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Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures

Alexander Altland and Martin R. Zirnbauer
Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicherstrasse 77, 50937 Ko¨ln, Germany

~Received 4 March 1996!

Normal-conducting mesoscopic systems in contact with a superconductor are classified by the symmetry
operations of time reversal and rotation of the electron’s spin. Four symmetry classes are identified, which
correspond to Cartan’s symmetric spaces of typeC, CI, D, andDIII. A detailed study is made of the systems
where the phase shift due to Andreev reflection averages to zero along a typical semiclassical single-electron
trajectory. Such systems are particularly interesting because they do not have a genuine excitation gap but
support quasiparticle states close to the chemical potential. Disorder or dynamically generated chaos mixes the
states and produces forms of universal level statistics different from Wigner-Dyson. For two of the four
universality classes, then-level correlation functions are calculated by the mapping on a free one-dimensional
Fermi gas with a boundary. The remaining two classes are related to the Laguerre orthogonal and symplectic
random-matrix ensembles. For a quantum dot with a normal-metal–superconducting geometry, the weak-
localization correction to the conductance is calculated as a function of sticking probability and two perturba-
tions breaking time-reversal symmetry and spin-rotation invariance. The universal conductance fluctuations are
computed from a maximum-entropyS-matrix ensemble. They are larger by a factor of 2 than what is naively
expected from the analogy with normal-conducting systems. This enhancement is explained by the doubling of
the number of slow modes: owing to the coupling of particles and holes by the proximity to the superconduc-
tor, every cooperon and diffusion mode in the advanced-retarded channel entails a corresponding mode in the
advanced-advanced~or retarded-retarded! channel.@S0163-1829~97!04001-0#
a
es
n
he
e
rib
o

e
E
e
em

lie
es
ac
d
e

e
en

o
al
os
er
s
d

ies
ap-
ced

-
D
led
rre-
um-
on-

ddi-
are
e-
ibe
ting
llic
ns.
lity
ver-
s
l of
ber

icle

ed
dic
8.
I. INTRODUCTION

Following the early work of Wigner,1 Dyson in his classic
1962 paper2 classified complex many-body systems such
atomic nuclei according to their fundamental symmetri
Arguing on mathematical grounds, he proposed the existe
of three symmetry classes, which are distinguished by t
behavior under reversal of the time direction and by th
spin. The statistical properties of these classes are desc
by three random-matrix models, called the Gaussian
thogonal, unitary, and symplectic ensembles~GOE, GUE,
and GSE!. Dyson’s classification scheme has since prov
very far reaching. Although atomic nuclei display only GO
statistics, physical realizations of the other two classes w
later found in chaotic and disordered single-electron syst
subject to a magnetic field~GUE! or to spin-orbit scattering
~GSE!.

By standard arguments, Wigner-Dyson statistics app
to theergodiclimit, i.e., to times long enough for the degre
of freedom to equilibrate and fill the available phase sp
uniformly. More specifically, in the context of disordere
mesoscopic systems the ergodic limit is reached for tim
larger than the diffusion timeL2/D, whereD is the diffusion
constant andL the linear extension of the system. By th
uncertainty relation, the ergodic limit corresponds to the
ergy range below the Thouless energy\D/L2.

One may ask whether the level statistics of disordered
chaotic single-particle systems in the ergodic limit must
ways be Wigner-Dyson or whether different statistics is p
sible. The answer is that Wigner-Dyson statistics is gen
and universal as long as the statistics is required to be
tionary under shifts of the energy.~This can be understoo
from the mapping on a nonlinears model.3! However, if the
550163-1829/97/55~2!/1142~20!/$10.00
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stationarity condition is relaxed and additional symmetr
are imposed, new universality classes may arise. This h
pens, for instance, when a massless Dirac particle is pla
in a random gauge field. Because the Dirac operatorD anti-
commutes withg5 in the chiral~or massless! limit, its matrix
is block off-diagonal in the eigenbasis ofg5. As a result, the
eigenvalues ofD are either zero or come in pairs~l,2l!.
The average spectral density ofD close to zero is nonstation
ary but universal and is of relevance for the physics of QC
at low energies. It is determined by one of three so-cal
chiral Gaussian ensembles, where different ensembles co
spond to different choices of the gauge group and the n
ber of flavors.4 These ensembles have appeared in the c
text of disordered single-electron systems, too.5

In the present paper we introduce and analyze four a
tional Gaussian random-matrix ensembles, which sh
many striking similarities with the chiral ones but are d
monstrably distinct. The universality classes they descr
are realized in mesoscopic normal-metal–superconduc
~NS! systems, i.e., in microstructures composed of a meta
part in contact with one or several superconducting regio
Just as in the classic Wigner-Dyson case, the universa
classes are distinguished by their behavior under time re
sal and rotation of the~electron’s! spin. The four new classe
together with the six known ones add up to a grand tota
ten. We have reasons to believe that this exhausts the num
of possible universality classes in disordered single-part
systems and none else will be found.~More precisely speak-
ing, by universality classes we here mean infrar
renormalization-group fixed points describing an ergo
limit.! Some of our ideas were anticipated in Refs. 7 and

The prototype of the kind of system6 we are going to
study is depicted in Fig. 1. A metallic~i.e., normal-
1142 © 1997 The American Physical Society
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55 1143NONSTANDARD SYMMETRY CLASSES IN MESOSCOPIC . . .
conducting! quantum dot is put in contact, via potential ba
riers, with two superconducting regions. Several leads
attached for the purpose of making current and voltage m
surements. The metallic quantum dot may or may not
disordered. In the latter case we assume its geometric s
to be such that the classical motion of a single electron ins
it is chaotic. The quantum dot may be pierced by a magn
flux of the order of one or several flux quanta, and there m
exist some impurity atoms causing spin-orbit scattering. T
temperature is so low that the electron’s phase cohere
length exceeds the size of the quantum dot by far.

The characteristic feature that distinguishes this kind
quantum dot from more conventional mesoscopic system
the possibility for two electrons to tunnel through the pote
tial barrier at the NS interface, thereby adding a Cooper p
to ~or removing it from! the superconducting condensate. A
equivalent statement in single-particle language is that
electron incident on the NS interface may be retroreflecte
a hole~and vice versa!. This process of particle-hole conve
sion, which conserves energy, momentum and spin but
lates charge, is calledAndreev reflection.9 In the semiclassi-
cal limit, Andreev reflections give rise to numerous almo
periodic orbits whose action does not grow but remains
order\ as the length of the orbit increases.10 The existence
of these orbits modifies the mean density of states~Weyl
term! of the quantum dot without leads: in general, an ex
tation gap opens up and we arrive at the ‘‘boring’’ situati
where the vicinity of the chemical potential is devoid
single-particle states. However, by tuning the phase dif
ence of the order parameters of the two superconducting
gions to the special valuep, we can make the gap clos
More generally, we expect quasiparticle excitations to e
right at the chemical potential whenever the phase shift
curred during Andreev reflection vanishes on average o
the NS-interfacial region. Disorder or dynamically genera
chaos mixes the states and creates a universal spectral r
close to the chemical potential. Its width is determined by
energy uncertainty which is caused by the coupling of p
ticles and holes by Andreev reflection. It is this very regi
and its consequences for the transport properties that we
going to study in the present paper.

The organization of the paper is as follows. Mesosco
independent-quasiparticle systems are classified accordin
their behavior under time reversal and spin rotations in S
II. Having specified the required dynamical input in Sec.
we formulate the appropriate random-matrix ensembles
Sec. IV. In Sec. V we discuss the spectral statistics of
isolated system, using first the Dyson-Mehta orthogo

FIG. 1. Metallic quantum dot (N) in contact with two supercon
ducting regions (S). The dot is separated from the leads (L) by a
tunnel barrier (T).
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polynomial method and then diagrammatic perturbat
theory. The latter method easily extends to the calculation
the transport properties of an open system. In Sec. VII
work out the weak-localization correction to the average c
ductance and in Sec. VIII the universal conductance fluct
tions. Our conclusions are presented in Sec. IX.

II. SYMMETRY CLASSIFICATION

The treatment of this paper is based on the BCS Ham
tonian in the Hartree-Fock-Bogoliubov mean-field appro
mation:

Ĥ5E ddxS (
s,t5↑,↓

cs
†hstct1Dc↑

†c↓
†1D*c↓c↑D ,

h5~p2eA!2/2m1V1USO•s3~p2eA!2m.

HereV(x) is a scalar potential which may have a rando
component, andD(x) is the pairing field. The presence of
magnetic vector potentialA(x) breaks time-reversal symme
try while the spin-orbit fieldUSO(x) breaks invariance unde
rotations of the electron’s spin.m is the chemical potential.

The second-quantized HamiltonianĤ can be rewritten in
an equivalent first-quantized form by the Bogoliubo
deGennes~BdG! formalism. For our purposes it is conve
nient to introduce some generic orthonormal basis of sing
electron statesua&, wherea is a multiindex that combines th
orbital and spin quantum numbers of the electron. IfN is the
number of orbital states used,a runs from 1 to 2N. Let ca

†

andcb be the usual creation and annihilation operators ob
ing the canonical anticommutation relationsca

†cb1cbca
†

5dab . The HamiltonianĤ can be written

Ĥ5(
ab

~habca
†cb1 1

2Dabca
†cb

†1 1
2Dab* cbca!.

Hermiticity requireshab5hba* , and the matrix elementsDab

must be antisymmetric by Fermi statistics:Dab52Dba . Now
we write Ĥ in the form ‘‘row multiplies matrix multiplies
column’’:

Ĥ5
1

2
~c† c!S h D

2D* 2hTD S cc†D 1const. ~1!

In this way every HamiltonianĤ is uniquely assigned to a
4N34N matrixH,

H5S h D

2D* 2hTD . ~2!

The eigenvalue problem forH is known as the Bogoliubov-
deGennes equations. We refer toH as the ‘‘BdG Hamil-
tonian’’ for short.

The first-quantized HamiltonianH acts in an enlarged
space, namely the tensor product of the physical spaceC2N

~orbitals and spin! with an extra degree of freedomC2, which
we call the ‘‘particle-hole space.’’ Note however that th
‘‘particles’’ and ‘‘holes’’ of the BdG formalism are not the
particle and hole states of a degenerate Fermi gas. Ind
the matrixh already acts onall of the single-electron states
which have energieseither above or belowthe chemical po-
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1144 55ALEXANDER ALTLAND AND MARTIN R. ZIRNBAUER
tential. The BdG-hole states acted upon by2hT are identical
~and in this sense redundant, or unphysical! copies of the
BdG-particle states acted upon byh. They are introduced for
the convenience of treating the pairing field within the fo
malism of first quantization.

The aim of the current section is to classify systems
cording to their symmetries. Using the BdG formalism w
will show that the presence or absence of time-reve
and/or spin-rotation invariance leads to four distinct symm
try classes. The situation thus is different from the we
known Wigner-Dyson scenario where only three distin
classes exist.

The discussion of Secs. II A–II D uses some basic fa
from the theory of Lie algebras and symmetric spaces an
somewhat technical. The casual reader may wish to s
these subsections and proceed directly to Table I given a
end of Sec. II D. A brief summary of the symmetries ofH
for each class is provided also at the beginning of Sec. I

A. Symmetry classD

We start by considering systems with the least degre
symmetry, i.e., systems with neither time-reversal symme
nor spin-rotation invariance. In this case the matricesh and
D in general have no symmetry properties beyond th
stated above, namely hermiticity ofh and skew symmetry o
D. Because the set of Hermitian matrices does not close
der commutation whereas the antiHermitian ones do, we
fer to work withX:5 iH rather thanH in the current section
In terms ofX, the conditionsh5h†, D52DT can be pre-
sented summarily in the form

2X†5X52SxX
TSx ,

~3!

Sx5S 0 12N
12N 0 D 5sx^12N .

If two matricesX,Y satisfy these equations, then so do
their commutator [X,Y]. Hence, we may viewX as an ele-
ment of some Lie algebra. To identify this Lie algebra w
conjugate byX°X̃5U0XU 0

21 where

U05
1

A2
S 1 1

i 2 i D ^12N .

Equations ~3! then take the form2X̃ †5X̃52X̃ T or,
equivalently,X̃5X̃*52X̃ T. This shows that Eq.~3! fixes a
so(4N) algebra, i.e., a Lie algebra isomorphic to the re
antisymmetric 4N34N matrices. Since so(4N)[D2N in
Cartan’s notation, we denote the present symmetry clas
the symbolD.

Being a Lie algebra element,X can be brought into diag
onal form byX°V5gXg21 whereg is an element of the
corresponding Lie group which is isomorphic to SO(4N)
and is defined by

g21†5g5Sxg
21TSx . ~4!

The conditions ~3! imply V5diag (iv,2 iv)5sz^ iv
wherev5diag(v1 ,v2 ,...,v2N) with realv i . The conditions
for the canonical anticommutation relations to be invari
under a transformation
-
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S cc†D°gS cc†D5:S g
g†D

can be shown11 to coincide with Eq.~4!. Thus, inserting
X5g21Vg into Eq. ~1! we obtain

Ĥ5
1

2 (
l

vl~gl
†gl2glgl

†!

with ga
†gb1gbga

†5dab . The frequenciesvl may be posi-
tive or negative. The BCS ground state is defined by
mandinggluBCS&50 for vl.0 andgl

†uBCS&50 for vl,0.
The normal-ordered Hamiltonian

:Ĥ:5 (
vl.0

uvlugl
†gl1 (

vl,0
uvluglgl

†

is always positive.

B. Symmetry classC

We now consider systems without time-reversal symm
try but with spin-rotation invariance. We again use th
unique representation of a second-quantized BCS mean-
HamiltonianĤ by ~i times! a BdG HamiltonianX5 iH.

We write the particle-hole decomposition ofX as
X5( C

A
D
B) or, in tensor-product notation,

X5Epp^A1Eph^B1Ehp^C1Ehh^D.

The conditionX52SxX
TSx meansB52BT, C52CT and

D52AT. Antihermiticity requiresA52A† andC52B†.
The generators of spin rotations,Jk (k5x,y,z),

are represented on particle-hole space byJk5(Epp^sk
2Ehh^s k

T)^1N . Spin-rotation invariance of the Hamil
tonian requires thatX and Jk commute. This condition is
easily seen to constrainA,B,C to be of the formA512^a,
B5 isy^b andC52 isy^c or, in matrix presentation,

X5S a 0 0 b

0 a 2b 0

0 2c 2aT 0

c 0 0 2aT
D .

We see thatX decomposes into two commuting subblock
One corresponds to spin-up particles and spin-down ho
and the other to spin-down particles and spin-up holes.
cause the subblocks are related by an algebra homom
phism ~b°2b, c°2c! it is sufficient to focus on one o
them, say

X↑5S a b

c 2aTD
and account for spin degeneracy by inserting factors o
whenever needed. We drop the subscript and writeX for X↑ .

Since B52BT, the equation B5 isy^b implies
b51bT. Similarly, we deducec51cT. Antihermiticity re-
quiresa52a† and c52b†. All these conditions are sum
marized by

2X†5X52SyX
TSy , Sy5sy^1N . ~5!
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55 1145NONSTANDARD SYMMETRY CLASSES IN MESOSCOPIC . . .
This is the defining equation of the symplectic Lie algeb
sp(2N). Thus X5 iH is an element of sp(2N). Since
sp(2N)[CN in Cartan’s notation, we denote the prese
symmetry class by ‘‘C. ’’

The second-quantized Hamiltonian associated withX
5X↑5(c

a
2aT
b ) is

Ĥ↑52
i

2 (
m,n

~cm↑
† cm↓!S amn bmn

cmn 2anm
D S cn↑cn↓

† D .
As before, we can diagonalizeX by X5g21Vg where
V5sz^ iv and v5diag(v1 ,...,vN), and g now satisfies
g21†5g5Syg

21TSy , i.e., gPSp(2N). The transformation

S c↑c↓†D°gS c↑c↓†D5:S g↑
g↓
†D

diagonalizes the Hamiltonian:

Ĥ5Ĥ↑1Ĥ↓

5
1

2 (
l

vl~gl↑
† gl↑1gl↓

† gl↓2gl↑gl↑
† 2gl↓gl↓

† !.

BecausegPSp(2N),U(2N) is a unitary matrix, the canoni
cal anticommutation relations are preserved by the trans
mation from~c,c†! to ~g,g†!. Every quasiparticle level has
trivial degeneracy due to spin.

C. Symmetry classDIII

We next consider systems with time-reversal symme
but without spin-rotation invariance. Recall that the con
tions for symmetry classD, 2X†5X52SxX

TSx with
Sx5sx^12^1N , fix a so(4N) algebra. The time-reversal op
eratorT acts on the BdG Hamiltonian by

T:H°tH* t21

wheret512^isy^1N . UsingX5 iH andX*52XT we get
the action of T on X, T:X°tXTt21. Thus, for a time-
reversal invariant system,X is subject to the additional con
straint X51tXTt21. We denote the set of solutions i
so(4N) of this condition byP. WhileP does not close unde
commutation and therefore does not form a subalgebra
so(4N), the solution set,K, of the complementary condition
Y52tYTt21 does. Therefore, we may describeP as the
complement of a subalgebraK in so(4N). In formulas,
so(4N)5K1P. We are now going to identifyK.

The equations forK can be rewritten

2Y†5Y52SxY
TSx52~Sxt!Y~Sxt!21.

Let U0 be the unitary matrix given in particle-hole and sp
decomposition by

U05
1

A2
S 12 isy

sy 2 i12
D ^1N .

Conjugation byU0 , Y°Ỹ5U 0
21YU0 , takes the equation

for K into

2Ỹ †5Ỹ52SxỸ
TSx52SzỸSz .
t

r-

y
-

of

The solutions of the latter are of the formỸ5diag (Z,2ZT)
with Z an antiHermitian 2N32N matrix. We now recognize
K as being isomorphic to the Lie algebra of antiHermiti
2N32N matrices, orK.u(2N). Thus, the spaceP of BdG
HamiltoniansX5 iH is obtained from so(4N) by removing a
u(2N) subalgebra. BecauseP is the difference of two Lie
algebras so(4N) and u(2N), it can be interpreted as the tan
gent space of the quotient SO(4N)/U(2N) of the corre-
sponding Lie groups, which is a symmetric space of ty
DIII in Cartan’s notation; hence the nameDIII for the
present symmetry class.

From the general theory of symmetric spaces12 we know
that an elementXPP can be diagonalized by a transform
tion X°k21Xk with kPexpK5U(2N). Time-reversal sym-
metry causes every eigenvalue to be doubly degenerat
Kramers’ theorem.

D. Symmetry classCI

Finally, we turn to systems with both time-reversal sym
metry and spin-rotation invariance. Recall that spin-rotat
invariance causes the BdG HamiltonianX5 iH↑ to obey the
relations2X†5X52SyX

TSy , which define the symplectic
Lie algebra sp(2N). Because of the restriction to a sing
spin sector, the action of the time-reversal operator simpli
to T:X°XT. Thus, time-reversal symmetry constrainsX to
be symmetric. LetK now denote the subalgebra of antisym
metric matrices in sp(2N). ThenX, being symmetric, lies in
the complementary setP defined by sp(2N)5K1P. We
claim thatK is isomorphic to the unitary Lie algebra u(N).
To prove this, we observe that the solutionsYPK of
2Y†5Y52SyY

TSy5YT have the form 12^ReA
1 isy^Im A where A is an arbitrary antihermitianN3N
matrix, i.e., APu(N). The embedding u(N)°sp(2N) by
A°12^ReA1 isy^Im A is easily seen to be a homomo
phism of Lie algebras. ThereforeK.u(N) as claimed. The
linear complementP of u(N) in sp(2N) can be regarded a
the tangent space of Sp(2N)/U(N), which is a compact sym-
metric space of typeCI according to Cartan’s list. For the
benefit of the casual reader the various symmetry classes
the names by which they are referred to in the present pa
are summarized in Table I.

E. Is the symmetry „3… wiped out by Coulomb effects?

The symmetry~3! is central to our approach. Just ho
robust is it?

The relations~3! follow from the well-known mathemati-
cal fact11 that the set of all bilinear combinations of the ferm
ion creation and annihilation operators is isomorphic to
orthogonal Lie algebra. Put differently, the symmetry~3! re-
quires no more than the fermionic nature of the electron

TABLE I. Symmetry classes.

Class Time-rev Spin-rot Sym space

D No No SO(4N)
C No Yes Sp(2N)
DIII Yes No SO(4N)/U(2N)
CI Yes Yes Sp(2N)/U(N)
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the use of the Hartree-Fock-Bogoliubov mean-field appro
mation, allowing us to express the Hamiltonian in terms
bilinears of the creation and annihilation operators. Alter
tively, we could say that Eq.~3! is an exact symmetry when
ever the system can be described in terms of indepen
Bogoliubov quasiparticles.

What happens when we add a Coulomb charging ene
to the Hamiltonian? The relative minus sign between
particle-particle and hole-hole blocks ofH, Eq. ~2!, tells us
that, if the creation of an electron in a given state cost
certain amount of energy, then the creation of a hole~re-
moval of an electron! in this state should release exactly t
same amount. The Coulomb interaction, however, does
conform to that principle. When a charge is added to
charge-neutral system, say, it makes no difference whe
this charge is a particle or a hole, the electrostatic energy
is positive in both cases. Therefore, the Coulomb charg
energy~as well as other perturbations that do not fit into t
independent-quasiparticle framework! violates the symmetry
~3!. More precisely speaking, we expect the independe
quasiparticle approximation to be adequate for describing
short-time physics, but at sufficiently long times Coulom
effects must become visible and, in particular, they will c
off the particle-hole modes we are going to study in t
present paper. Whether the cutoff time can be long eno
for the consequences of the symmetry~3! to be observable, is
a tough quantitative question for theory, which cannot
answered without an understanding of screening in open
finite metallic systems. Fortunately, the question has alre
been answered in the affirmative by experiment. Over
last years a number of mesoscopic NS phenomena has
observed, the most prominent of which is the drama
enhancement13 of the differential conductance at zero bias
NS geometries with a high potential barrier separating
normal-conducting and superconducting regions. This p
nomenon has been explained14 by a mechanism called ‘‘co
herent Andreev reflection’’ or ‘‘reflectionless tunneling,’’15

which is the result of constructive interference between se
classical paths with one Andreev reflection and a varia
number of normal reflections. In order for such an interf
ence to take place, the dynamical phases of a particle a
hole traversing the same path in opposite directions m
cancel each other. It is precisely the symmetry~3! in combi-
nation with the extra symmetries defining classCI that guar-
antee the necessary phase relation between particles
holes to hold. We conclude that there exists convincing
perimental evidence that the symmetry~3! is not wiped out
by the Coulomb interaction but leads to observable con
quences. In the remainder of this paper we are going to
nore Coulomb effects.

III. DYNAMICAL INPUT

The classification of Sec. II refers only to symmetry a
thus is very general. To go further, we make two dynami
assumptions.

When an electron is retroreflected from the NS interfa
as a hole, its wave function acquires a phase shift whic
determined by the phase of the superconducting order
rameter. Our first assumption is that this phase shift, h
called the ‘‘Andreev phase shift’’ for short,vanishes on av-
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erage over the NS-interfacial region. To appreciate what
such an assumption implies, let us look at a few e
amples. Consider first a superconducting–normal-met
superconducting~SNS! system consisting of an infinite sla
of normal metal sandwiched between two superconduc
slabsS1 andS2 . The pairing interaction causes the existen
of an excitation gap in each of the superconducting regio
We now ask how the presence of the normal-conducting s
affects the excitation spectrum of the combined SNS sys
at the chemical potential. The answer to this question w
given in Refs. 16 and 17 and it is essentially as follows.
the clean limit, the BdG Hamiltonian is separable and we c
get a qualitative understanding of the quantal energy sp
trum by the method of semiclassical quantization. For s
plicity we assume that all reflections at the NS interface
Andreev. Every periodic classical motion then is some m
tiple of a primitive periodic orbit where an electron mov
back and forth between the superconducting regions an
Andreev reflected at each interface. Ifkp (kh) are the wave
numbers of the particle~hole! normal to the slabs andL is
the thickness of the normal-conducting region, the Bo
Sommerfeld quantization rule applied to this periodic moti
reads

6~kp2kh!L1p1w12w252pn ~nPZ!. ~6!

Here p1w12w2 is the phase accumulated by the two A
dreev reflections ifw1 andw2 are the phases of the superco
ducting order parameter in the regionsS1 and S2 . For an
electron with energy equal to the Fermi energy,kp equalskh ,
so the first term on the left-hand side vanishes. From
resulting equationw12w25(2n21)p we see that the quan
tization condition can be fulfilled only whenw1 andw2 differ
by an odd multiple of p. In other words, for
cos~w12w2!Þ21, which includes the homogeneous ca
w15w2, we expect a gap in the excitation spectrum not o
in the superconductor but also in the combined SNS syst
On the other hand, for cos~w12w2!→21 the gap closes and
quasiparticle excitations exist all the way down to zero e
ergy. The latter situation is special in that the Andreev ph
shift vanishes on average over the two NS interfaces in
case.

The above argument applies to the extreme limit o
clean system which clearly is unrealistic. What can we s
about the effects of disorder? A generic random poten
destroys separability and makes Bohr-Sommerfeld quant
tion inapplicable. The general case therefore needs to
studied with the help of a computer, or by using the rando
matrix theory that will be developed in the remainder of o
paper. What is easy to treat analytically is the case o
slowly varying random potential depending only on the c
ordinate,z, of the direction perpendicular to the slabs. In th
case the quantization rule Eq.~6! remains valid if
we replace the expression (kp2kh)L by the integral
* 0
L[kp(z)2kh(z)]dz where kp(z)5[2m(m1e2V(z)] 1/2,

kh(z)5[2m(m2«2V(z)] 1/2, andE5m1« is the total en-
ergy of the electron. Sincekp(z)5kh(z) for «50, our con-
clusions are the same as before: there is a gap
cos~w12w2!Þ21, and the gap closes as cos~w12w2!→21.

Another instructive example is provided by the vortex s
lution for a clean type-II superconductor. The phase of
superconducting order parameter uniformly winds on
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around the unit circle as we go once around the vortex c
For this reason, the pairing field experienced by normal
citations bound to the vortex core vanishes on average
the vortex. Because the vortex solution breaks translatio
symmetry, there must exist some random-phase approx
tion ~RPA! ~or vibrational! zero modes of the vortex. Thes
zero modes are the Goldstone modes associated with
spontaneous breaking of translational symmetry by the lo
ized vortex solution. It follows that, if the RPA correlatio
energy vanishes~is small!, i.e., if the excitation energies ar
given by~are approximately given by! sums of two quasipar
ticle energies, there must exist quasiparticle excitations w
vanishing~small! energy. In contrast, for a piece of cylindr
cally shaped normal metal immersed in a superconduc
environment~‘‘columnar defect’’! there is no general reaso
why we should expect quasiparticle excitations with low e
ergy.

These two examples, the SNS slab geometry and the
tex, lend support to the plausible expectation that a pair
field which is locally nonzero but whose mean phase^eif&
vanishes in a suitably defined sense, is ineffective at crea
a genuine gap in the density of states near the chemica
tential. This then is the motivation behind the above requ
ment that the Andreev phase shift should vanish on ave
over the NS-interfacial region: it ensures that the gap clo
and quasiparticles can exist right at the chemical potenti

Our second main input is the assumption thatthe classical
dynamics in the normal-conducting (N-) region be chao.
The presence of a sufficient amount of disorder will alwa
guarantee this assumption to be justified. For a ballistic s
tem, chaotic dynamics is achieved by choosing for
boundary of theN region some surface that causes a typi
classical trajectory to be unstable. Chaoticity of the class
motion means that the long-time behavior of the system
unpredictable; in particular, the phase shifts acquired by
dreev reflection along a typical semiclassical trajectory fo
a random sequence. This randomness will allow us to mo
the pairing field by a stochastic variable. Note that the spa
constancy of the magnitude of the pairing field in the bulk
the superconductor is an irrelevant feature for our purpo
If we switch from coordinate representation to a generic
sis of single-particle states, say the eigenbases ofh and2hT,
both the phase and the magnitude ofD will fluctuate and be
distributed around zero.

Consider now an isolated finite system, so that the Bo
liubov quasiparticle spectrum is discrete. According to o
above arguments, we expect the existence of levels clos
the chemical potential in the pure system under the co
tions described. The effect of dynamically generated ch
and/or disorder will be to cause mixing of these levels. F
the conventionalN system, such mixing is known to lead t
universal level statistics, depending only on symme
~More precisely, the level correlations are universal in
low-frequency regime corresponding to the long-time or
godic limit.! For the case of disordered metallic granules,
level correlations were calculated by Efetov.3 His results
show that the level statistics is Wigner-Dyson, i.e., identi
to that of an ensemble of random matrices with uncorrela
Gaussian distributed matrix elements. In the NS syste
considered in the present paper, characteristic features ap
at low excitation energy, owing to the coupling of particl
e.
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and holes by the process of Andreev reflection at the
interface. As was shown in Sec. II, the presence of the p
ing field D leads to symmetries different from Wigne
Dyson. We therefore expect different types of universal le
statistics to emerge in such systems. This type of statis
will extend over an energy range set by the energy unc
tainty due to the action of the pairing field~or Andreev re-
flection!. The goal of our paper is to give a quantitative d
scription of precisely these correlations and their effect
the transport properties. To reach this goal we may foll
two different routes. The first and more comprehensive o
is to generalize Efetov’s analysis, i.e., to construct an eff
tive field theory of the nonlinears model type and solve the
field theory in the zero-dimensional limit corresponding
the universal regime. Such an approach yields not only
universal behavior but also the crossover to the short-t
regimes. Since our interest is in the universal limit, the
exists also another option. Armed by the experience gai
from the study of theN system, we may replace the Bd
Hamiltonian ~2! by an ensemble of random matrices wi
maximum entropy, paying attention only to the symmetr
under time reversal and spin rotation. While the fie
theoretic method is more versatile, the random-matrix
maximum-entropy approach has the great advantage of b
much simpler technically. For this reason we have chose
follow the latter in the present paper.

To maximize the entropy of the random-matrix ensem
we will take the matrix elements of the BdG Hamiltonian
be normally distributed and statistically independent. All m
trix elements will be chosen to havezero mean. For the
off-diagonal blocks of the BdG Hamiltonian, this choice co
responds to our assumption that the spatial average of
Andreev phase shift vanishes on average. In general,
would need to distinguish between the strength of fluctuat
of h andD. However, at low energy, i.e., within the energ
window defined by the uncertainty due to Andreev reflectio
this distinction turns out to be irrelevant and we may take
strengths to be equal. The resulting random-matrix ensem
depends on two parameters only. These are the strength
the perturbations that break time-reversal and spin-rota
invariance and are responsible for the crossover between
versality classes.

To finish off this orientational section, we mention a
other realm of application of the above random-matrix ide
Consider an array of superconducting grains or islands
bedded in a metallic~nonsuperconducting! host. The grains
are disordered and/or of irregular shape, and they are m
ally coupled by Josephson tunneling. The array is expose
a subcritical magnetic field which penetrates the host bu
ejected from the grains. By tuning the strength of the fie
we can frustrate the coupling between the grains and d
the system into a spin-glass-type phase where supercon
ing order exists locally but not globally. Such a system h
been called a superconducting glass.7 Its prime characteristic
is that the pairing field, or superconducting order parame
continues to be nonzero on each grain but vanishes on a
age over large scales. The low-energy quasiparticle exc
tions of such a system are predicted to be described by
random-matrix model formulated below. Because of t
breaking of time-reversal symmetry by the magnetic fie
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the relevant symmetry class isC. The presence of spin-orb
interactions causes crossover toD.

IV. RANDOM-MATRIX ENSEMBLES

To prepare the formulation of the random-matrix e
sembles, we summarize the discussion of Sec. II by pres
ing the symmetries of the BdG HamiltonianH for each sym-
metry class explicitly.

For systems where all symmetries are broken~classD! H
satisfiesH52SxHTSx with Sx5sx^12^1N . The block de-
composition

H5S A B

B† 2ATD ~7!

expresses the particle-hole structure ofH. The off-diagonal
block B is antisymmetric by Fermi statistics. Hermiticity o
the Hamiltonian requiresA5A†.

ClassDIII consists of the systems where time reversa
the only good symmetry. For such systemsH obeys the ad-
ditional relationH5tHTt21 with t512^isy^1N . The de-
composition ofH according to particles and holes~outer
block structure! and spin~inner block structure! has the form

H5S a↑↑ a↑↓ b↑↑ b↑↓

a↓↑ a↑↑
T 2b↑↓

T b↓↓

2b↓↓ 2b↑↓
T 2a↑↑

T a↓↑

b↑↓ 2b↑↑ a↑↓ 2a↑↑

D
with antisymmetrica↑↓ , a↓↑ , b↑↑ andb↓↓ . Hermiticity ofH
requiresa↑↑5a↑↑

† , b↑↓5b↑↓
† , a↑↓5a↓↑

† , andb↓↓52b↑↑
† .

For classC spin is conserved while time-reversal symm
try is broken. In this caseH commutes with the spin-rotatio
generatorsJk5(Epp^sk2Ehh^s k

T!^1N or, equivalently,H
obeysH5JkHJk . The particle-hole and spin decompositio
of H reads

H5S a 0 0 b

0 a 2b 0

0 2b† 2aT 0

b† 0 0 2aT
D

with symmetricb. Every level has a trivial twofold degen
eracy due to spin. Without loss of information we may foc
on the spin-up sector with reduced Hamiltonian

Hr5S a b

b† 2aTD . ~8!

Hermiticity requiresa5a†. Systems belonging to classC
have been the subject of a previous publication.10 A subse-
quent microscopic analysis18 has shown that our phenomen
logical random-matrix modeling of this class is justifiedeven
if the condition of a zero mean Andreev phase shift
relaxed.19

In class CI both spin rotations and time reversal a
good symmetries. The BdG Hamiltonian satisfi
H5tHTt215JkHJk , and is constrained by these symm
tries to be of the form
-
nt-

-

s

s

-

H5S a 0 0 b

0 a 2b 0

0 2b 2aT 0

b 0 0 2aT
D

with symmetrica andb. Hermiticity then implies thata and
b are real matrices.

Now recall the dynamical conditions formulated in Se
III. By assumption, the classical dynamics in theN system is
chaotic and the Andreev phase shift vanishes on ave
over the NS-interfacial region. We therefore may replace
BdG Hamiltonian by a random matrix~of the appropriate
symmetry! with matrix elements that have zero mean. T
principle of least information, or maximum entropy, the
leads us to postulate a random-matrix ensemble with
Gaussian probability distribution

exp~2Tr H2/2v2!dH ~9!

for each symmetry class. HeredH denotes a Euclidean mea
sure on the linear space of BdG Hamiltonians with met
Tr~dH!2.

More generally, we can formulate a two-parameter fam
of Gaussian random-matrix ensembles which interpolates
tween all four symmetry classes. Because a Gaussian d
bution~with zero mean! is completely specified by its secon
moment, it is sufficient to describe the correlation functi
^Tr AH3Tr BH& for two arbitrary sourcesA and B. The
correlation law we choose is

^Tr AH3Tr BH&/v2

5Tr~A2SxATSx!FB1~12e t!tBTt211~12es!

3(
k
JkBJk1~12es!~12e t!(

k
JktB

Tt21JkG .
~10!

For es5e t50 the correlation law is invariant under bot
reversal of time and rotation of spin. This is the symme
classCI. A nonzero value ofe t breaks time-reversal symme
try. Therefore, by increasinge t we cross over to classC. A
nonzero value ofes breaks spin-rotation invariance, so b
increasinges we cross over to classDIII. By increasing both
es ande t we break all symmetries and cross over to classD.
We call a symmetry ‘‘maximally broken’’ when its
symmetry-breaking parameter~es or e t! equals unity. When-
ever a symmetry is either unbroken or maximally broken,
probability distribution of the Gaussian ensemble can be p
sented in the simple form~9!, with the corresponding sym
metry constraints imposed onH.

All information about the level statistics is contained
the joint probability distribution for the eigenvalues,P($v%).
This distribution is a complicated function in general, but
takes a simple form for each universality class. By diagon
izing the BdG Hamiltonian
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H5US v 0

0 2v
DU21, v5diag~v1 ,v2 ,...!

and computing the Jacobian of the transformation to dia
nal form, we obtain the formula

P~$v%!d$v%5)
i, j

uv i
22v j

2ub)
k

uvkuae2vk
2/v2dvk ,

~11!

where, for the individual cases,

class D: b52, a50,

class C: b52, a52,

class DIII: b54, a51,

class CI: b51, a51.

These expressions forP($v%) can be derived by elementar
means. A particularly elegant derivation uses the interpr
tion ofH as being tangent to the symmetric space of typeD,
DIII, C, or CI. The Jacobian can then be read off imme
ately from the tabulated root systems of these spaces.

The formula forP($v%) permits some immediate conclu
sions to be drawn. Clearly, the significance of the param
a is that it governs the level repulsion from the originv50,
while b gives the mutual repulsion between levels. For
following it is useful to view the factoruvku

a as being due to
the interaction of thekth level with its ‘‘image’’ at 2vk .
Similarly we view the factorv i1v j in v i

22v j
2 as resulting

from the interaction of thei th level with the image of thej th
level. At energiesv much greater than the mean-level spa
ing, the interaction of levels with their distant images
negative energies is expected to be irrelevant. Therefore
level statistics derived from Eq.~11! will reduce, in that
limit, to the usual Wigner-Dyson statistics as determined
the parameterb. On the other hand, in the opposite limit o
energies of order unity on the scale set by the level spac
the level statistics will be different from Wigner-Dyson. I
particular, by the definition ofP($v%) as a joint probability
density we immediately conclude that the mean density
levels near zero behaves as

^r~v!&5^Tr d~v2H!&;uvua ~v→0!. ~12!

Note that for the systems where our random-matrix desc
tion applies, the exponenta is predicted to be universa
dependent only on symmetry. The value ofa for the sym-
metry classesCI and C is easily understood from the fac
that the repulsion of a level from its own image is caused
the pairing fieldD. For classC pairing matrix elements are
complex, whereas for classCI all pairing matrix elements
can be chosen to be real. By a standard power counting
gument this results ina52 anda51, respectively. To under
stand whya is zero for classD, note that in this case a leve
and its own image are not really physically distinct but a
copies of thesamesingle-electron state.~In contrast, for the
classesC andCI the hole level has its spin flipped relative
the particle level.! The pairing matrix element between ide
tical states vanishes by the Pauli principle—or put diff
-
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ently, the matrixD in Eq. ~2! is antisymmetric and therefor
has zeroes on its diagonal—which results ina50.

V. SPECTRAL STATISTICS

A. Exact results

Our interest here is in the level correlations for a lar
matrix dimension. These are easy to compute when the s
metry class isC or D. Consider first classC. For this sym-
metry class we can interpretP($v%) as the joint probability
density of a Gaussian unitary ensemble~GUE! of 2N levels
v1 ,v 1̄ , ...,vN ,v N̄ subject to the mirror constraintv k̄5
2vk . The GUE joint probability density, in turn, can b
interpreted as the square of the ground-state wave func
for a system of spinless nonrelativistic noninteracting o
dimensional~1D! fermions confined by a harmonic well.20

This correspondence of levels and Fermi particles turns
n-level correlation functions of the GUE into then-point
static density correlation functions of the Fermi system.
the large-N limit, the spatial variation of the harmonic con
fining potential becomes~locally! negligible and the gas o
fermions can be treated as locally free. The mirror constra
means that whenever a fermion approaches zero, the
does its mirror image. Because the Pauli principle makes
wave function vanish as two fermions approach each ot
this amounts to hard wall~or Dirichlet! boundary conditions
at v50. Hence we can compute the level density and
correlations as the particle density and its correlations fo
free 1D Fermi gas with Dirichlet boundary conditions at t
origin. The free-fermion wave functions that vanish atv50
are sin~vt!, wheret plays the role of a ‘‘wave number.’’ By
summing over the Fermi sea of states occupied in the gro
state, we obtain for the mean density of levels

^r~v!&5
2

p E
0

p

sin2~vt!dt512
sin2pv

2pv
. ~13!

Here and throughout this subsection we follow the conv
tion of measuringv in units of the mean spacing betwee
neighboring particles~i.e., of the level spacing! at a distance
of many spacings from zero. Note that^r~v!& for v→0 has
the behavior expected from Eq.~12! ~recall a52 for class
C!. A similar calculation of the density-density correlator
the Fermi gas yields the two-level cluster function:

^r~v1!r~v2!&2^r~v1!&^r~v2!&2@d~v12v2!

1d~v11v2!#^r~v1!&

52Fsin p~v12v2!

p~v12v2!
2
sin p~v11v2!

p~v11v2!
G2.

Keepingr5v12v2Þ0 fixed and lettingv11v2 tend to in-
finity, we recover the familiar GUE two-level cluster func
tion 2sin2(pr )/(pr )2. Similarly, all n-level functions
Rn(v1 ,...,vn)5^r(v1)•••r(vn)& can be calculated. On
subtracting the level self-correlations, which amounts to n
mal ordering in the particle-gas formulation, we obtain t
result



a

o

he
In

w
m

th
-

lly
he

r
an
th
u

s
le
h

s
n
p
he

m
ur

on
n-

r

-

rib-
use

ary.
ry
ex-

nd

c
s
the

by
e
be-

e-

and
m-

1150 55ALEXANDER ALTLAND AND MARTIN R. ZIRNBAUER
Rn~v1 ,...,vn!5Det@CC~v i ,v j !# i , j51,...,n ,
~14!

CC~v i ,v j !5
2

p E
0

p

sin~v it!sin~v jt!dt,

by simply using Wick’s theorem for the free Fermi gas.
We turn to the symmetry classD. It is convenient again to

use the interpretation of the joint probability density as
Gaussian unitary ensemble of 2N levels with a mirror con-
straint. The only change from before is that the repulsion
a level from its own mirror image is now absent~a50!.
Correspondingly the single-fermion wave functions of t
Fermi gas no longer vanish on approaching the origin.
stead, what we need to demand is that they beevenfunctions
of v, which is the same as imposing vanishing derivative~or
Neumann! boundary conditions atv50. Thus the level↔
particle correspondence now leads to the free Fermi gas
Neumann boundary conditions at the origin. Doing the sa
kind of calculation as before we find

^r~v!&5
2

p E
0

p

cos2~vt!dt511
sin~2pv!

2pv
, ~15!

and the result Eq.~14! remains valid if we replaceCC by
CD ,

CD~v i ,v j !5
2

p E
0

p

cos~v it!cos~v jt!dt.

From Eq.~15! we see that for a metallic quantum dot wi
spin-orbit scattering~classD!, the proximity of a supercon
ductor with ^eif&50 enhancesthe level density at the
chemical potential. While this effect may seem physica
surprising, it is very natural in the Fermi-gas picture of t
levels. The pressure of the gas pushes particles~or levels!
against the ‘‘wall’’ atv50. Because it is the current rathe
than the density that is required to vanish by the Neum
boundary condition, an excess particle density forms at
wall such that the extra statistical force balances the press

More effort is required by the symmetry classesCI and
DIII, whereb51 andb54. It is still possible in these case
to map the level statistics problem on a model of partic
moving on a half line, but progress is slowed down by t
fact that the particles now interact with each other. By
standard transformation21 one can show that their motion i
governed by the Hamiltonian of the Calogero-Sutherla
model ~CSM! associated with the symmetric spaces of ty
CI andDIII. For the case of the CSM’s corresponding to t
Wigner-Dyson ensembles, it was recently found22 that the
CSM particles behave as a gas offree anyons, i.e., particles
with fractional charge and statistics. Although we have so
preliminary results indicating that the free anyon gas pict
can be adapted to the present situation, the details have
been worked out yet.

A quick way to get the infrared~or large-v! asymptotics
of the level density forCI and DIII is to bosonize23 the
CSM. This procedure has been argued24 to yield thec51
conformal field theory of a free boson with compactificati
radiusR5Ab/2. The expression for the CSM particle de
sity c̄c in terms of the boson fieldw is25

c̄c5]vw1const3cos~A4pw/R1kFv!. ~16!
f
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~Recall that by the level↔ particle correspondencev is to
be interpreted as a space coordinate here.! The mirror con-
straint of the CSM forCI andDIII translates into a boundary
condition on w at v50. Since the vertex operato
exp(A4p iw/R) has the scaling dimension 1/R252/b, we ex-
pect

^r~v!&511v22/bAb~v!1•••, ~17!

whereAb(v) is a function that oscillates with a period de
termined by the mean spacing. Note that Eq.~17! is consis-
tent with theb52 results~13! and ~15!. Note also that the
first term on the right-hand side of Eq.~16! gives a vanishing
contribution to the average density, although it does cont
ute to the CSM density-density correlator. This is beca
the current]vw, being linear in the boson fieldw, has a
vanishing expectation value even when there is a bound

The validity of bosonization and conformal field theo
arguments is restricted to the infrared regime. To obtain
pressions that are valid in theentire range of frequenciesv,
we turn to the orthogonal polynomial method of Dyson a
Mehta.26 The substitutionxk5v k

2 turns Eq.~11! for a51
into

p~$x%!d$x%5const3)
i, j

uxi2xj ub)
k
e2xk /v

2
dxk ,

which defines what has been called27 the Laguerre orthogo-
nal ensemble~LOE! for b51, and the Laguerre symplecti
ensemble~LSE! for b54. Note that this nomenclature i
rather unfortunate in the present context. As we saw,
LOE relates to the symmetric space Sp(2N)/U(N), while the
LSE relates to the symmetric space SO(4N)/U(2N). In both
cases the invariance group is aunitary group, U(N) or
U(2N). Closed expressions for then-level correlation func-
tions of these ensembles have recently been published
Nagao and Slevin.27 Unfortunately, the final results they giv
are wrong, owing to a computational error that occurred
tween Eqs.~5.5! and~6.2! of their paper. By fixing this mis-
take and returning to the variablev5Ax, we obtain for the
mean density

CI: ^r~v!&5F~pv!,

DIII: ^r~v!&5F~2pv!1pJ1~2pv!/2,

F~z!5
p

2 E
0

z

dt J0~ t !J1~ t !/t,

whereJk is the Bessel function of orderk. ~Remember that
we are taking the level spacing at largev for our energy unit.
The levels are counted without multiplicity.! From this we
read off the small-v expansions:

^r~v!&5bp2v/41O~v3! ~CI and DIII !.

Knowing the mean density, we can construct the full on
point function^g(v)&5^Tr(v1 id2H!21& by causality, i.e.,
by using the dispersion relation that connects the real
imaginary parts of a holomorphic function on the upper co
plex half-plane. The results can be presented in the form
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CI: ^g~v!&52 ip1 i E
1

`

duE
21

11

dv
A12v2

Au221

eipv~u2v !

u2v
,

DIII: ^g~v!&52 ip1 ipE
1

`

du
u

Au221
e2ipvu

2 i E
1

`

duE
21

11

dv
Au221

A12v2
e2ipv~u2v !

u2v
.

Although it is hard work to construct these expressions
rectly, they can easily be verified. For that we simply diffe
entiate the result for̂g(v)& with respect tov, thereby can-
celing the factoru2v in the denominator of the doubl
integrals. The integrals overu and v then separate, and o
taking the imaginary part each integral produces a Be
function. By using standard recursion relations for the
functions and then undoing thev differentiation by integra-
tion, we immediately retrieve the expressions for^r~v!&
given earlier.

The double integrals forCI ~b51! andDIII ~b54! are
seen to be related by a duality transformation that exchan
the compact (v) and noncompact (u) degrees of freedom. A
similar duality relation holds for the conventional Wigne
Dyson ensembles withb51 andb54.3 In the limit of large
v we get the following asymptotic expansions for the on
point function:

CI: ^g~v!&52 ip2
1

2v
1

1

4pv2 e
2p iv1•••,

DIII: ^g~v!&52 ip1
1

4v
1

ip

2Av
e2p iv1 ip/41••• .

For completeness, the one-point functions for the symm
classesC andD ~b52!, as determined from Eqs.~13! and
~15! by causality, are

^g~v!&52 ip1~12a!
12e2p iv

2v
~C and D !.

By comparing with Eq.~17! we see that the oscillatory cor
rection to the stationary asymptotic limit̂g(v)&→2 ip
agrees with what is expected from the conformal limit of t
Calogero-Sutherland model, in all cases. The smooth~1/v!
part of the correction is purely real and does not enter i
the asymptotic expression for the density of states.

The largev asymptotics of the level density that resu
on expanding Eq.~6.2! of Ref. 27 for the Laguerre orthogo
nal ensemble~b51!, is found to be^r~v!&21;v21. Note
that this disagrees with our exact result and the estimate~17!
from bosonization.

The authors of Ref. 27 subjected then-level correlation
functions forn.1 to a renormalization or unfolding proce
dure in the low-frequency regime they call ‘‘nonuniversa
~meaning different from standard Wigner-Dyson!. We wish
to emphasize that such a procedure is neither necessar
appropriate here. Both the mean density and the level co
lation functionsare universal as they stand—the restriction
i-

el
e

es

-

ry
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e-

to the class of system we have delineated being underst
of course—and are not to be corrupted by any kind of u
folding.

B. Diagrammatic perturbation theory
for the one-point function

As we have seen,̂g(v)& tends to a constant for frequen
cies much larger than the level spacing. The leadingsmooth
~i.e., nonoscillatory! correction is of order 1/v in all cases.
More precisely, on restoring the physical units and tak
into account the multiplicity of levels, we hav
^g(v)&52 ipn1c/v1O~1/v2!, where c521 for C and
CI, and c511/2 for D andDIII. n is the asymptotic~i.e.,
large-v! density of states. We are now going to show how
obtain this result by a variant of the impurity diagram tec
nique, a method which has the attractive feature of gene
izing easily to the calculation of transport properties of
open system. It also has the great virtue of lending itsel
semiclassical interpretation, which will help improve our u
derstanding of the physics involved.

The impurity diagram technique in its present versi
starts from the usual idea of expanding~v1 id2H!21 in a
geometric series with respect toH and then taking the en
semble average. BecauseH is Gaussian distributed, the en
semble average is evaluated by forming all products of p
wise contractionŝHH&, which are determined by the bas
law ~10!. To resume the relevant contributions, we use st
dard diagrammatic techniques. On multiplying the factors
the right-hand side of Eq.~10! we generate eight terms. I
explicit index notation these are given by

~PA
d0!ag,bd5daddgb ,

~PA
d1!ag,bd5(

k
~Jk!ad~Jk!gb ,

~PA
c0!ag,bd5tag~t21!db ,

~PA
c1!ag,bd5(

k
~Jkt!ag~t21Jk!db ,

~18!
~PD

c0!ag,bd52~Sx!ga~Sx!bd ,

~PD
c1!ag,bd52(

k
~JkSx!ga~SxJk!bd ,

~PD
d0!ag,bd52~Sxt!bg~t21Sx!da ,

~PD
d1!ag,bd52(

k
~SxJkt!bg~t21JkSx!da .

It is characteristic of the contractions indexed by the lettec
that the initial statesb,d bear a definite relation to eac
other, and so do the final statesa,g. This situation is remi-
niscent of the cooperon channel of disordered mesosc
systems where a pair of particles with initial momentap and
2p are scattered to final momentap8 and2p8. Similarly,
the contractions indexed byd correspond to the diffusion
channel where a pair with momentap,p8 is scattered to a
pair with momentap8,p. The contractions with subscriptD
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owe their existence to the operation of particle-hole conju
tion X°2SxX

TSx , whose fixed point set is the orthogon
algebraD2N[so(4N). The name of theA-type contractions
is motivated by the fact that they determine the second
ments of the conventional Wigner-Dyson ensembles desc
ing N systems~without any coupling of particles and holes!,
which derive from the unitary algebraAk21[su(k). The nu-
merals 0 and 1 distinguish between spin-singlet and s
triplet contractions. Using the conventions~18! we can write
the correlation law~10! in the form

^HabHgd&5v2Pag,bd , ~19!

P5PA
d01PD

c01~12e t!~PA
c01PD

d0!1~12es!~PA
d11PD

c1!

1~12es!~12e t!~PA
c11PD

d1!.

Our goal is to find the large-v behavior of̂ g(v)&. What are
the dominant diagrams in this limit? From what has be
said, theA-type contractions give rise to Wigner-Dyson st
tistics, whereas theD-type contractions are responsible f
the corrections to it. Since our systems are Wigner-Dyso
the limit of largev, the D-type contractions must becom
irrelevant in that limit. Moreover, in the Wigner-Dyson re
gime the average Green’s function is known to be feature
and independent of the symmetry-breaking perturbationes
and e t . We therefore conclude that^g(v)& is completely
determined byP A

d0 contractions forv→` ~and largeN!. By
summing all nestedP A

d0 self-energy graphs, we get Pastur
approximationG0 to G[^(v1 id2H!21&:

G05~v1 id2v2Tr G0!21. ~20!

This equation is exact forN→` and largev. Its solution
yields Wigner’s semicircle law for the density of states. P
ting v25l2/4N and focusing on the central region of th
semicircle, we obtain

Tr G052 ipn1~pn!2v/8N1O~v2/N2!

wheren54N/pl is identified as the asymptotic density
states. What we need to do to probe the local structure of
spectrum, is to keep the productnv fixed while sendingN to
infinity. The corrections to TrG052 ipn from Pastur’s
equation are seen to become negligible in this limit. Ho
ever, we know that corrections to the stationary asympt
behavior TrG052 ipn do appear as we approach zero fr
quency. These must be due to the contractions of typeD.
The leading correction is depicted in Fig. 2, where the lig
shaded regions represent ladder diagrams built either f
P D

c0 contractions or fromP D
c1 contractions. The sum of th

FIG. 2. Diagrams contributing to the average single-parti
Green’s function. The light-shaded regions represent aD-type
cooperon mode, the dark-shaded one a nonsingularP A

d0 ladder.
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former diagrams, which we call theD-type spin-singlet
cooperon mode and denote bySag,bd

0 , has the expression

S05v2P0 /~12v2KP0!

with Kag,bd5dabdgdG aa
0 G gg

0 and P0[P D
c0. Its large-N

limit is

S05
l2P0

2 ipnv
1O~1/N!. ~21!

Similarly, the sum of all ladder diagrams built fromP D
c1

contractions, theD-type spin-triplet cooperon, is evaluate
as

S15~12es!v
2P1 /@12~12es!v

2KP1#

5
l2P1

hs2 ipnv
1O~1/N!, ~22!

wherehs54Nes andP1[P D
c1. The dependence ofS1 on

the parameteres through the productNes means that the
breaking of spin-rotation invariance takes place on sca
es;1/N and thus is very fast. This rapid crossover happe
because the crossover scale is determined by the typical
of a symmetry-breaking matrix element in relation to t
level spacing, which isn215lp/4N for our choice of nor-
malization.

Note that expressions~21! and ~22! are singular at
v505hs even though the sums of ladder diagrams th
represent are built from retarded Green’s functions o
~G1G1 channel!. This is a feature which does not occur fo
the standard Wigner-Dyson ensembles, where singular
ders exist only in the advanced-retarded~orG2G1! channel.
The singularity in the present case comes about becaus
minus sign fromKag,ag521/l2 is canceled by a minus sig
appearing in the definition of the contractions of typeD,
thereby turning an alternating~conditionally convergent! se-
ries into a divergent one.

The dark-shaded region appearing in the second diag
of Fig. 2 represents aP A

d0 ladder. According to Eq.~18!, the
contractions of typeA come with an overall plus sign, so th
minus signs now donot cancel, and the ladder sum is alwa
finite. Computing the sum we find that this nonsingularP A

d0

ladder renormalizes the first diagram in Fig. 2 by a factor
12~121112• • •!51/~111!51/2. ~We mention in passing
that nonsingular ladders of this kind are the random-ma
analog of the single-impurity lines that appear in the cont
of the impurity diagram technique.!

To evaluate the first diagram of Fig. 2 we need the f
lowing sums:

(
b

~PD
c0!ab,ba52(

b
~Sx!ba~Sx!ba521,

(
b

~PD
c1!ab,ba52(

b,k
~SxJk!ba~JkSx!ba513.

We then obtain

^g~v!&52 ipn1 ipnS 3/2

hs2p inv
2

1/2

2p inv D1•••,

e
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which agrees with the result stated at the beginning of
current subsection forhs50 ~classesC andCI! andhs→`
~classesD andDIII !. For the classesC andD, smooth cor-
rections of higher order in 1/v are completely absent from
the exact result of Sec. V A. This implies that all diagrams
higher order than the ones considered here must cancel
other, in these two cases.~The oscillatory correction
;Abv22/b is nonanalytic in the expansion parameter 1v
and therefore remains invisible to all orders of perturbat
theory.!

Finally, let us comment on the relation of the results
this and the preceding subsection to other works in the fi
Correlations in the energy spectra of NS-composite str
tures have been analyzed previously by Bruun, Evange
and Lambert28 and Berkovits.29 Bruun, Evangelou, and Lam
bert consider aT- and spin-symmetric random-matrix en
semble where the particle-hole coupling@theB block in Eq.
~7!# is negligible. In this limit, the total spectrum is just th
superposition of the spectra ofA and2AT52A. The energy
levels of this so-called ‘‘folded GOE spectrum’’ lack th
level repulsion present for our ensembles. Therefore the
sults cannot be compared.

Berkovits analyzes a SNS geometry within the framew
of diagrammatic perturbation theory. The order parame
of the two superconductors sandwiching the normal reg
are allowed to be different. In the case of a phase differe
of p, both Berkovits’ diagrammatic approach and o
random-matrix modeling should be applicable to a desc
tion of the low-frequency limit~scales smaller than th
Thouless energy! of the spectral correlations of this system
Unfortunately, the results cannot be compared since
Berkovits’ work theD modes, which are responsible for th
nonstandard features of our ensembles, are missing. A
consequence, Berkovits obtains spectral correlations tha
analogous to that of a normal-metal ring pierced by
Aharonov-Bohm flux, where the ‘‘flux’’ corresponds to th
phase difference between the two order parameters. In
ticular, the two-level energy correlation function comput
by Berkovits depends only on thedifferencebetween the
energy arguments involved rather than on both values i
vidually. We believe that this result is wrong for energy va
ues close to the chemical potential.

VI. SLOW MODES

In all previous Green’s-function treatments of NS syste
the diagrams were enumerated by the number of Andr
reflections. Unfortunately, when the perturbation expans
is organized in that way, the vast number of possibilities
insert Andreev reflections into the diagrams generates a fl
of terms which is hard to control, and as a result it is ve
easy to miss important contributions. The technical inno
tion made in the present paper is not to single out Andr
reflections but to treat them on exactly the same footing
the processes of impurity scattering. This is possible by
dynamical assumptions ensuring that the quantu
mechanical phase acquired during Andreev reflection, ca
regarded as a random variable with zero mean. Our key t
nical step is the decomposition Eq.~19! which leads to an
organization of the perturbation-theory diagrams bysymme-
try. In the preceding subsection we discussed how the c
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tractionsP D
c0 andP D

c1 generate singular geometric series
ladder diagrams. In the same way, every one of the o
contractions gives rise to one singular ladder. These sing
modes can be visualized as follows:

The dotted vertical lines represent both impurity scatterin
and Andreev reflections, and they denote any one of the e
contractionsP X

xS ~X5A,D; x5c,d; S50,1!. The type of
contraction is invariant within one ladder. TheA-type modes
are built from states of identical charge~two BdG particles or
two BdG holes! propagating on opposite segments of t
ladder, whereas theD-type modes are built from charge
reversed states~one particle and one hole!. The former are
singular in theG1G2 channel, the latter in theG1G1 ~or
G2G2! channel. The arrows on the Green’s-function lin
indicate the order in which single-particle states are visit
For the cooperon modes the order on both lines is the sa
while for the diffusion modes it is reversed. In the lim
v5hs5h t50 ~with h t54Ne t! all modes are singular, o
massless. TheD-type modes are made massive by frequen
~or voltage! v, while the A-type modes are insensitive t
such a perturbation. TheA-type cooperon and theD-type
diffuson are made massive by the breaking of time-reve
symmetry. Since a Green’s function line carries spin-1/2,
modes decompose into spin-singlet and spin-triplet ones.
spin-triplet modes are sensitive to spin-orbit scattering wh
the spin-singlet modes are not.

We wish to mention that there is some redundancy in
classification of modes, as the basic particle-hole symm
~3! causes the existence of certain relations among the m
elements of the Gorkov Green’s functio
G6(v)5(v6 i«2H!21. In particular, the particle-particle
and hole-hole matrix elements are related by

Gpp
6 ~v!52Ghh

7 ~2v!T. ~23!

Similarly, Gph
6 ~v!52Ghp

7 (2v)T. These identities transcrib
into relations connecting the singular modes. For exam
by using Eq.~23! on one of the Green’s-function lines of th
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1154 55ALEXANDER ALTLAND AND MARTIN R. ZIRNBAUER
D-type cooperon, we can make this mode look like t
A-type diffuson, at the expense of having to change the s
of one frequency~v→2v!. In a similar way, theD-type
diffuson is related to theA-type cooperon~again with a sign
change in one of the frequencies!. In spite of that, we prefer
to treat theA- andD-type modes as separate entities. T
main reason for doing so is that they respond differently
translations of the energy: while theD-type modes are mad
massive by shifting the energy, theA-type modes are not.

In the present paper we restrict our considerations to
ergodic ~or zero-dimensional! limit. To go beyond, we
should associate with eachA-type andD-type mode a smal
momentum variable~‘‘slow modes’’! and sum over mo-
menta. In this way, it will not be difficult to generalize ou
results beyond the ergodic limit.

VII. WEAK LOCALIZATION

Having made a thorough analysis of the isolated Andr
quantum dot, we now turn to the discussion of the associa
opensystem and its transport properties. To open up the
in the simplest possible way, we couple it to a single le
with 2M open channels~the factor of 2 accounts for the spi
degree of freedom!, see Fig. 3. The transmission of char
excitations from the lead to the interior of the dot is mode
by a set of~spin-independent! real hopping matrix element
Wma , where the indexa51,...,M (m51,...,N) enumerates
the channels carried by the lead~the sites of the dot!. We
assumeN@M@1. Let g denote the conductance measur
in units of e2/h. To calculateg, we employ the generaliza
tion of the Landauer-Bu¨ttiker formula to NS systems,30,31

g52(
ã,b̃

uS
b̃ ã

hp u2, ~24!

where the composite labelã5(a,sa) comprises the spin
sa561/2 and the indexa of an open channel in the lead
andS

b̃ ã

hp
denotes the scattering amplitude connecting a p

ticle coming in channelã with a hole going out in channelb̃.
TheSmatrix is given by

S
b̃ ã

hp
522iWbm

T G~m,sb ,h!,~n,sa ,p!Wna , ~25!

FIG. 3. Andreev quantum dot (N) coupled to a single lead (L)
via a tunneling barrier (T). The flux loop on the right is introduced
to adjust the difference of the order parameter phases of the su
conducting regions (S) to the valuef12f25p ~cf. the discussion
of Sec. III!.
e
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where

G5~ id2H1 iWWT!21

is the Gorkov Green’s function evaluated at the chemi
potential. Without loss of generality, we may assume
matricesW5$Wma% to be of the form

Wma5g1/2dma ~m51,...,N;a51,...,M !. ~26!

The unitary transformation necessary to transformW to the
form ~26! can be absorbed in the HamiltonianH by the
invariance properties of the random-matrix ensemble
~10!. Combining Eqs.~25! and ~24! and making use of Eq
~26! we obtain

g58 (
msm8s8

GmuG~m,s,h!,~m8,s8,p!u2Gm8 , ~27!

where

Gm5H g for m<M ,

0 else.

We are going to calculate this expression to leading orde
the small parameters 1/N, M /N and next-to-leading order in
1/M .32 Owing to the presence of the BdG particle-hole d
gree of freedom, an analysis of Eq.~27! within the frame-
work of plain diagrammatic perturbation theory turns out
involve a sizable number of diagrams. It is more efficient
preanalyze Eq.~27! by means of a set of exact identitie
~Ward identities! before turning to diagrammatic method
This calculation is detailed in the Appendix. Here we restr
ourselves to a presentation of the results and their inter
tation in terms of semiclassical trajectories.

A schematic representation of the conductance is sho
in Fig. 4, where the wavy lines stand for the quantities$Gm%,
the shaded region denotes the singularA-type diffusion
mode introduced in Sec. VI, and a summation over indice
understood. The weak-localization~WL! building block rep-
resents a quantum interference correction~the NS analog of
the well-known weak-localization correction for normal me
als! to the classical conductance. In contrast with the pureN
case, however,two qualitatively different processes contrib
ute to the weak-localization correction for the Andreev do

er-

FIG. 4. Schematic representation of the average conductanc
the quantum dot shown in Fig. 3. The meaning of the diagramm
building blocks is detailed in the text.
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55 1155NONSTANDARD SYMMETRY CLASSES IN MESOSCOPIC . . .
Here theA(D) block is due to the presence of singul
A(D)-type modes. Whereas theA-type contribution re-
sembles the standard weak-localization correction kno
from normal metals, theD term does not have any analog
pureN systems and is of a different nature. In the followin
we discuss separately the classical conductance@the first dia-
gram in Fig. 4#, theA-type correction, and theD-type cor-
rection.

Classical conductance: Qualitatively speaking, the con
ductance is given by

g5U(
i
AiU2, ~28!

where Ai is the amplitude to traverse a certain scatter
sequence~indexed by i ! connecting an incoming particl
channel with an outgoing hole channel. The classical va
of the conductance,g0 , is obtained by evaluating theinco-
herentsum

g05(
i

uAi u2.

Quantitatively, we obtain

g052MT,

where the transmission coefficientT is the probability for an
electron incident from the lead to enter the dot instead
being reflected back into the lead.33 This result is easy to
understand. By the ergodicity of our system, an elect
leaves the dot with equal~1/2! probability as a particle or a
a hole. In the latter case, two elementary charges are tr
ferred across the entire system. Thus the dimensionless
ductance per channel is 231/23T5T. Multiplying by the
number of channels we getg052MT.

A-type corrections: Weak-localization corrections to th
classical conductance originate from the phase-coherent
tributions of nonidentical paths to the sum of amplitudes E
~28!. In the case of theA-type correction, such contribution
are due to pairs of paths that differ by a sequence of sca
ing events traversed in opposite directions as is indicate
Fig. 5~a!. The sum of these ‘‘maximally crossed’’ segmen
of pairs of paths is represented by the building blockA in
Fig. 4. A more specific representation of the diagrams c
tributing toA is shown in Fig. 6~a!, where the shaded regio
represents anA-typecooperon, the subscriptt means that the
external arrows are shown merely for the sake of clarity
do not contribute to theA block as such, and the dots stan
for diagrams of a more complex structure that have to
taken into account to obtain a result consistent with unitar
It is the presence of these unitarity-preserving contributi
that renders the calculation of theA block within plain dia-
grammatic perturbation theory lengthy. The alternative co
putational scheme presented in the Appendix yields

dgA5
M

2
T2S 1

MT1h t
2

3

MT1hs1h t
D ,
n

g

e

f

n

s-
n-

n-
.

r-
in

-

t

e
.
s

-

where the parametershs54Nes andh t54Ne t are the scaled
symmetry-breaking parameters of our model.

D-type corrections: A pair of paths contributing to the
D-type weak-localization process is shown in Fig. 5~b!. Note
that the self-intersecting loop must contain a nonvanish
even number of Andreev reflections~the figure displays the
simplest possible case of just two Andreev events!. We note
in passing that theA-type loop shown in Fig. 5~a! may con-
tain Andreev reflections, too~for this reason we said that th
NS A-type correction is analogous to, though not identic
with, the normal weak-localization correction!, their pres-
ence is just not imperative like in theD case. Clearly, the
D-type correction does not have any analog in normal m
als. Note also that the closed loop in Fig. 5~b! involves only
one of the two paths. This shows that the existence of
D-type process is essentially due to the nontrivial behav
of the single-particle Green’s function. The same mechan
of quantum coherence at the single-particle level was resp
sible for the correction to the single-particle density of sta
discussed in Sec. V B.

In diagrammatic language, the loop insertion in Fig. 5~b!
takes the form shown in Fig. 6~b!, where the shaded regio
now represents aD-type cooperon mode and the dots sta
for a set of unitarity-preserving counter diagrams. The qu
titative analysis yields

FIG. 5. Pairs of semiclassical paths contributing to theA-type
~a! andD-type ~b! weak-localization process. The triangles in~b!
represent Andreev reflections.

FIG. 6. Diagrammatic representation of theA-type ~a! and
D-type ~b! weak-localization process.
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dgD5~12T!S 12
3MT

MT1hs
D .

A striking feature of this expression is its insensitivity
the breaking of time-reversal symmetry: theD-type weak-
localization correction for NS systems survives the appli
tion of external magnetic fields.34 Collecting terms we obtain
the final result

^g&52MT1~12T!S 12
3MT

MT1hs
D1

M

2
T2S 1

MT1h t

2
3

MT1hs1h t
D1O~1/M ,M /N! ~29!

for the dimensionless mean conductance of our system
zero bias. We see that theD-type correction is zero forT51,
while theA-type correction vanishes in the limitT→0, with
MT held fixed. From what has been said about theD-type
modes, we expect theD-type correction to disappear at finit
bias. Detailed analysis shows that the crossover scalev for
this to happen is determined bynv;MT.

VIII. UNIVERSAL CONDUCTANCE FLUCTUATIONS

The conductance fluctuations of normal-conduct
systems35 have been studied extensively. They are indep
dent of system size and strength of the disorder and dep
only on symmetry. The latter dependence can be summar
by saying that var(g) is proportional to the number of mas
less modes for a given universality class. When all symm
tries are broken, theA-type spin-singlet diffuson is the onl
mode which is massless. As we switch off the spin-or
interaction, theA-type spin-triplet diffusion modes becom
massless, too, which increases var(g) by a factor of 4. If in
addition time reversal is a good symmetry, the coope
modes become massless, thereby increasing var(g) by yet
another factor of 2.

The NS systems considered in the present paper
expected36 to show conductance fluctuations that are qual
tively similar to those ofN systems. To calculate the var
ance, we may use an extension of the diagrammatic me
described in the previous section or, alternatively, we m
map our random-matrix model on a zero-dimensional fi
theory of the nonlinears model type. In the present pape
neither of these methods will be used. Instead, we will t
to another approach, which is restricted to the stro
coupling limit T51 but has the great advantage of bei
very simple.

The symmetry properties of theSmatrix derive from the
symmetries of the Hamiltonian by exponentiation. As befo
let M denote the number of channels in the lead, not cou
ing spin and particle-hole degeneracy. By the considerat
of Sec. II theSmatrix may be regarded as an element of
symmetric space SO(4M ) for class D, Sp(2M ) for C,
SO(4M )/U(2M ) for DIII, and Sp(2M )/U(M ) for CI. We
will refer to these spaces as ‘‘S-matrix manifolds’’ for short.
Let A5(a,s,s) ~a51,...,M ; s561/2; s5p,h! be a com-
posite index. From the definition of the transmission coe
cient T as a ‘‘sticking probability,’’37 we have
T512u^SAA&u

21O(1/MT). ThereforeT51 implies anS
-
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matrix with vanishing ensemble average, which means thS
can be taken to be uniformly distributed on itsS-matrix
manifold.

A. ClassC

For the symmetry classesC andCI theSmatrix operates
on the tensor product of channel space and particle-h
space, while spin is accounted for by multiplication of t
conductance by a factor of 2. Recall the definition of t
symplectic group Sp(2M ) by

U21†5U5CU21TC21, ~30!

whereC51M^ isy . In keeping with the above, we take theS
matrix S[U for classC to be uniformly distributed on
Sp(2M ). In other words, ensemble averages^•••& are com-
puted by integrating with respect to the Haar measuredU:

^ f ~U !&5E
Sp~2M !

f ~U !dU.

The canonical projection of Sp(2M ) onto the coset spac
Sp(2M )/U(M ) by U°UUT turns the Haar measure of th
former into the invariant~or uniform! measure of the latter
Therefore, ensemble averages for classCI can be obtained
from

^ f ~S!&CI5^ f ~UUT!&.

Because the Haar integral is invariant under left and ri
translations,

E
Sp~2M !

f ~ULUUR!dU5E
Sp~2M !

f ~U !dU,

the defining equations for Sp(2M ) lead to

^UAB&50,

^UABUCD* &5dACdBD/2M , ~31!

^UABUCD&5CACCBD/2M .

To compute the ensemble average of a product of twoU ’s
and twoU* ’s we note that ifcAPV are the components of
vector transforming according to the fundamental repres
tation of Sp(2M ), there exist only two independent invar
ants on V^V* ^V^V* , namely (cAcA*cBcB* and
( CABCCDcAcBcC*cD* . Using this elementary group
theoretical fact we obtain
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^UA1B1
UC1D1
* UA2B2

UC2D2
* &5

2M21

2M ~2M11!~2M22!
@dA1C1dA2C2dB1D1

dB2D2
1dA1C2dA2C1dB1D2

dB2D1

1CA1A2CC1C2CB1B2CD1D2
#2

1

2M ~2M11!~2M22!
@dA1C1dA2C2dB1D2

dB2D1

1dA1C2dA2C1dB1D1
dB2D2

1~dA1C1dA2C22dA1C2dA2C1!CB1B2CD1D2

1CA1A2CC1C2~dB1D1
dB2D2

2dB1D2
dB2D1

!#. ~32!
ne
e

re

in

-
in
ct
The
l

e

The numerical coefficients in this expression are determi
by summing over any two pairs of equal indices and th
comparing the results to Eq.~31! using relations~30!. Equa-
tion ~32! entails

(
AB

^UpAUhAUpB* UhB* &5~2M11!21,

which can be used to compute the weak-localization cor
tion for classCI. Summing over initial and final~or particle
and hole! channels, we get̂Tr SphS†hp&CI5M2/(2M11)
which yieldsdg521 in agreement with Eq.~29!. To calcu-
late the conductance fluctuations for classC, we deduce
from Eq. ~32!

^~Tr SphS†hp!2&5
M2

4
1
1

8
1O~M21!.

Subtracting the square of the first moment and multiply
by a factor of 434 for charge and spin, we get var(g)52.
o
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r o
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ss
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i.e
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g

B. ClassD

The symmetry classD can be treated by direct transcrip
tion from classC, the only difference being the way the sp
enters. TheSmatrix now operates on the full tensor produ
of channel space, particle-hole space and spin space.
S-matrix manifold for D is isomorphic to the orthogona
group SO(4M ), and is defined by Eq.~30! with
C51M^ sx^1. Equations~31! remain formally unchanged
except for the replacement 2M→4M . The projection
U°UtUTt21 with t51M^1^isy takes the Haar measur
of SO(4M ) into the invariant measure of SO(4M )/U(2M ).
Ensemble averages are given by

^ f ~S!&DIII5^ f ~UtUTt21!&,

^ f ~U !&5E
SO~4M !

f ~U !dU.

The ensemble average of a product of fourU ’s is
^UA1B1
UC1D1
* UA2B2

UC2D2
* &5

4M11

4M ~4M21!~4M12!
@dA1C1dA2C2dB1D1

dB2D2
1dA1C2dA2C1dB1D2

dB2D1

1CA1A2CC1C2CB1B2CD1D2
#2

1

4M ~4M21!~4M12!
@dA1C1dA2C2dB1D2

dB2D1

1dA1C2dA2C1dB1D1
dB2D2

1~dA1C1dA2C21dA1C2dA2C1!CB1B2CD1D2

1CA1A2CC1C2~dB1D1
dB2D2

1dB1D2
dB2D1

!#.
f
r the
ing
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The remaining calculations are the same as before. We
tain dg511/2 for classDIII, and var(g)51/2 for classD.

C. Conjecture for CI and DIII

ForN systems the breaking of time-reversal symmetry
known to reduce var(g) by a factor of 2, while the breaking
of spin-rotation invariance causes a reduction by a facto
4. As was said earlier, this pattern is explained by the ob
vation that var(g) simply counts the number of massle
modes in each universality class. From our experience w
diagrammatic perturbation theory of the model Eqs.~10! and
~25! we expect the same principle to be operative here,
b-

s

f
r-

th

.,

we expect var(g) to be still determined by the number o
massless modes. Indeed, the conductance fluctuations fo
classesC andD are seen to be bigger than the correspond
fluctuations forN systems by a factor of 8. To understan
this, we note that there is a trivial enhancement by a facto
2254 due to the transfer oftwo elementary charges in a
Andreev reflection. The other factor of 2 can be interpre
as telling us that the number of massless modesa priori is
twice as large: for everyA-type mode, which is already
present in theN system, there exists an extraD-type~or BdG
particle-hole! mode in the NS system, see Sec. VI. By e
trapolation we are led to the followingconjecture:
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var~g!55
4 ~CI!,

2 ~C!,

1 ~DIII !,

1/2 ~D !,

which differs from the result of Brouwer and Beenakke36

who found the size of the conductance fluctuations to dep
only weakly on whether time-reversal symmetry is broken
not. Note however that their result applies to a different s
ation than the one considered here~In their case the super
conducting order parameter is homogeneous in space
classCI!.

IX. CONCLUSIONS

In this paper we have initiated the study of a special fa
ily of NS systems where the spatial variation of the sup
conducting order parameter is such that the Andreev ph
shift averages to zero along a typical semiclassical sin
electron trajectory. We find such systems particularly int
esting because the proximity effect is inoperative and qu
particle states exist right at the chemical potential. Disor
or dynamically generated chaos mixes the states and lea
a universal type of level statistics within an energy windo
whose size is determined by the frequency of Andreev
flection. By classifying systems according to their symm
tries we identified four universality classes, denoted byC,
CI, D, andDIII. Time reversal is a good~broken! symmetry
for CI and DIII ~C and D!, while spin is conserved~not
conserved! for C andCI ~D andDIII !. For each universality
class the joint probability distribution of the quasipartic
energy levels was given in closed form. Then-level correla-
tion functions for the classesC andD were calculated by the
mapping onto a free Fermi gas on a half-line with Dirich
and Neumann boundary conditions at the origin. The jo
probability distributions of the levels forCI andDIII were
transformed into those of the Laguerre orthogonal and
guerre symplectic ensembles, whose level statistics has
worked out completely~albeit with a minor computationa
error! by Nagao and Slevin.

To calculate the transport properties of open system
the zero-dimensional limit, we formulated a random-mat
model and treated it using a variant of the impurity diagr
technique. An important feature we pointed out was the d
bling of the number of low-energy modes in comparis
with conventional normal-conducting systems. For ev
A-type mode, i.e., for every BdG particle-particle~or hole-
hole! spin-singlet or spin-triplet diffuson or cooperon, the
exists precisely one corresponding BdG particle-hole
D-type mode. The weak-localization correction to the av
age conductance for an NSS geometry was calculated
function of the ‘‘sticking probability’’T and two perturba-
tions breaking time-reversal symmetry and spin-rotation
variance. The technically more involved task of calculati
the variance of the fluctuating conductance was carried
only for T51 and the universality classesC andD, by using
an S-matrix formalism a´ la Mello. We found var(g) to be
enhanced by a factor of 2 relative to the ru
var~gNS!54var(gN). We attribute this enhancement to th
doubling of low-energy modes by the coupling to the sup
nd
r
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conductor. Let us emphasize that the effects we have stu
are universal~in the ergodic limit! and are independent o
such microscopic detail as the NS-barrier transmittency.

Clearly, the present paper constitutes only a first step
an exciting research area of mesoscopic physics, and m
more is yet to be done. Some of the open problems are
following. ~i! We have shown how to solve the level stat
tics problem for each universality class but more genera
one might also be interested in the crossover betw
classes. Here the crossoversCI→C andDIII→D look ame-
nable to analytical techniques, since the level statistics foC
andD ~just as for the Gaussian unitary ensemble! maps on a
free Fermi-gas problem.~ii ! Our results for the level statistic
are restricted to an energy range proportional to the inve
mean time spent between successive Andreev reflections
access the short-time or high-energy regime beyond
crossover scale, our maximum-entropy ensembles need t
modified by allowing for different variances of the rando
pairing and normal matrix elements.~iii ! Although we have
outlined the semiclassical interpretation of theD-type ~or
particle-hole! modes, a more detailed discussion of their ro
in semiclassical periodic-orbit theory would certainly be d
sirable.~iv! We need to extend our results for the univers
conductance fluctuations to the classesCI and DIII and to
arbitraryT. ~v! While the zero-dimensional~or ergodic! limit
is adequately described by the maximum-entropy ansatz
diffusive and ballistic regimes necessitate a more deta
modeling. In particular, the nonrandom nature of the mag
tude of the pairing field will make itself felt at short times.
is an open technical problem how to deal analytically w
the phase randomness of Hamiltonian matrix elements w
their magnitude is to be kept fixed.~vi! We have concen-
trated on an NS geometry that is particularly easy to treat
future work will have to include other geometries.~vii ! Last
but not least, we need to address the nontrivial question: h
large is the effect of residual Coulomb interactions on
D-type modes? There is no doubt that the short-time phy
can be adequately described in a simple independ
quasiparticle picture, but at large times the coherence
tween particles and holes will get cut off by Coulomb bloc
ade and other correlation effects. The question is what is
time scale where this happens.

We shall end on a mathematical note. According to C
tan, there exist 11 large families of symmetric spaces. Th
of type II are the compact unitary, orthogonal, and sympl
tic Lie groups (A,B,C,D). The large families of type-I sym-
metric spaces are denoted byAI, AII, AIII, BDI, CI, CII,
and DIII. The standard Wigner-Dyson universality class
derive fromA ~GUE!, AI ~GOE!, andAII ~GSE!, while the
universality classes of a massless Dirac particle derive fr
AIII ~chGUE!, BDI ~chGOE!, andCII ~chGSE!. As we have
shown, the universality classes found in mesoscopic NS
tems exhaust the remaining large families of symme
spaces except forB ~the orthogonal group in odd dimen
sions!, which does not occur. Thus, if we groupB together
with D, there is abijection between the known universalit
classes of disordered single-particle systems and the l
families of symmetric spaces. We consider this to be a str
indication that no other universality classes will be foun
since any additional universality class would exceed Carta
scheme and therefore would have to be of a different nat
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APPENDIX: CONDUCTANCE AND WARD IDENTITIES

In this appendix we elaborate on the calculation of
weak localization correction to the conductance, Eq.~29!.
Owing to the presence of the BdG particle-hole degree
freedom, this calculation turns out to be much more involv
than in pureN systems. For this reason we prefer to cont
the diagrammatic expansion by means of exact algebraic
lationships. The basic concepts used in this appendix h
been introduced in the seminal paper.38

To begin with, we recapitulate two Ward identities th
will play a crucial role in what follows. Let us write the
average retarded Green’s function as^Ga,a8&5da,a8(2Sm
1 iGm)

215:da,a8Gm , wherea5(m,s,q) is a composite in-
dex accounting for the site~m!, spin (s), and particle-hole
(q5p,h) degrees of freedom.~After averaging, the Green’s
function depends only on the site index.! The first Ward
identity is immediate from the definitions and reads

GmGm*52DGm~2DSm12iGm!21, ~A1!

whereGm* is the average advanced Green’s function,DGm

5Gm2Gm* andDSm5Sm2Sm* . A second and less trivia
Ward-identity38 relates the self-energyS to the so-called ir-
reducible two-particle vertexU:

DSm5(
a8

Ua,a8DGm8 . ~A2!

The irreducible vertexU is defined as the set of all truncate
four-point functions that cannot be cut by just cutting tw
average Green’s functions~cf. Fig. 7!. In the following we
focus on the analysis of the auxiliary quantity

Fa5 (
a8;q85p

^uGa,a8u
2&Gm8 .

From this the mean conductance is obtained as@cf. ~27!#

^g&58 (
a;q5h

GmFa . ~A3!

We start from the ansatz

Fa5DGm$c1cs~2 !s1cq~2 !q1csq~2 !s1q

1Gm@d1ds~2 !s1dq~2 !q1dsq~2 !s1q#%. ~A4!

FIG. 7. Diagrammatic representation of the two-particle irred
ible vertex.
-

e

f
d
l
e-
ve
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@Although other expressions involving arbitrary functions
Gm seem possible, this formula does represent the most
eral starting point. Equation~26! yieldsSmG m

n5gn21SmGm ,
so it is sufficient to start from an expression that is linear
the coefficientsGm .# The quantity F satisfies Dyson’s
equation38

~DSm22iGm!Fa5DGmS Gmdqp1(
a8

Ua,a8Fa8D ~* !,

~A5!

where use of the identity~A1! has been made. To fix th
coefficientsc,...,d, . . . wesubject Eq.~A5! to various sum-
mation procedures. For example, by taking the sumSa(* )
and then using the second Ward identity~A2!, we obtain

c1gd521/4i . ~A6!

Seven more equations for the remaining coefficients are g
erated by performing the summationsSa(2)s(* ),
Sa(2)q(* ), Sa(2)s1q(* ), SaGm(* ), SaGm(2)s(* ),
SaGm(2)q(* ), andSaGm(2)s1q(* ). The outcome of all
this may be cast in the form of a matrix equation

S A B

C DD S cdD 522a1S uvD , ~A7!

where cT5(cs ,cq ,csq), dT5(d,ds ,dq ,dsq), uT5(0,1,0),
vT5(0,0,g,0), anda15SmGmDGm . Fortunately, it is easy to
invert the 737 matrix appearing in this equation. By con
struction, the coefficients appearing in the subblo
A(B,C,D) involve summations over the indexa that do not
~do! contain matrix elementsGm . Since Sa•••;O(N),
whereasSaGm•••;O(M ), the coefficients appearing inA ex-
ceed those in the remaining subblocks by a large facto
O(N/M ). We thus conclude

S A B

C DD 21

.S 0 0

0 D21D⇒c.0, d.D21v. ~A8!

The matrixD can easily be inverted as it is already of dia
onal form. Combining Eqs.~A3!, ~A6!, and~A8!, we obtain

^g&516a1S 2
1

4i
2

2g2a1

4gc128ig2a12Ū D , ~A9!

wherec15SmGmDGmDSm and

Ū5 (
a,a8

GmDGm~2 !qUa,a8Gm8DGm8~2 !q8.

We next decompose the self-energy according
Sm52 i /l1dSm into a leading order contribution plus
correction termd Sm of O(1/M ). Anticipating that the terms
d Sm andŪ are of the same order, we obtain the prelimina
result

^g&52MT12MT
l2g

l~l1g!
Im dS1

1

2~l1g!2
Ū

1O~1/M !, ~A10!

wheredS5(Mg)21SmGmdSm . We next analyze the build
ing blocksdS andŪ by diagrammatic methods. Because E

-
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~A10! is based on Ward identities, it automatically incorp
rates the condition of unitarity. As a consequence, the
lowing calculation is much simpler than a direct diagra
matic analysis of Eq.~27!.

To leading order inM21, the self-energy correctiondS is
given by

dS5
1

4Mg (
a

GmDa , ~A11!

whereDa represents the first of the diagrams shown in F
8. The light-~dark-!shaded region represents aD-type coop-
eron mode~a nonsingularP A

d0 ladder!. Evaluation of the
diagrams yields~cf. the explanation in connection with Fig
2!

Im dS5
l~l2g!

2~l1g! F 1

MT
2

3

MT1hs
G . ~A12!

The dominant contribution to the vertex correctionŪ results
from anA-type cooperon:

Ū5 (
a,a8

~2 !qGmDGmAaa8DGm8Gm8~2 !q8
n

ic

P

-
l-
-

.

54lgTMS 1

MT1h t
2

3

MT1hs1h t
D , ~A13!

whereAaa8 is the second of the diagrams shown in Fig.
By combining Eqs. ~A10!, ~A12!, and ~A13!, and
using the expression for the transmission coeffici
T54lg/(l1g)2, we arrive at the final result given in Se
VII.

FIG. 8. Diagrams contributing to the self-energy and the ver
correction.
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