,

using the unitarity of the SU2-action. We thus obtain

⟨J2M2 | TJM | J1M1⟩ =
∑

N1N2N

⟨J2N2 | TJN | J1N1⟩DJ1
N1M1

(g)DJ
NM(g)DJ2

N2M2
(g) .
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This result holds true for all g ∈ SU2 and remains true if we average both sides with SU2-Haar

measure. Hence, by using formula (4.84) we have

⟨J2M2 | TJM | J1M1⟩ = ⟨J1JM1M | J2M2⟩
∑

N1N2N

⟨J2N2 | TJN | J1N1⟩
⟨J1JN1N | J2N2⟩

2J2 + 1
.

This gives the formula (4.87) of the Wigner-Eckart theorem along with an expression for the

reduced matrix element:

⟨J1 ∥ TJ ∥ J2⟩ = (2J2 + 1)−1
∑

N1N2N

⟨J2N2 | TJN | J1N1⟩ ⟨J1JN1N | J2N2⟩ . (4.88)

5 Dirac quantization condition

The original plan of this lecture course was to finish with a chapter on the foundations of quan-

tum mechanics (superposition principle: Schrödinger cat states, EPR paradox, violation of Bell’s

inequality, decoherence, many-worlds interpretation). Since there is not enough time left for a

substantial discussion of the subject, we change course and conclude with a short chapter on

another foundational theme of quantum mechanics: the quantization of electric charge.

Experimentally one observes that electric charge always occurs as an integer multiple qe = ne

(n ∈ Z) of a fundamental charge quantum e . Why nature would have it this way is not known;

the phenomenon of charge quantization is in fact one of the open questions of theoretical physics.

The situation improves, however, if there are magnetic charges. Allowing for the existence of

magnetic monopoles, Dirac (1931) argued that quantum mechanics is consistent if and only if the

product of any pair qe , qm of electric and magnetic charges is an integer multiple of 2π~ :

qe qm ∈ 2π~Z . (5.1)

This condition, known as the Dirac quantization condition, can be read in two directions. Given

a smallest magnetic charge µ , it quantizes the electric charge according to qe ∈ (2π~/µ)Z .

Conversely, given an electric charge quantum e , magnetic charge is quantized by qm ∈ (2π~/e)Z .

The goal of the present chapter is to offer some physical heuristics and mathematical back-

ground for the Dirac quantization condition (5.1). Please be advised that this story, albeit a corner

stone of theoretical physics, is speculative in the context of physics as an experimental science, as

magnetic monopoles have never been observed in the laboratory to this day. [However, quoting

string theorist J. Polchinski (arXiv:hep-th/0304042): “the existence of magnetic monopoles seems

like one of the safest bets that one can make about physics not yet seen”.]

To begin, here is how the equations of electrodynamics (in traditional vector notation) would

have to look for a non-zero magnetic charge density ρm and magnetic current density jm :

rotH = Ḋ+ je , divD = ρe , D = ε0 E , (5.2)

−rotE = Ḃ+ jm , divB = ρm, B = µ0H . (5.3)
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The Lorentz force on a particle of velocity v, electric charge qe , and magnetic charge qm , is

K = qe (E+ v ×B) + qm (H− v ×D) . (5.4)

As a particular consequence of the system of equations (5.2) and (5.3), magnetic charge obeys a

continuity equation ρ̇m+div jm = 0 and hence is conserved. There is no difference between electric

and magnetic charges in that respect. However, there does exist a difference of transformation

behavior: in order for electrodynamics to be parity-invariant, ρm must transform as a pseudo-

scalar and jm as an axial vector, whereas ρe is a scalar and je is a (polar) vector. In other

words, while electric charges come with a sign (they are positive or negative), magnetic charges

carry a handedness: a magnetic monopole is neither positive nor negative, but is right-handed or

left-handed.

A quick motivation for the Dirac quantization condition (5.1) is the following. Electric and

magnetic charges are sources of electric and magnetic flux, respectively. Therefore, in the simul-

taneous presence of electric and magnetic monopoles there exist crossed electric and magnetic

fields (even in the static limit). These carry momentum (as given by the Poynting vector) as

well as angular momentum. For two monopole charges with values qe and qm the total angular

momentum is proportional to the product qe qm . The condition (5.1) then reflects the fact that

angular momentum in quantum mechanics takes quantized values only.

It should be stressed that this line of reasoning was not the route by which Dirac arrived at

(5.1); his argument will be sketched in the next section.

5.1 Dirac’s argument

To make Dirac’s point it will be enough to consider a charged particle (which may be relativistic

or not, it doesn’t matter for our present purposes) moving in a static magnetic field in three-

dimensional space. Hence, for simplicity of the argument, we neglect any time dependence of the

electromagnetic field and focus on its magnetic part (ignoring the electric field).

Dirac’s argument is based on a generalization of the usual way of thinking about the wave

functions of quantum mechanics. The idea is to eliminate the magnetic field from the formalism

by relaxing the condition that the wave function has to be single-valued. Needless to say, one

cannot eliminate the magnetic field B by a gauge transformation. It is, however, possible to

remove B by letting the wave function be path-dependent; Dirac spoke of ‘non-integrable phases
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for wave functions’. It goes like this.

Fixing some reference point o ∈ E3 (the ‘origin’ of three-dimensional Euclidean space) one

works in a representation in which the wave function at any point x ∈ E3 depends on not just x

but also on a path γx connecting o with x. Thus one replaces the usual wave function x 7→ ψ(x)

by a functional on paths, γx → Ψ[γx]. This generalization comes with a condition (in order to

remove a redundancy which would otherwise ensue): if γx and γ′x are any two paths connecting o

with the same end point x, then the values of the wave function for these paths are required to

be related by a known phase factor:

Ψ[γ′x] = e2πi Φ(S)Ψ[γx] , ∂S = γ′x − γx , (5.5)

where Φ(S) = (e/h)
∫
S
B · d2n is the magnetic flux (measured in units of the flux quantum h/e)

through any oriented surface S with boundary ∂S = γ′x − γx . The condition (5.5) ensures that

the wave function Ψ[γx] for a single reference path γx already determines the wave function for

all other paths γ′x leading to the same end point x. Notice in particular that the absolute value

|Ψ[γx]| =: a(x) is path-independent.

If the magnetic field is bounded, the functional γx 7→ Ψ[γx] is continuous. In other words,

small changes of the point x and/or the path γx map to small changes in the wave function. The

same is true for the phase

argΨ[γx] = (2i)−1 log
(
Ψ[γx]

/
Ψ[γx]

)
,

as long as the wave function does not vanish.

Zeroes of the wave function need a separate discussion, as follows. Because we are in three

dimensions and two conditions (ReΨ = 0 and ImΨ = 0) have to be satisfied in order for a

complex-valued wave function to vanish, wave function zeroes generically organize into lines of

zeroes. Such lines are called nodal lines of the wave function.

The change of phase of the wave function along a small loop encircling a nodal line need not

be small; all one can say in general is that the change has to be close to an integer multiple of 2π.

For example, if a wave function vanishes on the z-axis (x = y = 0) as (x± iy)n, then the change

of phase for a path looping once around the z-axis is ±2πn . For present use let us note that the

winding of the phase around a nodal line endows that line with a sense of circulation.

112



With these preparations made, we can state the central point of the discussion: although the

setting of quantum mechanics as we know it makes for nodal lines without any beginning or end,

there exists no fundamental principle forcing that property, and Dirac suggested the possibility

for nodal lines to have points of birth or termination. He called such points ‘nodal singularities’.

Dirac’s bold step of admitting nodal singularities does not come for free but leads to a con-

straint, as we shall now explain. When positing the relation

argΨ[γ′x]− argΨ[γx] = 2πΦ(S) (5.6)

between phases, we must take into account the contributions from the phase singularities due to

nodal lines. Thus we need to augment the (dimensionless) magnetic flux through the surface S

by the winding numbers ni of the nodal lines γi that intersect S :

Φ(S) =
e

h

∫
S

B · d2n+
∑
±ni . (5.7)

Here the winding numbers ni (which are positive by convention) count with a sign factor which

is determined by comparing the orientation of the surface S with the sense of circulation of the

nodal line γi . If these agree, ni counts with the plus sign; otherwise the minus sign applies.

The said constraint now arises from the indeterminacy of S: there exist many oriented surfaces

S with boundary ∂S = γ′x−γx and one has no way a priori of knowing which to choose. Therefore,

in order for Dirac’s extended framework (with nodal singularities) to make sense, one has to require

that Φ(S) = Φ(S ′) for any pair of oriented surfaces S, S ′ with the same boundary ∂S = ∂S ′. This

is equivalent to demanding that Φ(S) in (5.7) vanishes for every closed surface S = ∂U . Thus, for

every S = ∂U we require that the dimensionless magnetic flux through ∂U is exactly canceled by

the winding number flux due to nodal singularities in the enclosed region U .

By further analyzing the situation, Dirac concluded that his extended theoretical framework

was consistent if and only if all the wave functions shared the same set of nodal singularities. (The

nodal lines at large will of course be different for two different wave functions in general.) Dirac

took this as evidence that the nodal singularities are objects of physical reality. By the vanishing of

Φ(∂U) in (5.7) they are sources or sinks of magnetic flux, so they are to be interpreted as magnetic

monopoles. Since the integral
∫
∂U

B · d2n computes the magnetic flux through ∂U and thus the

magnetic charge contained in U , the constraint Φ(∂U) = 0 amounts to the Dirac quantization

condition (5.1). As a historical note: Dirac himself was so confident of his generalized formalism of

quantum mechanics in the presence of magnetic monopoles that he wrote “one would be surprised

if Nature had made no use of it” [P.A.M. Dirac, Quantized singularities of the electromagnetic

field, Proc. Roc. Soc. A 133 (1931) 60].
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5.2 The treatment of Wu & Yang

Having come to terms with the Dirac quantization condition, we wish to learn how to do actual

calculations when magnetic monopoles are present. While Dirac’s general framework of path-

dependent wave functionals γx 7→ Ψ[γx] is a good tool for conceptual reasoning, it is probably not

so convenient for doing concrete calculations. For that, we would like to return to the familiar

framework using wave functions x 7→ ψ(x).

However, a difficulty is now in store for us. To discuss it in very concrete terms, let us consider

the problem of a non-relativistic particle of mass m and charge e moving in the magnetic field

B =
µ

4π
ω , ω =

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy
(x2 + y2 + z2)3/2

, (5.8)

of a static monopole of magnetic charge µ = nh/e (with n ∈ Z) placed at the origin of a system

of Cartesian coordinates x , y , z . In vector notation one has the expression

B =
µ

4π

er
r2

(which is not fully accurate as er is a polar vector whereas B has to transform as an axial vector).

To treat this problem, we need a Hamiltonian H. The textbook quantum mechanics of charged

particles would tell us to fix a vector potential A ∈ rot−1B and write

H =
(p− eA)2

2m
. (5.9)

Unfortunately, in the present situation there simply does not exist any vector potential A such

that rotA = B . Indeed, by integratingB over a surface S = ∂U enclosing the magnetic monopole,

we run into a contradiction:

0 ̸= µ =

∫
S

B · d2n Gauss
=

∫
U

divB d3x = 0 ,

since divB vanishes by div ◦ rot = 0 whenever B = rotA . Thus there isn’t any A, and it would

hence appear that there exists no Hamiltonian (5.9).

To overcome this difficulty, Dirac invented a trick which is nowadays referred to as the ‘Dirac

string’. We do not describe it here but give a more modern treatment due to Wu and Yang (1968).

The idea is to exclude the singular point o ∈ E3 and work with two overlapping domains U± (and

corresponding coordinate charts) for the punctured space E3 \ {o} = U+ ∪ U−. To be concrete,

we take U+ (U−) to be E3 \ {o} with the negative (resp. positive) z-axis removed. On U+ ∩ U−

we then consider a pair of one-forms

A(±) = ±n~
2e

(1∓ cos θ) dϕ = ±n~
2e

(
1∓ z√

x2 + y2 + z2

)
x dy − y dx
x2 + y2

. (5.10)

Problem. Compute the exterior derivatives dA(±) to show that both A(+) and A(−) are magnetic

vector potentials for the magnetic field strength B = dA(+) = dA(−) in (5.8). �

The magnetic vector potential A(+) is singular on the negative z-axis (z ≤ 0) but extends as

a smooth form to the positive z-axis (z > 0); thus A(+) is good on U+. For A(−) it is the other
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way around (singular for z ≥ 0 but good on U−). On the overlap U+ ∩ U− of their domains of

definition, the two forms are related by a gauge transformation:

A(+) − A(−) =
n~
e
dϕ =

n~
e

x dy − y dx
x2 + y2

. (5.11)

We now recall that by the principle of gauge invariance in quantum mechanics, a gauge transfor-

mation A→ A+df of the magnetic vector potential implies a corresponding gauge transformation

ψ → e i(e/~) f ψ of the wave function. Accordingly, in the present case of (5.11) we obtain

ψ(+) = einϕ ψ(−) =

(
x+ iy

x− iy

)n/2

ψ(−) , (5.12)

which ensures that (d − ieA(+)/~)ψ(+) = einϕ (d − ieA(−)/~)ψ(−) on U+ ∩ U−. Mathematically

speaking, the relation (5.12) means that the wave functions ψ(±) are local expressions of a globally

defined object, ψ , which is called a section of (some) complex line bundle over E3 \{o}. Similarly,

A(±) are the local coordinate expressions for a connection, A , on the same line bundle.

In order to compute the quantum mechanics of our charged particle in the magnetic monopole

field (5.8), the prescription of Wu and Yang is to solve the Schrödinger equation on U+ for ψ(+)

using A(+), and on U− for ψ(−) using A(−). In executing that procedure the relations (5.11) and

(5.12) are in force. Some of the computational details will be presented for a somewhat simplified

setting in the next subsection. Here we wish to conclude with the remark that the above can be

regarded as another derivation of the Dirac quantization condition; indeed, the number n is the

magnetic monopole charge (in units of the flux quantum h/e), and the relation (5.12) makes sense

(as a well-defined transition between coordinate charts) if and only if n is an integer.

5.3 Special case: monopole charge n = 2

In the sequel, we further develop the modern mathematical treatment of the Dirac monopole

problem. For pedagogical reasons, we first take a detailed look at the special case of monopole

charge µ = 2h/e – that’s twice the magnetic charge quantum (or flux quantum) h/e. This case

has the attractive feature that several key objects of the mathematical description can be grasped

rather easily by our Euclidean three-dimensional intuition.

To keep the discussion as simple as possible and concentrate on the new things to be learned,

we will assume that the motion of our charged particle is constrained to a sphere M ≃ S2 (or

surface of a ball) of radius R centered around the origin o . (If that seems too contrived, I trust

you can handle the original problem on E3 \ {o} by separation of variables.)

5.3.1 Tangent bundle

We are now going to show that the wave functions for the special case of µ = 2h/e (with the

motion constrained to M ≃ S2) can be interpreted as vector fields on M . You might object that

as a student of quantum theory you were taught to think of the wave function of a charged particle

as a function taking values in the complex numbers, C . If so, the following observation should
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be helpful: at every point x ∈ M of a sphere, the vectors v ∈ TxM tangent to the sphere span a

two-dimensional vector space isomorphic to R2, which in turn is isomorphic to C .

The argument linking the case of µ = 2h/e to vector fields goes as follows. Using stereographic

projection we introduce two sets of complex coordinate functions ζ(±) : S2 → C by

ξ ≡ ζ(+) = tan(θ/2) eiϕ , η ≡ ζ(−) = − cot(θ/2) e−iϕ . (5.13)

The coordinate function ζ(+) = ξ (resp. ζ(−) = η) is defined everywhere on S2 with the exception

of the south pole θ = π (resp. north pole θ = 0). Note the relation

ξ = −1

η
. (5.14)

One easily checks that our magnetic vector potentials A(±) (restricted to S2) have the expressions

A(+) =
~
e
(1− cos θ) dϕ =

~
ie

ξ̄dξ − ξdξ̄
1 + |ξ|2

, A(−) = −~
e
(1 + cos θ) dϕ =

~
ie

η̄ dη − η dη̄
1 + |η|2

.

The metric tensor pulls back to

dθ2 + sin2 θ dϕ2 =
4 dξ̄ dξ

(1 + |ξ|2)2
=

4 dη̄ dη

(1 + |η|2)2
,

which motivates us to introduce the following unit (or normalized) basis vector fields:

eξ :=
1 + |ξ|2

2

∂

∂ξ
, eξ̄ := eξ , eη :=

1 + |η|2

2

∂

∂η
, eη̄ := eη . (5.15)

A short computation using (5.14) then gives

eξ = e−2iϕ eη . (5.16)

If we now interpret the complex-valued wave functions ψ(±) as the components (with respect

to the corresponding basis vector fields) of an object v defined invariantly by

v = ψ(+)eξ + ψ̄(+)eξ̄ = ψ(−)eη + ψ̄(−)eη̄ , (5.17)

then the relation (5.16) translates to the transition rule (5.12) for ψ(±) (in the case of n = 2).

Thus we learn that the wave functions ψ(±) of the Dirac monopole problem for µ = 2h/e are in

fact local expressions for (tangent) vector fields v .

Definition. By the tangent bundle TM one means the space of tangent vectors of the manifold

M – in our case a two-sphere M ≃ S2. Locally, i.e., in a small enough neighborhood U ⊂ M

of any base point x ∈ M , the tangent bundle TM is a direct product TM |U ≃ U × R2. The

tangent space TxM is also called the fiber of the tangent bundle at x. It is sometimes denoted by

TxM ≡ π−1(x) to indicate that TxM can be viewed as the inverse image of the projection map

π : TM → M defined by π(TxM) = x for all x ∈ M . A section v ∈ Γ(M,TM) of the tangent

bundle is a mapping which assigns to every point x ∈ M a vector v(x) ∈ TxM . (In other words,

π ◦ v = Id.) A section v ∈ Γ(M,TM) is also called a vector field on M .
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Remark. The tangent bundle TS2 of the two-sphere does not factor globally as a product

S2 × R2. (In contrast, one does have TS3 ≃ S3 × R3.) This fact is expressed by saying that TS2

is a non-trivial vector bundle. Non-triviality is related to the fact that every smooth vector field

v ∈ Γ(M,TM) for M = S2 has at least two zeroes. (In Dirac’s way of thinking, these correspond

to the two nodal lines emanating from a nodal singularity of charge n = 2.) �

5.3.2 Complex structure

Accepting the change of mathematical description from complex scalar-valued wave functions ψ

to real tangent vector fields v, our next question is this: what mathematical object should take

the role of i =
√
−1 ∈ C on the left-hand side i~ ∂ψ/∂t of the Schrödinger equation?

Problem. For the complex stereographic coordinate ζ(+) = ξ = tan(θ/2) eiϕ show that

∂

∂θ
=

1 + |ξ|2

2|ξ|

(
ξ
∂

∂ξ
+ ξ̄

∂

∂ξ̄

)
,

1

sin θ

∂

∂ϕ
=

1 + |ξ|2

2|ξ|

(
i ξ
∂

∂ξ
− i ξ̄

∂

∂ξ̄

)
. (5.18)

How do these relations look for ζ(−) = η = − cot(θ/2) e−iϕ ? �

To answer our question, we introduce the basis vector fields

eθ :=
∂

∂θ
, eϕ :=

1

sin θ

∂

∂ϕ
, (5.19)

which are related to those of (5.15) by

eθ =
ξ

|ξ|
eξ +

ξ̄

|ξ|
eξ̄ , eϕ = i

ξ

|ξ|
eξ − i

ξ̄

|ξ|
eξ̄ . (5.20)

(We here focus on the upper hemisphere with basis eξ , eξ̄ and wave function ψ(+) ≡ ψ . In the

lower hemisphere the situation is no different.) We now change basis,

v = ψ eξ + ψ̄ eξ̄ = vθ eθ + vϕ eϕ . (5.21)

Using (5.20) we then see that multiplication (ψ, ψ̄) 7→ (iψ,−iψ̄) by i =
√
−1 in the complex wave

function picture translates to a π/2 rotation

(vθ , vϕ) 7→ (−vϕ , vθ) (5.22)

in the vector field picture.

Definition. An almost-complex manifold M is a (real) manifold equipped with a smooth tensor

field J ∈ Γ(M,EndTM), x 7→ Jx , such that its square is J2
x = −IdTxM for all x ∈ M . A tensor

field J with this property is called a complex structure of M .

Example. The two-sphere M = S2 is an example of an almost-complex manifold. In this case,

the complex structure Jx for any point x ∈M is rotation by π/2 in the tangent plane TxM . �

Returning to our problem of a charged particle moving on S2 in the field of a charge n = 2

magnetic monopole, the Schrödinger equation for the wave function ψ (now: vector field v) takes

the form

~Jxv̇(x, t) = (Hv)(x, t) . (5.23)

It remains to transcribe the Hamiltonian H to the vector field picture. For this purpose, we need

one further mathematical operation.
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5.3.3 Covariant derivative

In this subsection we are going to describe a rule of differentiating vector fields. For brevity,

we shall focus on the situation of interest, namely on vector fields on the two-sphere M = S2

with SO3-invariant geometry. We refer to differential geometry textbooks for the more general

procedure of covariantly differentiating the sections of any vector bundle.

As a warm up we recall the process of differentiating functions on a manifoldM . Suppose that

we want to calculate the derivative (df)x(u) of a differentiable function f :M → C at some point

x ∈M in the direction of the tangent vector u ∈ TxM . To do so, we choose a differentiable curve

γ : (−ϵ, ϵ)→M with γ(0) = x, γ̇(0) = u , and compute the said derivative as

(df)x(v) =
d

dt
f(γ(t))

∣∣∣
t=0

:= lim
t→0

f(γ(t))− f(γ(0))
t

.

Now if we naively try to apply the same definition

d

dt
v(γ(t))

∣∣∣
t=0

??
= lim

t→0

v(γ(t))− v(γ(0))
t

,

to a vector field v ∈ Γ(M,TM), we face the problem that the expression v(γ(t))− v(γ(0)) makes

no immediate sense. Indeed, we have v(γ(t)) ∈ Tγ(t)M and there is no meaning to the difference

(nor the sum) of two vectors in different vector spaces Tγ(t)M ̸= Tγ(0)M (for t ̸= 0). The point here

is that although all tangent spaces TxM ≃ R2 are in principle the same, there exists no canonical

identification of TxM with Tx′M for x ̸= x′.

In order to give a meaningful definition of the difference between v(γ(t)) and v(γ(0)), we first

have to fix some vector space isomorphism Tγ(t)M ≃ Tγ(0)M . Such an isomorphism is determined

by what is called a connection (on a vector bundle). In the case at hand (i.e., magnetic monopole

charge n = 2, tangent bundle TM), the good choice of isomorphism turns out to be given by

parallel transport via the so-called Levi-Civita connection, as follows.

Let w ∈ TxM = Tγ(0)M . We wish to introduce a natural scheme of parallel transporting

w along the curve γ from Tγ(0)M to Tγ(t)M . For this we need the following information. Let

M = S2 ⊂ R3 be equipped with the geometry induced by restriction of the standard Euclidean

structure of R3. (Mathematically speaking, this is the geometry given by the Fubini-Study metric

of S2.) Thus for each point p ∈ M we have a Euclidean scalar product gp : TpM × TpM → R
enabling us to measure the lengths of tangent vectors in TpM and the angles between them.

The Fubini-Study metric is SO3-invariant. In the present context this reflects the fact that the

magnetic field of a static monopole is invariant under SO3 rotations fixing the monopole.

The idea now is to translate w ∈ TxM along the curve γ(t) in such a way that the length of w

and its angle with the tangent vector γ̇(t) of the curve γ stays constant. In formulas, one defines

the one-parameter family of parallel translates w(t) ∈ Tγ(t)M by the conditions w(t = 0) = w and

gγ(t)(w(t), w(t)) = gx(w,w) ,
gγ(t)(w(t), γ̇(t))√
gγ(t)(γ̇(t), γ̇(t))

=
gx(w, u)√
gx(u, u)

, t ∈ (−ϵ, ϵ) , (5.24)
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where x = γ(0), u = γ̇(0) as before. This process of parallel translation applies to any w ∈ TxM .

Doing it for all w ∈ TxM at once, we have a one-parameter family of isomorphisms

Tt : TxM → Tγ(t)M , w 7→ w(t) . (5.25)

Definition. The Levi-Civitá connection ∇ is a rule which assigns to any vector field Y and a

differentiable vector field v a third vector field ∇Y v , called the covariant derivative of v in the

direction of Y . For any fixed point x ∈ M , the vector (∇Y v)(x) ∈ TxM is defined by choosing a

differentiable curve γ : (−ϵ, ϵ)→M with γ(0) = x and γ̇(0) = Y (x) and taking the limit

(∇Y v)(x) := lim
t→0

T −1
t v(γ(t))− v(x)

t
, (5.26)

where Tt denotes the isomorphism by parallel translation along γ(t).

Remark. Unlike the Lie derivative LY v, which involves derivatives of Y , the covariant derivative

is local, i.e., one has ∇fY v = f∇Y v for any function f . �

By leaving the vector field argument Y in ∇Y unspecified, one gets a differential operator ∇
which differentiates vector fields v ∈ Γ(M,TM) to produce sections ∇v ∈ Γ(M,T ∗M ⊗ TM) of

the tensor product of the tangent bundle TM with the cotangent bundle T ∗M . This so-called

connection ∇ is compatible with the exterior derivative d in the sense that

∇(fv) = df ⊗ v + f∇v (5.27)

for any differentiable function f on M .

It is beyond the scope of this lecture course to develop the full calculus of covariant differenti-

ation, so we now take a short cut.

Problem. Make a drawing of the vector fields eθ , eϕ of (5.19). Based on this drawing and the

geometric picture of parallel translation, argue that one has the following results for covariant

derivatives:

∇eθ eθ = ∇eθ eϕ = 0 , ∇eϕ eθ = cot θ eϕ , ∇eϕ eϕ = − cot θ eθ . (5.28)

From these deduce the formulas

∇eθ = cos θ dϕ⊗ eϕ , ∇eϕ = − cos θ dϕ⊗ eθ , (5.29)

for the Levi-Civitá connection ∇ : Γ(M,TM)→ Γ(M,T ∗M ⊗ TM). �

By using the product rule (5.27) one gets from (5.29) the following local coordinate expression

(w.r.t. the basis eθ , eϕ) for the Levi-Civitá connection:

∇v = ∇(vθ eθ + vϕ eϕ) = (dvθ − vϕ cos θ dϕ)⊗ eθ + (dvϕ + vθ cos θ dϕ)⊗ eϕ . (5.30)
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Now we recall that eϕ = Jeθ and −eθ = Jeϕ . By switching from the vector field v to the complex

wave function ψ := vθ + ivϕ and using the correspondence J ↔ i , we then obtain the result

∇ψ = (d+ i cos θ dϕ)ψ . (5.31)

Notice that the wave function ψ in this equation differs from that of (5.21) by a gauge transfor-

mation ψ = e−iϕ ψ(+), which corresponds to a change of gauge

A = A(+) +
~
e
dϕ = −~

e
cos θ dϕ (5.32)

for the magnetic vector potential A . In the present choice of gauge, A has singularities at θ = 0

and θ = π (reflecting the coordinate singularities due to the choice of basis eθ , eϕ).

We see from (5.31) that the connection ∇ is proportional to the mechanical momentum p−eA .

More precisely, ∇ = d − ieA/~ . Therefore, in view of the expression H = (p − eA)2/2m for the

Hamiltonian, the following statement should now be plausible.

Fact. In the vector field picture the Schrödinger equation reads

~ Jv̇ =
~2

2mR2
∇†∇v . (5.33)

Here R is the radius of the two-sphere and the symbol ∇† denotes the Hermitian adjoint of ∇.

Remark. ∇† is a first-order differential operator taking sections of T ∗M ⊗ TM into sections of

TM . (Each of the vector bundles TM and T ∗M ⊗ TM carries a natural Hermitian structure, by

which one defines ∇† from ∇ in the usual way; see Section 1.7.1.) The second-order differential

operator ∇†∇ on vector fields is called the Bochner Laplacian.

Problem. For v = eθ or v = eϕ verify the expression

∇†((fdθ + g sin θ dϕ)⊗ v
)
= −

(
∂f

∂θ
+

1

sin θ

∂g

∂ϕ
+ cot θ (f + gJ)

)
v .

By using this expression along with (5.30), show that each of the three-parameter family (a ∈ R3)

of vector fields

va0 = (ax cos θ cosϕ+ ay cos θ sinϕ− az sin θ) eθ + (−ax sinϕ+ ay cosϕ) eϕ (5.34)

is an eigenvector of ∇†∇ with eigenvalue one.

Remark. Each va0 arises by projecting a constant vector field axex + ayey + azez from R3 to S2.

These vector fields span the three-dimensional space of ground states of ∇†∇. Their energy, the

so-called lowest Landau level, is

E0 =
~2

2mR2
= 1

2
~ω , ω =

e|B|
m

, |B| = 2h/e

4πR2
,

where ω is the cyclotron frequency for the magnetic field strength |B|.
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5.4 Other Cases (µ ̸= 2h/e)

Having discussed the case of monopole charge µ = 2h/e in detail, we now wish to briefly address

the more general situation. For that purpose, we introduce another piece of information.

Problem. Let Ω = sin θ dθ ∧ dϕ be the solid-angle (or Fubini-Study) two-form on S2. Using the

formulas for the Levi-Civitá connection ∇ given in the previous section, show that

∇X∇Y v −∇Y∇Xv −∇[X,Y ]v = −Ω(X,Y ) Jv , (5.35)

where [X, Y ] = XY −Y X is the commutator (or Lie bracket) of the two vector fields X, Y viewed

as first-order differential operators X : f 7→ (df)(X) on functions.

Remark. Notice that there is no derivative acting on the vector field v on the right-hand side of

the formula (5.35). Thus, although

F∇(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ] (5.36)

looks very much like a differential operator, it is actually just a tensor field; more precisely, a

section of the vector bundle End(TM). One calls F∇ ≡ R the Riemann curvature tensor of the

tangent bundle TM with Levi-Civitá connection ∇. More generally, for any vector bundle with a

connection ∇, one defines the curvature tensor by the same formula (5.36). �

In all of the discussion up to now, we have been assuming the situation of a magnetic monopole

in the static limit, where the magnetic field is centro-symmetric. If our charge µ = 2h/e monopole

is in motion or if divergenceless magnetic fields are superimposed on the magnetic monopole field,

the description of the wave function as a vector field continues to apply. The only change is that

the Levi-Civitá connection ∇ is replaced by an adapted connection (still denoted by ∇) such that

the curvature tensor of the adapted ∇ reflects the variable magnetic field:

F∇(X,Y ) = − e
~
B(X,Y ) J . (5.37)

Here B is the two-form of the magnetic field strength with total flux
∫
S2
B = 2h/e.

On the other hand, if the quantized value µ = 2h/e of the magnetic monopole charge is replaced

by a different quantized value µ = nh/e, then the vector bundle itself (not just the connection)

undergoes a change. We saw a glimpse of the vector bundles for general n ∈ Z in Section 5.2, via

the procedure of gluing together two hemispheres by means of the transition function (5.12). We

now give a global differential-geometric description of these vector bundles.

To prepare the generalization, we introduce another way of thinking about the tangent bundle

of M = S2. For this we fix some point of S2, say the north pole, o . The rotation group SO3 acts

transitively on S2, which is to say that if x ∈ S2 is any other point, we can find some rotation

R ∈ SO3 such that R · o = x . Of course R is unique only up right multiplication by elements of

the SO2 subgroup fixing the north pole. Indeed, if h · o = o and R · o = x then (Rh) · o = x. Thus

M = S2 is identified as a quotient (or coset space) S2 ≃ SO3/SO2 .
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Next, we are going to use this setting to develop a different description of tangent vectors and

vector fields. At first, we fix some pair x ∈ S2 and R ∈ SO3 such that R · o = x . The differential

R′ : ToM → TxM then is a bijective linear mapping from the tangent plane of the north pole

to the tangent plane of x . By using its inverse, we can map any tangent vector v ∈ TxM to a

tangent vector R′−1v ∈ ToM . Thus we may describe any pair (x, v) with v ∈ TxM by some pair

(R ;u) with u = R′−1v ∈ ToM . Because R is not uniquely defined, this description is not unique.

Indeed, if h is an SO2 rotation fixing o , then the pair (Rh−1;h′u) is as good a description of (x, v)

as is (R ;u). In order to eliminate this redundancy, we consider

(Rh−1;h′u) ∼ (R ;u) (5.38)

as equivalent (∼) and denote the equivalence class of all such pairs by [R ;u]. Note that these

equivalence classes can be added and multiplied by scalars:

[R ;u1] + [R ;u2] := [R ;u1 + u2] , a[R ;u] := [R ; au] (u, u1, u2 ∈ ToM , a ∈ R) .

In fact they form a vector space isomorphic to ToM ≃ R2.

By performing the construction above for the set of variable points x ∈M , we arrive at what is

called an associated vector bundle overM = S2. It is denoted by SO3×SO2 R2 (where R2 ≡ ToM).

The notation reflects the process of construction: we started from the direct product SO3 × R2

and passed to the quotient by the equivalence relation ∼ which is given by the simultaneous SO2-

action on SO3 and R2. By construction, our associated vector bundle is the same as the tangent

bundle TM : we have the bijective correspondence

TM → SO3 ×SO2 R2 , (x, v) 7→ [R ;R′−1
v] (R · o = x) . (5.39)

What we have described here is a special case of the following general setting.

Definition 1. Let M be a manifold and G be a group. A G-principal bundle P over M is a fiber

bundle π : P →M with typical fiber π−1(x) ≃ G. In any local chart U ⊂M the bundle P factors

as a direct product P |U ≃ U ×G. The group G acts on P on the right, i.e., p · (g1g2) = (p · g1) · g2 .

Definition 2. Let V be a vector space carrying a G-representation ρ : G → GL(V ). If P is a

G-principal bundle over M , the associated vector bundle P ×G V over M ≃ P/G is formed by

dividing the direct product P × V by the equivalence relation

(p, v) ∼ (p · g−1, ρ(g)v) (g ∈ G) . (5.40)

Thus the vectors of the vector bundle P ×G V are equivalence classes [p ; v] = [p · g−1; ρ(g)v]. �

From this general scheme, we get the tangent bundle ofM = S2 by setting P = SO3 , G = SO2 ,

V = R2, and taking for ρ the fundamental representation of SO2 on R2. Any other vector bundle

over S2 is obtained simply by changing the SO2-representation.

Fact. Wave functions of theM = S2 Dirac monopole problem with magnetic charge µ = nh/e are

sections of the vector bundle SO3 ×SO2 R2 which is associated to SO3 by the SO2-representation

ρn

(
cosϕ − sinϕ
sinϕ cosϕ

)
=

(
cos(nϕ/2) − sin(nϕ/2)
sin(nϕ/2) cos(nϕ/2)

)
. (5.41)
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Remark. This makes immediate sense for n ∈ 2Z . For the case of odd n ∈ 2Z + 1 it makes

sense by the observation that S2 = SO3/SO2 = Spin3/Spin2 = SU2/U1 . Taking the square root

(ϕ→ ϕ/2) is well-defined in Spin2 , which is a 2 : 1 covering of SO2 .

5.5 Lesson learned

Let us finish with a summary of the main message of this chapter. Basic textbooks tell us to think

of the wave function of Schrödinger quantum mechanics as a function taking values in C . However,

the challenge of Dirac’s magnetic monopole problem has revealed that this textbook viewpoint

is not always the best one to take. What we have learned is that each point x of position space

should be associated with its own individual copy, say Ex ≃ C, of the complex number field. The

Schrödinger wave function then is a function ψ : x 7→ Ex .

A priori we have no way of comparing the complex lines Ex for different points x, but the

absence or presence of a magnetic field does determine isomorphisms Eγ(t) ≃ Eγ(t′) along curves

γ and thus a covariant derivative ∇. In order to express this differential operator locally as

∇ = d − ieA/~ one fixes a real axis R and hence a frame Ex
∼→ R ⊕ iR for each x . The

freedom of making an x-dependent change of frame corresponds to the freedom of making a gauge

transformation ψ(x) 7→ eiθ(x)ψ(x) of the wave function and A 7→ A+e dθ/~ of the vector potential.

The set E of all complex lines Ex over position space U ⊂ R3 is what is called a complex

line bundle. As long as magnetic monopoles are absent (that’s the case in nature as we know it),

the complex line bundle E is trivial. It is then possible to fix some universal fiber Ex ≡ C and

decompose E = U ⊗ C . In that case the line bundle formalism is just a nice alternative to the

usual description of the wave function as a C-valued function.

However, in the presence of magnetic monopoles the line bundle E becomes non-trivial; it is

then no longer possible to factor it as U⊗C . Any attempt to force such a factorization by declaring

the wave function to be C-valued leads to singular wave functions and singular magnetic vector

potentials. It should be stressed that these singularities are not fundamental but are artifacts due

to an improper description. Indeed, the wave function (properly understood as a section of the

complex line bundle E) remains well defined and so does ∇. In this sense the complex line bundle

picture is more fundamental than the usual one taught in basic quantum mechanics.

Although Dirac did not have the proper mathematical apparatus at his disposal, he recognized

the possibility for quantum mechanics to remain consistent in the presence of (quantized) magnetic

charges, and he established computational control of that challenging situation. In the present

chapter we have met several ways of arriving at the quantization condition named after him. Its

final interpretation is that of an integrality condition which lets the complex line bundle and hence

the wave function exist as globally defined objects free of singularities.
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