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Gaussian random-matrix ensembles defined over the tangent spaces of the large
families of Cartan’s symmetric spaces are considered. Such ensembles play a cen-
tral role in mesoscopic physics, as they describe the universal ergodic limit of
disordered and chaotic single-particle systems. The generating function for the
spectral correlations of each ensemble is reduced to an integral over a Riemannian
symmetric superspace in the limit of large matrix dimension. Such a space is
defined as a pair (G/H,Mr), whereG/H is a complex-analytic graded manifold
homogeneous with respect to the action of a complex Lie supergroupG, andMr is
a maximal Riemannian submanifold of the support ofG/H. © 1996 American
Institute of Physics.@S0022-2488~96!00710-4#

I. INTRODUCTION

The mathematics of supersymmetry, though conceived and developed in elementary particle
theory, has been applied extensively to the physics of disordered metals during the past decade.
Improving on earlier work by Wegner,1,2 Efetov3 showed how to approximately map the problem
of calculating disorder averages of products of the energy Green’s functions for a single electron
in a random potential, on a supersymmetric nonlinears model. Later it was shown4 that the same
nonlinear s model describes the large-N limit of a random-matrix ensemble of the
Wigner–Dyson5 type. Since then, Efetov’s method has evolved into a prime analytical tool in the
theory of disordered or chaotic mesoscopic single-particle systems. Competing methods are lim-
ited either to the diffusive regime~the impurity diagram technique!, or to isolated systems in the
ergodic regime~the Dyson–Mehta orthogonal polynomial method!, or to quasi-one-dimensional
systems~the DMPK equation!. In contrast, Efetov’s method is applicable to isolated and to open
systems in the diffusive, ergodic, localized, and even ballistic regime, to both spectral correlations
and transport properties, and it can, in principle, be used in any dimension. This versatility has
engendered a large body of nontrivial applications, many of which are outside the range of other
methods. Of these, let me mention~i! the Anderson transition on a Bethe lattice,6–8 ~ii ! localization
in disordered wires,9–13~iii ! multifractality of energy eigenstates in two dimensions,14–16~iv! weak
localization and conductance fluctuations of chaotic billiards strongly coupled to a small number
of scattering channels,17,18 and, most recently,~v! a theoretical physicist’s proof of the Bohigas–
Giannoni–Schmit conjecture for chaotic Hamiltonian systems.19,20

In spite of these manifest successes, Efetov’s supersymmetry method has been ignored~for all
that I know! by mathematical physicists. This is rather unfortunate for several reasons. First, an
infusion of mathematical expertise is needed to sort out some matters of principle and promote the
method to a rigorous tool. Second, various extensions of currently available results seem possible
but have been hindered by the lack of mathematical training on the part of the condensed matter
theorists applying the method. And third, the geometric structures underlying Efetov’s nonlinears
models are of exquisite beauty and deserve to be studied in their own right. Part of the reason why
neither mathematicians nor mathematical physicists have monitored or contributed to the devel-
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0022-2488/96/37(10)/4986/33/$10.00
4986 J. Math. Phys. 37 (10), October 1996 © 1996 American Institute of Physics

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



opment, may be that there does not exist a concise status report that would appeal to a mind
striving for clarity and rigor. Hence the first, and very ambitious, motivation for getting started on
the present paper was to make an attempt and partially fill the gap.

Another objective is to report on a recent extension of the supersymmetry method to random-
matrix theories beyond the standard Wigner–Dyson ones. In her study of Anderson localization in
the presence of an A–B sublattice symmetry, Gade21 noticed that the manifold of the nonlinears
model is promoted to a larger manifold at zero energy. The same phenomenon occurs in the chiral
limit of the QCD Dirac operator at zero virtuality.22 For several years it remained unclear how to
handle this enlargement of the manifold in the supersymmetric scheme.~Gade used the replica
trick instead of supersymmetry.! The key to solving the problem can be found in a paper by
Andreev, Simons, and Taniguchi,23 who observed that what one needs to do is to avoid complex
conjugation of the anticommuting variables. In the present paper I will elaborate on this observa-
tion and cast it in a concise mathematical language. Moreover, I will show that the same technical
innovation allows one to treat the random-matrix theories that arose24,25in the stochastic modeling
of mesoscopic metallic systems in contact with a superconductor.

An outline of the basic mathematical structure is as follows. Consider a homogeneous space
G/H, whereG and H are complex Lie supergroups, and regardG/H as a complex-analytic
(p,q)-dimensional supermanifold in the sense of Berezin–Kostant–Leites.26,27 To integrate its
holomorphic sections, select a closed, oriented, and realp-manifoldMr contained in the support
M5G0/H0 of the supermanifold. The natural~invariant! supergeometry ofG/H induces a geom-
etry onMr by restriction. If this geometry is Riemann andMr is a symmetric space, the pair
(G/H,Mr) is called a Riemannian symmetric superspace. This definition will be shown to be the
one needed for the extension of the supersymmetry method beyond Wigner–Dyson. The difficul-
ties disordered single-particle theorists had been battling with were caused by the fact that the
exact sequence

0→nilpotents→G/H→M→0,

does not, in general, reduce to an exact sequence of sheaves ofreal-analyticsections terminating
at the Riemannian submanifoldMr .

When integrating the invariant holomorphic Berezin superform onG/H, one must pay careful
attention to its coordinate ambiguity. This subtle point is reviewed in Sec. II A. After a brief
reminder of the procedure of Grassmann-analytic continuation~in Sec. II B!, the complex Lie
supergroups Gl(mun) and Osp(mu2n) ~in Sec. II C!, and Cartan’s symmetric spaces~in Sec. II E!,
the details of the definition of Riemannian symmetric superspaces are given in Sec. II F. Table II
lists the large families of these spaces.

Section III, the largest of the paper, treats the Gaussian random-matrix ensemble defined over
the symplectic Lie algebra sp(N), by an adaptation of Efetov’s method. A simple example~Sec.
III A ! illustrates the general strategy. Details of the method, including a complete justification of
all manipulations involved, are presented in Secs. III B–III F. Theorem 3.3 expresses the Gaussian
ensemble average of a product ofn ratios of spectral determinants as a superintegral. Theorem 3.4
reduces this expression to an integral over the Riemannian symmetric superspace Osp(2nu2n)/
Gl(nun) with Mr5„SO*(2n)/U(n)…3„Sp(n)/U(n)…, in the limit N→`.

According to Cartan’s list, there exists 11 large families of symmetric spaces. Ten of these
correspond to universality classes that are known to describe disordered single-particle systems in
the ergodic regime.24,25 The class singled out for detailed treatment in Sec. III describes mesos-
copic normal-superconducting hybrid systems with time-reversal symmetry broken by a weak
magnetic field. The remaining nine classes are briefly discussed in Sec. IV. Each of them is
related, by the supersymmetry method, to one of the large families of Riemannian symmetric
superspaces of Table II. A summary is given in Sec. V.

4987Martin R. Zirnbauer: Riemannian symmetric superspaces and their origin

J. Math. Phys., Vol. 37, No. 10, October 1996

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



II. RIEMANNIAN SYMMETRIC SUPERSPACES

A. The Berezin integral on analytic supermanifolds

Let A(U) denote the algebra of analytic functions on an open subsetU of p-dimensional real
space. By taking the tensor product with the Grassmann algebra withq generators one obtains
A(U)^L~Rq!, the algebra of analytic functions onU with values inL~Rq!. Multiplication on
L~Rq! is the exterior one, so the algebra is supercommutative~or graded commutative!. The object
at hand serves as a model for what is called a real-analytic (p,q)-dimensional supermanifold~or
graded manifold28! in the sense of Berezin, Kostant, and Leites~BKL !;26,27 which, precisely
speaking, is a sheaf of supercommutative algebrasA with an idealN ~the nilpotents!, such that
M.A/N is an analyticp-manifold and on a domainU,M , A splits asA(U)^L~Rq!. The
global sections of the bundleA→M are called superfunctions, or functions for short.M is called
the underlying space, or base, or support, of the supermanifold.M will be assumed to be orient-
able and closed~]M50!.

The calculus on analytic supermanifolds is a natural extension of the calculus on analytic
manifolds. Functions are locally expressed in terms of~super-!coordinates
(x;j):5(x1,...,xp;j1,...,jq), wherexi(j j ) are even~resp., odd! local sections ofA. If ~x;j! and
~y;h! are two sets of local coordinates on domains that overlap, the transition functions
yi5 f i(x;j) andh j5w j (x;j) are analytic functions of their arguments and are consistent with the
Z2 grading ofA.

In what follows the focus is on the theory of integration on analytic supermanifolds. Recall
that onp-manifolds the objects one integrates arep-forms and their transformation law is given by

dy1`•••`dyp5dx1`•••`dxpDetS ]yi

]xj D .
The obvious~super-!generalization of the Jacobian Det(]yi /]xj ) is the Berezinian29

BerS y,hx,j D :5SDetS ]yi

]xj
]yi

]j j

]h i

]xj
]h i

]j j
D ,

where SDet is the symbol for superdeterminant. Guided by analogy, one postulates that an integral
superform ought to be an objectD̃ transforming according to the law

D̃~y,h!5D̃~x,j!Ber~y,h/x,j!. ~1!

A natural candidate would seem to be

D~x,j!:5dx1`•••`dxp^ ]j1•••]jq,

which is a linear differential operator taking superfunctionsf into p-formsD[ f ] ~]j i denotes the
partial derivative with respect to the anticommuting coordinateji!. The p-form D[ f ] can be
integrated in the usual sense to produce a number. However, the transformation law forD(x,j)
turns out to be not quite~1!, but rather

D~y,h!5D~x,j!Ber~y,h/x,j!1b. ~2!
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An explicit description of the termb on the right-hand side, here referred to as theanomaly, was
first given by Rothstein.30 It is nonzero whenever some even coordinate functions are shifted by
nilpotent terms. Its main characteristic is that on applying it to a superfunctionf , one gets a
p-form that isexact: b[ f ]5d(a[ f ]).

The existence of an anomaly in the transformation law forD(x,j) leads one to consider a
larger class of objects, namely,Lp(M )^AD , the sheaf of linear differential operators onA with
values in thep-forms onM . @Lp(M )^AD naturally is a rightA-module.# To rescue the simple
transformation law~1! one usually passes fromLp(M )^AD to its quotient by the anomalies.30 In
order for the integral to be well-defined over the quotient, one must take the functions one
integrates to be compactly supported.

Sadly, this last optionis not available to us. The functions that will be encountered in the
applications worked out below, do not ever have compact support but areanalytic functions
instead. When integrating such functions, we need to work with the full transformation law~2!,
which includes the anomaly.

Another way of avoiding the anomaly is to arrange for the transition functions never to shift
the even coordinates by nilpotents, by constructing a restricted subatlas.31 However, because the
concept of a restricted subatlas is somewhat contrived, this approach has been found to be of
limited use in the type of problem that is of interest here.

To arrive at a definition of superintegration that is useful in practice, we proceed as follows.
The supermanifold is covered by a set of charts with domainsUi and coordinates (x( i ) ,j ( i ))
( i51,...,n). On chart i let v i :5D(x( i ) ,j ( i ))+ ṽ i with ṽ i a local section ofA, and let a i

P Lp21(M ) ^ AD uUi
. PartitionM into a number of consistently orientedp-cellsD1 ,...,Dn , with

Di contained inUi . For i, j putDi j :5]Diù]Dj and, ifDi j is nonempty and is a~p21!-cell, fix
its orientation by]Di51Di j1••• .

Definition 2.1: A collection $v i ,a i% i51,...,n is called aBerezin measurev if the conditions

ṽ i /ṽ j5Ber~ i / j !, ~3!

v i1da i5v j1da j , ~4!

are satisfied on overlapping domains. The Berezin integralf°*Mv[ f ] is defined as

E
M

v@ f #5(
i51

n E
Di

v i@ f #1(
i, j

E
Di j

a i j @ f #, ~5!

wherea i j5a i2a j . The quantitiesvi andai are called the principal term and the anomaly of the
Berezin measure on charti .

Remark 2.2: The conditions ~3! and ~4! ensure the existence of a global section
vPLp(M )^AD , whose local expression in charti is v i1da i . The existence ofv means that the
distribution~5! is independent of the coordinate systems and the cell partition chosen. Because~5!
depends only on the differencesa i2a j , one can gauge the anomaly to zero on one of the charts
without changing the Berezin integral.

Example 2.3:Consider the real supersphereSpu2, a ~p,2!-dimensional supermanifold with
supportSp, which is the space of solutions in~p11,2! dimensions of the quadratic equation

x̃0
21 x̃1

21•••1 x̃p
212j̃1j̃251.

Cover Sp by two domains 1 and 2 obtained by removing the South~x̃0521! or North Pole
~x̃0511!. Introduce stereographic coordinates~x1 ,...,xp ;j1 ,j2! and~y1 ,...,yp ;h1,h2! for S

pu2 on
these domains with transition functions
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y152
x1
R2 , yi5

xi
R2 ~ i52,...,p!, h j5

j j
R2 ~ j51,2!,

whereR25( i51
p xi

212j1j2 . ~The minus sign preserves the orientation.! Consider

v15D~x,j!+S 11( xi
212j1j2D 2p12

,

v25D~y,h!+S 11( yi
212h1h2D 2p12

,

a1252V
~(xi

2!~p22!/2

~11(xi
2!p22 ^2]j1

]j2
+j1j2 ,

whereV5(( j xj
2)2p/2( i51

p (21)idx1`•••`dxi21`xidxi11`•••`dxp is the solid-angle~p21!
form in p dimensions. It is not difficult to check by direct calculation thatv1, v2 anda15a12,
a2[0 obey the relations~3! and~4!. Hence, they express a globally defined Berezin measurev in
the sense of Definition 2.1.~The geometric meaning ofv will be specified in Sec. II C.! For p>3,
the anomalya12 scales to zero when(xi

2→`, so we may shrink cell 2 to a single point~a set of
measure zero! and compute the Berezin integral simply from

E
Sp

v@ f #5E
Rp
D~x,j!S 11( xi

212j1j2D 2p12

f ~x;j!.

In these cases we can get away with using only a single chart. The situation is different forp52
andp51. In the first case the anomaly is scale-invariant~the solid angle is! and by again shrinking
cell 2 to one point@the South Pole (y1 ,y2)5~0,0! on S2# we get

E
S2

v@ f #5E
R2
D~x,j! f ~x;j!14p fU

South Pole

.

In particular,*S2v@1# 5 4p. For p51 the anomaly diverges atx50 andx5`. In this case the
general formula~5! must be used, and one finds*S1v@1# 5 0.

B. Grassmann-analytic continuation

In the formulation of BKL, the vector fields of a supermanifold do not constitute a module
overA but are constrained to beevenderivations ofA, which is to say that their coordinate
expression is of the form

X̂5 f i~x;j!
]

]xi
1w j~x;j!

]

]j j
,

where f i andwj are even and odd superfunctions, respectively. Unfortunately, this formulation is
too narrow for most purposes. The reason is that in applications one typically deals not with a
single supermanifold but with many copies thereof~one per lattice site of a lattice-regularized field
theory, for example!. So, in addition to the anticommuting coordinates of the one supermanifold
that is singled out for special consideration, there exist many more anticommuting variables
associated with the other copies of the supermanifold. When the focus is on one supermanifold,
these can be considered as ‘‘parameters.’’ Often one wants to make parameter-dependent coordi-
nate transformations, leading to coefficientsf i1••• i n

(x) in the expansion f (x;j)
5 ( f i1••• i n

(x)j i1•••j i n that depend on extraneous Grassmann parameters.~For example, when the

4990 Martin R. Zirnbauer: Riemannian symmetric superspaces and their origin

J. Math. Phys., Vol. 37, No. 10, October 1996

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



supermanifold is a Lie supergroup, it is natural to consider making left and right translations
g°gLggR .! The upshot is that one wants to takeA as a sheaf of graded commutative algebras
not overR but over some~large! parameter Grassmann algebraL ~the Grassmann algebra gener-
ated by the anticommuting coordinates of the ‘‘other’’ supermanifolds!. Making this extension,
which is called ‘‘Grassmann-analytic continuation’’ in Ref. 29, one is led to consider the more
general class of vector fields of the form

X̂5 f i~x,j;b!
]

]xi
1w j~x,j;b!

]

]j j
, ~6!

where the symbolb stands for the extra Grassmann parameters and the dependences on these are
such that f i and wj continue to be even and odd, respectively~the Z2 grading ofA after
Grassmann-analytic continuation is the natural one!.

The vector fields~6! still are even derivations of the extended algebra. One can go further by
demanding that DerA be free overA and including the odd ones, too. When that development
is followed to its logical conclusion, one arrives at Rothstein’s axiomatic definition32 of super-
manifolds, superseding an earlier attempt by Rogers.33,34 Although there is no denying the el-
egance and consistency of Rothstein’s formulation, we are not going to embrace it here, the main
reason being that odd derivations will not really be needed. For the purposes of the present paper
we will get away with considering vector fields of the constrained form~6!.

C. The complex Lie supergroups Gl( m zn ) and Osp( m z2n )

The supermanifolds we will encounter all derive from the complex Lie supergroups29,28

Gl(mun) and Osp(mu2n), by forming cosets. The definition of Gl(mun) rests on the notion of an
invertible supermatrix

g5S g00 g01

g10 g11
D ,

whereg00, g01, g10, andg11 are matrices of sizem3m, m3n, n3m, andn3n. The supermani-
fold structure of Gl(mun) comes from taking the matrix elements ofg00 andg11 ~g01 andg10! for
the even~resp., odd! coordinates on suitable domains of the baseM5Gl~m,C!3Gl~n,C!. The Lie
supergroup structure derives from the usual law of matrix multiplication.

FormÞn, it is common practice to split off from Gl(mun) the Gl~1!-ideal generated by the
unit matrix, so as to have an irreducible Lie superalgebra.35,36Form5n, which turns out to be the
case of most interest here, one ends up having to remove two Gl~1!’s, one generated by the unit
matrix and the other one by the superparity matrixs5diag(1n ,21n). And even then the Lie
superalgebra is not irreducible in a sense, for the Killing form STr ad(X)ad(Y) vanishes identi-
cally. We therefore prefer to take Gl(mun) as it stands~with no ideals removed! and replace the
Killing form by the invariant quadratic form B(X,Y)5STrXY, which is nondegenerate in all
cases~includingm5n!.

The complex orthosymplectic Lie supergroup Osp(mu2n) is defined as a connected subgroup
of Gl(mu2n) fixed by an involutory automorphismg° t̂(g) 5 tg21Tt21, wheret is supersym-
metric (t5tTs5stT!.37 The support of Osp(mu2n) is SO~m,C!3Sp~n,C!.

The action of a Lie supergroup on itself by left and right translations gives rise to right- and
left-invariant vector fields. A Berezin measure on a Lie supergroup is said to be invariant, and is
called a Berezin–Haar measure, if its Lie derivatives29 with respect to the invariant vector fields
vanish.

Given a Lie supergroupG and a subgroupH, the coset superspaceG/H is defined by
decreeing that the structure sheaf of the coset superspace is a quotient of sheaves. The action ofG
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onG/H by left translation gives rise to so-called Killing vector fields. A Berezin measure onG/H
is called invariant if its Lie derivatives with respect to the Killing vector fields are zero.

If OspR(mu2n) denotes the orthosymplectic supergroup over the reals, the coset space
OspR(m11u2n)/OspR(mu2n) can be identified with the real supersphereSmu2n. The Berezin mea-
sure discussed in Example 2.3 is invariant with respect to the action of OspR~p11u2! onSpu2 and
can be viewed as the ‘‘volume superform’’ ofSpu2. Hence we can restate the results of that
exampleas follows:vol(S2u2): 5 *S2v@1# 5 4p andvol(S1u2): 5 *S1v@1# 5 0.

D. Holomorphic Berezin measures on complex-analytic supermanifolds

To go from real-analytic supermanifolds to complex-analytic ones, one replaces the structure
sheafA by a sheaf of graded commutative algebrasH overC such thatM.H/N is a complex
manifold andH is locally modeled byH(U)^L~Cq!, whereH(U) is the algebra of holomorphic
functions onU,M . The natural objects to consider then are holomorphic superfunctions, i.e.,
global sections of the bundleH→M . In local coordinatesz1,...,zp; z1,...,zq such sections are
written as f (z;z). Grassmann-analytic continuation is done as before when needed. A Berezin
measure on a complex-analytic (p,q)-dimensional supermanifold is a linear differential operator
v that takes holomorphic superfunctionsf into holomorphicp-formsv[ f ] on M . The statements
made in Sec. II A about the anomalous transformation behavior of Berezin measures apply here,
too ~mutatis mutandi!.

To define Berezin’s integral in the present context, one more piece of data must be supplied,
namely areal p-dimensional submanifoldMr,M over which the holomorphicp-form v[ f ] can
be integrated to produce a complex number. Thus, givenv andMr , Berezin’s integral is the
distribution

f°E
Mr

v@ f #. ~7!

Let me digress and mention that this definition, natural and simple as it is, was not ‘‘discov-
ered’’ by the random-matrix and mesoscopic physics community~including myself! until quite
recently. With one notable exception,23 all past superanalytic work on disordered single-particle
systems employed some operation of ‘‘complex conjugation’’ of the Grassmann generators—
namely an adjoint of the first or second kind29—to make the treatment of the ordinary
~‘‘bosonic’’ ! and anticommuting~‘‘fermionic’’ ! degrees of freedom look as much alike as pos-
sible. Presumably this was done because it was felt that such egalitarian treatment is what is
required by the principle of ‘‘supersymmetry.’’ Specifically, a reality constraint was imposed, not
just on the underlying spaceM ~fixing Mr! but on the entire structure sheaf to reduceH to a sheaf
of algebras overR. Although this reduction can be done with impunity in some cases~namely, the
classic Wigner–Dyson symmetry classes!, it has turned out to lead to insurmountable difficulties
in others~the chiral and normal-superconducting symmetry classes!. A major incentive of the
present paper is to demonstrate that the construction~7! is in fact the ‘‘good’’ one to use for the
application of supermanifold theory to disordered single-particle systems in general. Although that
construction may hurt the physicists’ aesthetic sense by ‘‘torturing supersymmetry,’’ it should be
clear that we are not breaking any rules. Recall that according to Berezin, superintegration is a
two-step process: first, the Fermi integral~i.e., differentiation with respect to the anticommuting
coordinates! is carried out, and it is onlyafterward that the ordinary~Bose! integrals are done.
When the sequential nature of the Berezin integral is taken seriously, there is no compelling reason
why one should ever want to ‘‘complex conjugate’’ a Grassmann variable. In the present paper,
we take the radical step of abandoning complex conjugation of Grassmann variables altogether.

Example 2.4:The simplest nontrivial example23 is given by Gl~1u1!, the Lie supergroup of
regular complex 232 supermatrices
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g5S a b

g d D
with support M5Gl~1,C!3Gl~1,C!. The Berezin–Haar measure on Gl~1u1! is
v5(2p i )21D(ad;bg), whereD(ad;bg)5da`dd^ ]b]g . Solving the regularity conditions
aÞ0 anddÞ0 by parametrizing Gl~1u1! through its Lie algebra,

g5expS z1 z1

z2 z2
D ,

one finds

2p iv5D~z1z2 ;z1z2!+
~z12z2!

2

~12ez12z2!~ez22z121!

2S d ln~ez12ez2!2
~z12z2!~dz12dz2!

~12ez12z2!~ez22z121! D ^ ]z1
]z2

+z1z2 . ~8!

Note that this expression is holomorphic in a neighborhood of the originz15z250. The first term
on the right-hand side is the principal term, and the second one is the anomaly ofv in these
coordinates. To integratev, one might be tempted to choose forMr the U~1!3U~1! subgroup
defined by Re~z1!505Re~z2!. However, since the rank-two tensor
STrdg dg215da da212dd dd211nilpotents52dz1

21dz2
21••• is not Riemann on U~1!3U~1!,

this will not be the best choice. A Riemannian structure is obtained by takingMr5R13S1 defined
by Im~z1!505Re~z2!. To compute*R13S1v@ f # we may use a single cell,

D:2`,x,1`, 2p,y,1p,

wherex5Re~z1! and y5Im~z2!. The boundary]D consists of the two linesy52p and y5p
~xPR!. Using ~8!, paying attention to the orientation of the boundary, and simplifying terms, one
finds the following explicit expression for the integral ofv:

E
R13S1

v@ f #5
1

4p E
2`

`

dxE
2p

p

dy
~x2 iy !2

cosh~x2 iy !21
]z1

]z2
f S expS x z1

z2 iy D D
1
1

2 E
2`

` dx

coshx11
f S S ex 0

0 21D D .
By construction, this Berezin integral is invariant under left and right translations
f (g)° f (gLggR). Evaluation gives*R13S1v@1#51Þ0. The naive guess would have been
*v@1#5(2p i )21*da`dd ]b]g50 due to]b]g•150. Such reasoning is false because*R1da5`.

E. Symmetric spaces: A reminder

A Riemannian~globally! symmetric space is a Riemannian manifoldM , such that every
pPM is an isolated fixed point of an involutive isometry.~In normal coordinatesxi centered
around p, this isometry is given byxi°2xi .! This definition implies~cf. Ref. 38! that the
Riemann curvature tensor is covariantly constant, so that ‘‘the geometry is the same everywhere.’’
The curvature can be positive, negative, or zero, and the symmetric space is said to be of compact,
noncompact, or Euclidean type correspondingly.

According to Cartan’s complete classification scheme, there exist ten39 large classes of sym-
metric spaces. Apart from some minor modifications these are the entries of Table I. The differ-
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ence from the standard table38 is that some of the entries of Table I, namely, the spaces of type A,
AI, and AII, are not irreducible. They can be made so by dividing out a factor U~1! ~R1! in the
compact~resp., noncompact! cases. Division by such a factor is analogous to removing the center
of mass motion from a mechanical system with translational invariance. It turns out that, with a
view to superanalytic extensions~cf. Example 2.4!, it is preferable not to insist on irreducibility
but to ‘‘retain the center of mass motion.’’

The next section introduces supergeneralizations of Cartan’s symmetric spaces, which have
appeared in the theory of mesoscopic and disordered single-particle systems and have come to
play an important role in that field.

F. Riemannian symmetric superspaces (definition)

Let GL be a complex Lie supergroup that is realized as a group of supermatrices

g5S g00 g01

g10 g11
D ,

with matrix elements that take values in a~sufficiently large! parameter Grassmann algebra
L5L01L1. If G C 5 G C

0 1 G C
1 is the Lie superalgebra ofGL , the Lie algebra ofGL is obtained by

taking the even part of the tensor product withL: Lie (GL) 5 L0 ^ G C
0 1 L1 ^ G C

1 5 (L ^ G C)0.
Thus, if $ei ,e j% is a homogeneous basis of complex matrices inG C , an elementXPLie~GL! is
expressed byX5ziei1z je j with ziPL0 andzjPL1.

Let u :GL→GL be an involutory automorphism and letHL,GL be the subgroup fixed byu.
The decomposition into even and odd eigenspaces ofu

*
:Lie~GL!→Lie~GL! is written as

Lie~GL!5Lie~HL!1ML . This decomposition is orthogonal with respect to the Ad~GL!-invariant
quadratic form B:Lie~GL!3Lie~GL!→L0, B(X,Y):5STrXY.

Both GL and HL are supermanifolds with underlying spaces that are Lie groups and are
denoted byGC andHC . Passing to the coset spaces one obtains a graded commutative algebra
H5H01H1 of ~Grassmann-analytically continued! holomorphic sections of the bundle
GL/HL→GC/HC . These sections are called~super-!functions ~on GL/HL! for short. In local
complex coordinates z1,...,zp; z1,...,zq they are written as f (z1,...,zp;z1,...,zq)
5 ( f i1••• i n

(z1,...,zp)z i1•••z i n, where the coefficientsf i1••• i n
(z1,...,zp) take values inL after

Grassmann-analytic continuation. For coordinate-independent calculations the alternative notation
f (gHL) or f (g•o) is used. In the followingGC/HC is assumed to be connected.

EveryXPLie~GL! is associated with a vector field~or even derivation! X̂:H→H by

~X̂f !~g•o!5
d

dsU
s50

f ~e2sXg•o!. ~9!

TABLE I. The large families of symmetry spaces.

Class Noncompact type Compact type

A Gl~N,C!/U(N) U(N)
AI Gl~N,R!/O(N) U(N)/O(N)
AII U*(2N)/Sp(N) U(2N)/Sp(N)
AIII U( p,q)/U(p)3U(q) U(p1q)/U(p)3U(q)
BDI SO(p,q)/SO(p)3SO(q) SO(p1q)/SO(p)3SO(q)
CII Sp(p,q)/Sp(p)3Sp(q) Sp(p1q)/Sp(p)3Sp(q)
BD SO~N,C!/SO(N) SO(N)
C Sp~N,C!/Sp(N) Sp(N)
CI Sp~N,R!/U(N) Sp(N)/U(N)
DIII SO*(2N)/U(N) SO(2N)/U(N)
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HereesXg means the usual product of supermatrices, and the functionf (esXg•o) is determined
from f (g•o) by Grassmann-analytic continuation. The Lie algebra of even derivations ofH is a
left H0-module denoted by Der0H.40

A notion of supergeometry onGL/HL is introduced via a left-invariant tensor field
^•,•&:Der0H3Der0H→H0. The details are as follows.GL acts onGL/HL by left translation,
Th* : f (g • o)° f „(hg) • o…. The left-translatedTh(X̂) of a vector fieldX̂ is defined by the equation
Th* „dTh(X̂) f …5 X̂(Th* f ), and one requires

Th* ^dTh~X̂!,dTh~Ŷ!&5^X̂,Ŷ&.

This equation determineŝ•,•& uniquely within a multiplicative constant. For vector fields of the
special form~9!, one obtains

^X̂,Ŷ&~g•o!5c03B~„Ad~g!21X…ML
,„Ad~g!21Y…ML

!,

where the subscriptML means projection on the odd eigenspace ofu
*
. Note that since

„Ad(gh)21X…ML
5 Ad(h)21

„Ad(g)21X…ML
for hPHL , this is well-defined as a function on

GL/HL . The normalization is fixed by choosingc051.
The metric tensor̂•,•& induces a geometry on the ordinary manifoldGC/HC by restriction~i.e.,

by setting all anticommuting variables equal to zero!. Of course, since the groupsGC andHC are
complex, this geometry is never Riemann. However, there exist submanifolds inGC/HC that are
Riemannian symmetric spaces and can be constructed by selecting from the tangent space
To~GC/HC! a Lie-triple subsystemM ~i.e., †M,@M,M#‡,M!, such that the quadratic form B
restricted toM is of definite sign. It is then not hard to show38 that the image ofM under the
exponential mapX°eXHL is Riemann in the geometry given by restriction of^•,•&. Its completion
is a symmetric space.

Definition 2.5: A Riemannian symmetric superspaceis a pair (GL/HL ;M ), whereM is a
maximal Riemannian submanifold of the baseGC/HC .

Remark 2.6:The merit of this definition is that it avoids any use of an adjoint~or ‘‘complex
conjugation’’! of the Grassmann variables. j

By the complex structure ofGC/HC , the tangent spaceMC :5To~GC/HC! decomposes as
MC5M1iM, whereM is taken to be the subspace ofMC on which the quadratic form B is
strictly positive. Now observe that, since an elementgPGC is of the formg5diag(g00,g11), the
groupGC is a Cartesian product of two factors, and the same is true forHC . Hence,GC/HC factors
asGC /HC 5 MC

0 3 MC
1, andM is a sum of two spaces:M5M0%M1, which are orthogonal with

respect to the quadratic form B.~It may happen, of course, that one of these spaces is trivial.! For
ZPM, let the corresponding orthogonal decomposition be written asZ5X1Y. Then B restricted
toM is evaluated as

B~Z,Z!5Tr0 X
22Tr1 Y

2,

where the relative minus sign between traces is due to supersymmetry~STr5Tr02Tr1!. The
positivity of B on M is seen to implyX5X† and Y52Y† ~the dagger denotes Hermitian
conjugation, i.e. transposition in conjunction with complex conjugation!.

GivenGL/HL , the condition thatM be Riemann and maximal inGC/HC , fixesM uniquely up
to two possibilities: eitherTo(M )5M, or To(M )5 iM. In either case,M is a product of two
factors,M5M03M1 , both of which are Riemannian symmetric spaces. In the first case,M0 is of
the noncompact type andM1 is of the compact type, while in the second case it is the other way
around. We adopt the convention of denoting the compact space byMF and the noncompact one
by MB .

In view of Cartan’s list of symmetric spaces~Table I!, we arrive at Table II listing the large
families of Riemannian symmetric superspaces. Although the entriesAuA, BDuC, andCuBD look
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extraneous because they are groups rather than coset spaces, they fit in the same framework by
putting byGL5G3G andu(g1 ,g2)5(g2 ,g1), soHL5diag(G3G).G andGL/HL.G.

As far as applications to random-matrix theory and disordered single-particle systems are
concerned, the most important structure carried by Riemannian symmetric superspaces is their
GL-invariant Berezin measure. Such a measure always exists by Definition 2.1 and the existence
of local coordinates. To describe it in explicit terms, one introduces a local coordinate system by
the exponential mapML→GL/HL , Z°exp(Z)HL . By straightforward generalization~replace
the Jacobian by the Berezinian! of a corresponding calculation~cf. Ref. 38! for ordinary symmet-
ric spaces, one obtains for the principal term of the invariant Berezin measure the expression
DZ+J(Z),whereDZ5 dz1 ` ••• ` dzp ^ ]z1•••]zqdenotes theflatBerezinmeasureonML , and if
TZ :ML→ML is the linear operator defined by

TZ5 (
n50

`
ad2n~Z!

~2n11!!
,

the functionJ(Z)5SDetTZ . @Note(n50
` x2n/(2n11)!5x21 sinhx#. A universally valid expres-

sion for the anomaly in these coordinates is not available at present.

III. SUPERSYMMETRY APPLIED TO THE GAUSSIAN RANDOM-MATRIX ENSEMBLE OF
CLASS C

The goal of the remainder of this paper will be to demonstrate that Riemannian symmetric
superspaces, as defined in Sec. II F, arise in a compelling way when Gaussian ensemble averages
of ratios of spectral determinants for random matrices are considered in the large-N limit. The
example to be discussed in detail will be the Gaussian ensemble defined over the symplectic Lie
algebra sp(N), which has recently been identified24 as a model for the ergodic limit of normal-
superconducting mesoscopic systems with broken time-reversal symmetry.

A. The supersymmetry method: A simple example

The pedagogical purpose of this section is to illustrate our strategy at a simple example.41 If
u(N) is the Lie algebra of the unitary group inN dimensions, consider oniu(N) ~the Hermitian
N3N matrices! the Gaussian probability measure with widthv/AN. Denoting byH the elements
of iu(N) and bydH a Euclidean measure, we write the Gaussian probability measure in the form
dm(H)5exp~2N Tr H2/2v2!dH, *dm(H)51. This measure is called the Gaussian unitary en-
semble~GUE! in random-matrix theory. The object of illustration will be the average ratio of
spectral determinants,

TABLE II. The large families of Riemannian symmetric superspaces.

Class GL/HL MB MF

AuA Gl(mun) A A
AIuAII Gl(mu2n)/Osp(mu2n) AI AII
AII uAI Gl(mu2n)/Osp(mu2n) AII AI
AIII uAIII Gl(m11m2un11n2)/Gl(m1un1)3Gl(m2un2) AIII AIII
BDuC Osp(mu2n) BD C
CuBD Osp(mu2n) C BD
CIuDIII Osp(2mu2n)/Gl(mun) CI DIII
DIII uCI Osp(2mu2n)/Gl(mun) DIII CI
BDIuCII Osp(m11m2u2n112n2)/Osp(m1u2n1)3Osp(m2u2n2) BDI CII
CII uBDI Osp(m11m2u2n112n2)/Osp(m1u2n1)3Osp(m2u2n2) CII BDI
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Z~a,b!5E
iu~N!

DetSH2b

H2a Ddm~H !,

wherea,b are complex numbers anda is not in the spectrum ofH. Given the generating function
Z, the GUE average resolvent is obtained by

E
iu~N!

Tr~H2z!21dm~H !5
]

]a
Z~a,b!U

a5b5z

.

We will now show how to computeZ using a formalism that readily generalizes to more com-
plicated situations.

To avoid the introduction of indices and have a basis-independent formulation, we choose to
interpretH as a self-adjoint endomorphismHPEnd(V) of N-dimensional complex spaceV:5CN

with a Hermitian quadratic form (x,y)°^x̄,y&V .
The supersymmetry method starts by introducing ‘‘bosonic space’’WB5W05C and ‘‘fermi-

onic space’’WF5W15C. Auxiliary space is theZ2-graded sumW5WB%WF5C1u1. The Cartesian
basis of W is denoted by eB5~1,0! and eF5~0,1!. Let Homl(W,V):5l0
^Hom~WB ,V!1l1^Hom~WF ,V!, where l5l01l1 is the Grassmann algebra with
dimC Hom~WF ,V!5N generators.~Grassmann-analytic continuation will not be needed here.!
Homl̃(V,W) is defined similarly, with another Grassmann algebral̃. The key idea is to utilize the
Gaussian Berezin integral over the complex-analytic superspace Homl(W,V) 3 Homl̃(V,W). Let
D(c,c̃) @with cPHoml(W,V) andc̃ P Homl̃(V,W)# denote a translation-invariant holomorphic
Berezin measure on this linear space. IfcB~c̃B! is the restriction ofc(c̃) to a mapWB→V ~resp.,
V→WB!, fix a Berezin integralf°*D(c,c̃) f (c,c̃) by choosing for the domain of integration the
subspaceMr selected by the linear conditionc̃B 5 cB ~the adjointcB

† :CN→C being defined by
cB
†z 5 ^z̄,cB • 1&V). Because Homl(W,V) 3 Homl̃(V,W) has complex dimension (2N,2N), the

integral*D(c,c̃) f (c,c̃) does not change its value whenf is replaced by the rescaled function
f s(c,c̃)5 f (sc,sc̃) ~sPR!. Now with End0(W)5End~WB!%End~WF! and End1(W)
5Hom~WB ,WF!%Hom~WF ,WB!, let

EndL~W!:5L0^End0~W!1L1^End1~W!,

where L5L01L1 is the Grassmann algebra with dimC End1(W)52 generators, and pick
APEnd(V), BPEndL(W). B corresponds to what is called a 232 supermatrix in physics. An
elementary but useful result is that, if we normalizeD(c,c̃) by *D(c,c̃)exp~2s2 Tr cc̃!51, the
identity

E D~c,c̃ !exp~ i TrV Acc̃2 i STrW Bc̃c!5SDetV^W~A^121^B!2c, ~10!

holds withc51 provided that the integral exists.~The parameterc is introduced for later conve-
nience.! When A and B are represented by diagonal matrices, verification of~10! is a simple
matter of doing one-dimensional Gaussian integrals. The general case follows by the invariance of
D(c,c̃) under unitary transformations ofV and ‘‘super-rotations’’ inW.

Now introduce elementsEBB and EFF of End0(W) by EBBeB5eB , EFFeF5eF , and
EBBeF5EFFeB50. By settingA:5H andB:5aEBB1bEFF5:v, and using

SDetV^W~H^121^ v!5Det~H2a!/Det~H2b!,

we get a Gaussian integral representation ofZ:
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Z~v!:5Z~a,b!5E SDetV^W~H^121^ v!2cdm~H !

5E D~c,c̃ !E exp~ i TrV Hcc̃2 i STrW vc̃c!dm~H !.

~11!

In the next step, the GUE ensemble average is subjected to the following manipulations:

E exp~ i Tr Hcc̃!dm~H !5E
iu~N!

expS i Tr Hcc̃2
N Tr H2

2v2 DdH
5exp2

v2

2N
TrV~cc̃!2

5exp2
v2

2N
STrW~ c̃c!2

5E
R3 iR

DQ expS i STrQc̃c2
N STrQ2

2v2 D
5:E Dm~Q!exp~ i STrQc̃c!. ~12!

The fourth equality sign decouples the quartic term STrW(c̃c)2 by introducing an auxiliary inte-
gration overQPEndL(W). In order for this Gaussian integral to converge, the integration domain
for the BB partQBB :WB→WB ~FF part,QFF:WF→WF!, is taken to be the real~resp., imaginary!
numbers. By using the relations~10!–~12!, we obtain

Z~v!5E D~c,c̃ !S E exp~ i TrV Hcc̃!dm~H ! Dexp2 i STrW vc̃c

5E Dm~Q!E D~c,c̃ !exp i TrV c~Q2v!c̃

5E Dm~Q!SDetV^W„1N^ ~Q2v!…2c

5E Dm~Q!SDetW~Q2v!2N

5E
R3 iR

DQ exp2N STrS Q2

2v2
1 ln~Q2v! D . ~13!

These steps reduce an integral over theN3N matrixH to an integral over the 232 supermatrixQ.
The large parameterN now appears in the exponent of the integrand, so that theQ integral can be
evaluated by a saddle-point approximation that becomes exact in the limitN→`. By solving the
saddle-point equation2Q/v25(Q2v)21 and doing an elementary calculation, one obtains
Wigner’s semicircle law for the GUE density of states:42

E Tr d~E2H !dm~H !5
N

pv
A12S E2v D

2

, ~14!
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which will be of use later.

B. Definition of the Gaussian ensemble of type C

Having run through a simple and well-known example, we now treat in detail a less trivial
case where the reduction to aQ-integral representation requires more care.

The ‘‘physical space’’ of our model isV5C2^CN. As before, letx° x̄ denote complex
conjugation, and fix a symmetric quadratic form^•,•&V :V3V→C, such that the corresponding
Hermitian quadratic form̂x̄,y&V 5 ^ ȳ,x&V is strictly positive. The transpose and the adjoint of a
linear transformationLPEnd(V) are defined bŷx,LTy&V5^Lx,y&V and^x̄,L†y&V 5 ^Lx,y&V , as
usual.

Consider now the space,P, of self-adjoint HamiltoniansHPEnd(V) subject to the linear
condition

H52CHTC 21, ~15!

whereC is skew andC 2521. Clearly, iP is isomorphic to sp(N)5CN ~the symplectic Lie
algebra in 2N dimensions!. Introducing an orthonormal real basis ofV we can representH by a
2N32N matrix. The explicit form of such a matrix is

H5S a b

b† 2aTD , if C5S 0 1N

21N 0 D ,
wherea(b) is a complex Hermitian~resp., symmetric! N3N matrix. The Gaussian ensemble to be
studied is defined by the probability measuredm(H)5exp~2N Tr H2/2v2!dH, *dm(H)51. For
any twoA,BPEnd(V),

E
i3sp~N!

Tr~AH!Tr~BH!dm~H !5
v2

2N
Tr~AB2ACBTC 21!. ~16!

The joint probability density for the eigenvalues ofH has been given in Ref. 24.
The physical motivation for considering a Gaussian random-matrix ensemble of the above

type ~type C! comes from the fact24 that it describes the ergodic limit of mesoscopic normal-
superconducting hybrid systems with time-reversal symmetry broken by the presence of a weak
magnetic field. To deal with such systems, the Bogoliubov–deGennes~BdG! independent-
quasiparticle formalism is used. The first factor in the tensor productV5C2^CN accounts for the
BdG particle-hole degree of freedom, which is introduced for the purpose of treating the pairing
field of the superconductor within the formalism of first quantization. The second factor represents
the orbital degrees of freedom of the electron.H is the Hamiltonian that enters into the BdG
equations, and the relation~15! expresses the particle-hole symmetry of the BdG formalism.

Our goal is to compute the following ensemble average:

Zn~a1 ,...,an ;b1 ,...,bn!5E
i sp~N!

)
i51

n

DetSH2b i

H2a i
Ddm~H !. ~17!

By the particle-hole symmetry ofH, Zn is invariant under a reversal of sign for any pair (a i ,b j ),
so no information is lost by restricting allai to one-half of the complex plane. For definiteness, we
require

Im a i,0 ~ i51,...,n!. ~18!
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All information about the statistical correlations between the eigenvalues ofH can be extracted
from Zn . For example, the probability that, given there is an eigenvalue atE1, there existn21
eigenvalues atE2 ,...,En ~regardless of the positions of all other eigenvalues! is equal to

Rn~E1 ,...,En!5 lim
e→0

S 2e

p D n)
l51

n
]

]a2l
U

a2l5El2 i e
)
l51

n
]

]a2l21
U

a2l2152El2 i e

3Z2n~a1 ,...,a2n ;E12 i e,2E12 i e,...,En2 i e,2En2 i e!. ~19!

The functionRn(E1 ,...,En) is called then-level correlation function in random-matrix theory.42

C. Symmetries of the auxiliary space

To transcribe the supersymmetry method of Sec. III A to the computation ofZn ~which
involvesn ratios of spectral determinants!, a simple and natural procedure would be to enlarge the
auxiliary spaceW by taking the tensor product withCn. However, on using the formula

E exp~ i Tr Hcc̃!dm~H !5expS 2
1

2 E
i sp~N!

~Tr Hcc̃!2 dm~H ! D ,
one faces the complication that the second moment*~Tr Hcc̃!2 dm(H) then is a sum of two
terms, see the right-hand side of~16!. Consequently, one needstwo decoupling supermatricesQ
~one for each term!. Although this presents no difficulty of a principal nature, it does lead to rather
complicated notations. An elegant remedy is to modify the definition ofc andc̃ so thatcc̃ shares
the symmetry~15! of the BdG HamiltonianH. The two terms then combine into a single one:

E ~Tr Hcc̃!2 dm~H !5
v2

N
STrW~ c̃c!2,

which can again be decoupled by a single supermatrixQ. To implement the symmetry~15!, we
proceed as follows.

We enlarge the auxiliary spaceW5WB%WF in some way~left unspecified for the moment!
and fix a rule of supertransposition Homl(W,V)→Homl(V,W), c °cT, and

Homl(V,W)→Homl(W,V), c̃°c̃ T. Such a rule obeyscT T5cs and c̃ T T5sc̃, where
sPEnd0(W) is the operator for superparity, i.e.s(x1y)5x2y for x1yPWB%WF5W. It in-
duces a rule of supertransposition EndL(W)→EndL(W), Q°QT ~no separate symbol is intro-
duced!. Combination with complex conjugation gives a rule of Hermitian conjugation
†:End0(W)→End0(W). Now impose oncPHoml(W,V), c̃PHoml(V,W) the linear conditions

c5C c̃ Tg21, c̃52gc TC 21, ~20!

with some invertible even elementg of End0(W). The mutual consistency of these equations
requires

g5gTs. ~21!

To see that, insert the transpose of the second equation in~20! into the first one. UsingcTT5cs

you obtainc 5 2C C 21TcsgTg21. SinceC C 21T 5 21 andsgT5gTs, Eq. ~21! follows. The
consistency condition can be implemented by takingWB5WF5C2^C n, see below. By multiplying
the equations~20! we obtain

cc̃52C ~cc̃!TC 21, c̃c52g~c̃c!Tg21. ~22!
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The first equation is the desired symmetry relation allowing us to combine terms. To appreciate
the consequences of the second equation, note that by the fourth step in~12! the symmetries ofc̃c
get transferred ontoQ, so that the latter is subject to

Q52gQTg21. ~23!

This symmetry reflects that of the BdG HamiltonianH, see~15!. The linear space EndL(W), when
given a Lie bracket by the commutator, can be identified with gl(2nu2n)5Lie„Gl(2nu2n)…. As g
is supersymmetric~g5gTs!, ~23! fixes an osp(2nu2n) subalgebra.

g is not unique. For definiteness we choose it as follows. Let$Ei j % i , j51,...,M be a canonical
basis of End~CM! satisfyingEi jEkl5d jkEil ~hereM52 orM5n!. ForM52 define the Pauli spin
operatorssx5E121E21, sy52 iE121 iE21, andsz5E112E22. The usual rule of supertransposi-
tion on EndL(W) is given by~m,n51,2 andi , j51,...,n!

~EBB^Emn ^Ei j !
T5EBB^Enm ^Eji ,

~EFB^Emn ^Ei j !
T5EBF^Enm ^Eji ,

~EBF^Emn ^Ei j !
T52EFB^Enm ^Eji ,

~EFF^Emn ^Ei j !
T5EFF^Enm ^Eji .

With these conventions, one possible choice forg is

g5EBB^ gB1EFF^ gF , where gB5sx^1n , gF5 isy^1n . ~24!

This is the choice we make.

D. Gaussian Berezin integral

To repeat the steps of Sec. III A and derive aQ-integral representation for the generating
functionZn , we must first generalize the basic identity~10!, whose left-hand side is

E D~c,c̃ !exp~ i TrV Acc̃2 i STrW Bc̃c!. ~25!

By ~22! we have

Tr Acc̃5Tr~cc̃!TAT5 1
2Tr~A2CATC 21!cc̃,

STr Bc̃c5STr~ c̃c!TBT5 1
2Tr~B2gBTg21!c̃c.

In view of this we demand thatA andB satisfy

A52CATC 21, B52gBTg21. ~26!

When carrying out the calculation~11!–~13! we need to apply the identity~10! twice, the first time
with A5H, B5v, and the second time withA50,B5v2Q. In order for~26! to be satisfied with
these identifications, we choose to set

v5EBB^ sz^ (
i51

n

a iEii1EFF^ sz^ (
j51

n

b jEj j .

The presence of the factorsz5diag~11,21! reverses the sign of theai andbj on that subspace
wheresz acts by multiplication with21. As the imaginary parts of theai control the convergence
of the integral, this sign reversal affects the correct choice of integration domain forcB and c̃B .
To ensure convergence of the integral~25!, we require Im STrvc̃c<0. This inequality is
achieved by imposing the conditionc̃B 5 (sz ^ 1n)cB

† , which is compatible withC5isy^1N ,
cB5C c̃B

TgB
21 , andgB5sx^1n .
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Lemma 3.1:Let D(c,c̃) denote a translation-invariant holomorphic Berezin measure on the
subspace of Homl(W,V)3Homl(V,W) defined by~20!. Fix the integration domain byc̃B 5 (sz

^ 1n)cB
† , and normalizeD(c,c̃) so that*D(c,c̃)exp~2s2 Tr cc̃!51 ~sPR!. Then ifAPEnd(V)

andBPEndL(W) are diagonalizable and satisfy the linear conditions~26!, the identity~10! holds
with c51/2 provided that the integral exists.

Proof: Assume thatA andB are represented by diagonal matrices,

A5sz^ (
i51

N

xiEii , B5EBB^ sz^ (
j51

n

zjEj j1EFF^ sz^ (
j51

n

yjEj j ,

which conforms with~26!. The right-hand side of~10! then reduces to

SDetV^W~A^121^B!21/25)
i51

N

)
j51

n
~xi2yj !~xi1yj !

~xi2zj !~xi1zj !
. ~27!

To evaluate the left-hand side, write

cB5S a b

c dD , cF5S a b

g d D ,
wherea,b,c,d~a,b,g,d! are complexN3n matrices with commuting~resp., anticommuting! ma-
trix elements. The constraintc̃52gcTC 21 results in

c̃B5S 2dT bT

2cT aTD , c̃F5S 2dT bT

gT 2aTD ,
and the reality conditionc̃B 5 (sz ^ 1n)cB

† meansd52ā andc5b̄. The exponent of the integrand
is expressed by

1

2
Tr Acc̃2

1

2
Tr Bc̃c5(

i51

N

(
j51

n

„~xi2zj !ai j āi j2~xi1zj !bi j b̄i j

1~xi1yj !a i jd i j2~xi2yj !b i jg i j ….

Doing the Gaussian integrals one gets a result that is identical to~27!, which proves the Lemma
for diagonalA andB. The general case follows by the invariance properties ofD(c,c̃).

Remark:The condition of diagonalizability can of course be weakened but we will not need
that here. j

To apply Lemma 3.1 to our problem, note

SDetV^W~H^121^ v!1/25)
i51

n

DetVS ~H2a i !~H1a i !

~H2b i !~H1b i !
D 1/25)

i51

n

DetSH2a i

H2b i
D ,

where in the second step we used the invariance of the ratio of determinants underH°2H,
which is due to the particle-hole symmetryH52CHTC 21. Moreover, note

SDetV^W„1^ ~Q2v!…21/25SDetW~Q2v!2N.

The previous calculation~11!–~13! thusformallygoes through withc51/2, andisp(N) for iu(N),
and we arrive at the following representation of the generating function:
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Zn~v!5E DQ exp2N STrS Q2

2v2
1 ln~Q2v! D , ~28!

where the supermatrix

Q5SQBB QBF

QFB QFF
D

is subject to~23!. To make this rigorous, we have to specify the integration domain forQ and
show that the interchange of the~c,c̃!- andQ-integrations is permitted.

E. Choice of integration domain

If the steps~11!–~13! are to be valid, we must arrange for all integrals to be convergent, at
least. This is easily achieved forQFF, the FF component ofQ, but requires substantial labor for
cB , c̃B , andQBB . ConsiderQFF first. Since2STrQ252Tr QBB

2 1Tr QFF
2 1nilpotents, we want

Tr QFFQFF<0, which leads us to require thatQFF be anti-Hermitian. Combining this with~23! we
get

QFF52gFQFF
T gF

2152QFF
† ,

wheregF5isy^1n ; see~24!. The solution space of these equations is sp(n), the symplectic Lie
algebra in 2n dimensions. Thus we chooseU:5sp(n) for the integration domain ofQFF, and, of
course, the integration measure is taken to be the flat one.

The choice of integration domain forQBB is a much more delicate matter and will occupy us
for the remainder of this section. Recall, first of all, that the convergence of

E D~c,c̃ !exp~ i Tr Hcc̃2 i STr vc̃c!

requires takingc̃B 5 bcB
† , whereb :5sz^1n cancels the minus signs that multiply the imaginary

parts of the parametersai in v. To ensure the convergence of

E D~c,c̃ !exp i Tr c~Q2v!c̃,

one is tempted to chooseQBB in such a way that Re TrcQc̃50. Unfortunately, when this
condition is adopted one getsQBB 5 bQBB

† b, which causes TrQBB
2 5 Tr QBBbQBB

† b, to be of
indefinite sign, so that the integral overQ does not exist.

A way out of this difficulty was first described by Scha¨fer and Wegner2 in a related context.
We are now going to formulate their prescription in a language that anticipates the geometric
structure emerging in the large-N limit. To simplify the notation, we putQBB5iZ. What we need
to do is investigate the expression

exp~2N Tr QBB
2 /2v21 i Tr QBBc̃BcB!5exp~N Tr Z2/2v22Tr Zc̃BcB!. ~29!

The conditions onQBB translate into

Z52gBZ
TgB

2152bZ†b21.

BecausegB5sx^1n is symmetric, the solution space of the first equation is a complex Lie algebra
G C.so~2n,C!. The matrix representation of an elementZPG C is of the form
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S A B

C 2ATD ,
whereB andC are skew. The second equation (Z52bZ†b21) meansA52A† andC5B†,
which fixes a real formG5so*(2n) of G C5so~2n,C!. This real form isnoncompact@i.e.,
G5Lie(G) with G a noncompact Lie group#, which is what causes all the trouble and is forcing
us to work hard. Its maximal compact subalgebraK is the set of solutions ofX5bXb21 in G .
From

X5SA 0

0 2ATD
andA52A† we see thatK.u(n).

To display clearly the general nature of the following construction, we introduce a symmetric
quadratic form B:G C3G C→C by B(X,Y)5Tr XY. The Cartan~orthogonal! decomposition ofG
with respect to this quadratic form is written asG5K%M. An elementY of M satisfies
Y52bYb21. From this, in conjunction with the equation fixingK (X51bXb21), one deduces
the commutation relations

@M,M#,K , @K ,M#,M, @K ,K #,K . ~30!

Note that the elements ofM are Hermitian while those ofK are anti-Hermitian. We will also
encounter the complexified spacesK C5K1iK andMC5M1iM. They, too, are orthogonal
with respect to B and satisfy the commutation relations~30!. The elementb5sz^1n satisfies
b52gBbTgB

21 and can therefore be regarded as an element ofG C . Moreover,bPiK,G C .
Now we embedG5K%M into G C by a mapfb ,

fb :K3M→G C ,

~X,Y!°fb~X,Y!5b3~X1eYbe2Y!,

wherebÞ0 is some constant that will be specified later.
Lemma 3.2:fb~K3M! is an analytic manifold without boundary, and is diffeomorphic to

G .
Proof: Analyticity is clear. To prove the other properties, we first establish thatfb is injective.

For that purpose, we writeeYbe2Y 5 ead(Y)b, where ad(Y)b5[Y,b] is the adjoint action onG C .
Decomposing the exponential function according to exp5cosh1sinh, we writefb5f11f2 ,
where

f1~X,Y!5b3„X1cosh ad~Y!b…,

f2~X,Y!5b3sinh ad~Y!b.

From the commutation relations~30! andbPiK , we see thatf6 takes valuesf1(X,Y)eK C and
f2(X,Y)PMC . SinceG C5K C%MC ~direct sum!, injectivity is equivalent to the regularity of
the mapsX°f1(X,Y) ~with Y viewed as a parameter! and Y°f2(X,Y). The function
f1(X,•)5X1const is obviously regular. ByY5Y† the elementY is diagonalizable with real
eigenvalues. The regularity off2 then follows from sinh:R→R being monotonic andY°ad(Y)b
being regular. This completes the proof thatfb is injective. The injectivity offb means that
fb~K3M! is diffeomorphic toG5K%M. This in turn means that, sinceG has no boundary,
fb~K3M! has no boundary either. j
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We are now going to demonstrate thatfb~K3M! for anyb.0 may serve as a mathemati-
cally satisfactory domain of integration for the variableZ in ~29!. We begin by investigating the
quadratic form TrZ25B(Z,Z) onfb~K3M!. For this we setZ5Z11Z2 with Z65f6(X,Y).
Using B(Z1 ,Z2)50 ~recallK C'MC!, B„ad(Y)A,B…52B„A,ad(Y)B… and cosh22sinh251, we
obtain

B~Z,Z!/b25B~X,X!12B„X,cosh ad~Y!b…1B~b,b!.

The antihermiticity ofXPK gives B(X,X)<0. In contrast, cosh ad(Y)bP iK is Hermitian, so
B„X,cosh ad(Y)b…PiR. It follows that exp~N Tr Z2/2v2!5exp„N Tr fb(X,Y)

2/2v2… is decaying
with respect toX and oscillatory with respect toY.

We have not yet made any use ofb.0 yet. This inequality comes into play when the coupling
term

2Tr Zc̃BcB52B~Z,c̃BcB!52bB~X,c̃BcB!2bB~eYbe2Y,c̃BcB!

is considered. From~22! andc̃B 5 bcB
† we see thatc̃BcB satisfies

c̃BcB52gB~ c̃BcB!TgB
2151b~c̃BcB!†b21,

so c̃BcBPiG . Since B is real valued onG3G , the term B~X,c̃BcB! is purely imaginary. The
other term,

2bB~eYbe2Y,c̃BcB!52b Tr~cBe
2YcB

† !<0,

is never positive ifb.0. Hence the real part of the exponential in~29! is negative semidefinite for
Q5 iZP ifb~K3M! andb.0. As a result, the integrals overQ andc,c̃ converge if the inte-
gration domain forQ is taken to beifb~K3M!3U ~b.0!. Becauseifb~K3M!3U is an
analytic manifold without boundary and Cauchy’s theorem applies, we may perform the shift of
integration variables that is implied by the fourth equality sign in~12!. Moreover, the presence of
the nonvanishing imaginary parts of the parametersai in v ensuresuniform convergenceof the
~c,c̃! integral with respect toQ, so that we may interchange the order of integration@the second
equality sign in~13!#. And finally, any breakdown of diagonalizability ofQ2v occurs on a set of
measure zero, so that the identity~10! ~Lemma 3.1! may be used, and all steps leading to~28! are
rigorous. In summary, we have proved the following result.

Theorem 3.3:For V5C2^CN andW5C1u1
^C2^Cn define the generating function

Zn,N~v!5E
i3sp~N!

SDetV^W~H^121^ v!21/2 expS 2
N Tr H2

2v2 DdH,
v5EBB^ sz^ (

i51

n

a iEii1EFF^ sz^ (
j51

n

b jEj j ~ Im a i,0!.

Let DQ denote a translation-invariant holomorphic Berezin measure of the complex-analytic
superspace osp(2nu2n). Then for allNPN, nPN andb.0, DQ can be normalized so that

Zn,N~v!5E
ifb~K3M!3U

DQ exp2N STrS Q2

2v2
1 ln~Q2v! D , ~31!

where U5sp(n), K.u(n), M is determined by K%M5so*(2n), and fb(X,Y)
5b„X1Ad(eY)(sz^1n)…. j
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We conclude this section with a comment. In the literature a parametrization of the form
Q5TPT21 ~cf. Ref. 43! has been very popular. In our language, this factorization amounts to
choosing for the integration domain ofQBB the image ofw:G5K%M→G , X1Y°eYXe2Y.
This isnot a valid choice asw~G ! does have a boundary, namely the light cone$ZuB(Z,Z)50% in
G , so that shifting of integration variables is not permitted.~However, it turns out that the error
made becomes negligible in the limitN→`, so that the final results remain valid if that limit is
assumed.!

F. Saddle-point supermanifold

The result~31! holds for allNPN. We are now going to use the method of steepest descent to
show that in the limitN→`, the integral on the right-hand side reduces to an integral over a
Riemannian symmetric superspace of typeDIII uCI.

With our choice of normalization, the mean spacing between the eigenvalues ofH scales as
N21 for N→`; see~14!. We are most interested in the eigenvalues close to zero, as their statistical
properties describe those of the low-lying Bogoliubov independent-quasiparticle energy levels of
mesoscopic normal-superconducting systems.24 To probe their statistical behavior, what we need
to do is keepv̂5Nv/pv ~i.e.,v scaled by the mean level spacing! fixed asN goes to infinity. In
this limit v;O ~1/N! can be treated as a small perturbation and we may expand
N STr ln(Q2v)5N STr lnQ2pv STrQ21v̂1O ~1/N! if Q21 exists.

To evaluate the integral~31! by the method of steepest descent, we first look for the critical
points of the functionNF(Q)5N STr~Q2/2v21ln Q!. These are the solutions of

F8~Q!5Q/v21Q2150,

or Q252v2. The solution spaces, the so-called ‘‘saddle-point supermanifolds,’’ are nonlinear
subspaces of osp(2nu2n), which can be distinguished by the eigenvalues ofQ. Of these super-
manifolds, which are the ones to select for the steepest-descent evaluation of the integral~31!?

To tackle this question, we start out by setting all Grassmann variables to zero. The BB part
of the saddle-point manifold~s! is uniquely determined by the forced choice of integration domain
ifb~K3M! and by analyticity. This is because the saddle-point manifold must be deformable
~using Cauchy’s theorem! into the integration domain without crossing any of the singularities of
SDet(Q2v)2N; and by inspection one finds that this condition rules out all saddle-point mani-
folds except for one, which isifv~03M!, the subspace of the integration domain
ifb~K3M!ub5v obtained by dropping fromG5K%M theK degrees of freedom~these are
the directions of steepest descent!. By an argument given in the proof of Lemma 3.2 we know that
ifv~03M! is diffeomorphic toM. On general grounds the latter is diffeomorphic to a coset
spaceG/K by the exponential mapM→G/K, Y°eYK; where in the present caseG 5 $g
P Gl(2n,C)ug 5 gBg

21TgB
21 5 bg21†b21%, andK5$kPGuk5bkb21% ~on settingg5expZ,

k5expX and linearizing, we recover the conditionsZ52gBZ
TgB

2152bZ†b21 definingG and the
conditionX5bXb21 fixing the subalgebraK !. We already knowG5so*(2n) andK.u(n), so
G5expG5SO*(2n) and K5expK5U(n). BecauseK is a maximal compact subgroup, the
coset spaceG/K is a Riemannian symmetric space of the noncompact type. In Cartan’s notation,
G/K5SO*(2n)/U(n) is called typeDIII. For better distinction from its FF analog, we will
henceforth denoteG/K by G/KB .

We turn to the FF sector. Since SDet(Q2v)2N does not have poles but only haszerosas a
function ofQFF, analyticity providesno criterion for selecting any specific solution space of the
saddle-point equationQFF

2 52v2. Instead, the determining agent now is the limitN→`. From~31!
it is seen that integration over the Gaussian fluctuations around the saddle-point manifold produces
one factor ofN21(N11) for every commuting~resp., anticommuting! direction of steepest de-
scent. Therefore, the limitN→` is dominated by the saddle-point manifold that has the minimal
transverse ~super-!dimension dB

'2dF
' . A little thought shows that the transverse dimen-
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sion is minimized by choosingQFF to possessn eigenvalues1iv andn eigenvalues2iv. Thus,
the dominant saddle-point manifold is unique and contains the special pointq0 :5 ivb ~b5sz^1n
now acts in the fermionic subspace!.

Recall that the integration domain forQFF is a compact Lie algebraU5sp(n). The corre-
sponding Lie groupU5Sp(n) operates onU by the adjoint action Ad(u):U→U, X°uXu21.
Because the saddle-point equationQFF52v2QFF

21 is invariant under this action, the FF part of the
~dominant! saddle-point manifold can be viewed as the orbit of the action of Ad(U) on the special
point q0PU. Let KF be the stability group ofq0, i.e., KF5$kPUukq0k

215q0%. By
Ad~KF!q05q0 the orbit Ad(U)q0 is diffeomorphic to the coset spaceU/KF . Arguing in the same
way as for the BB sector, one shows thatKF.KB.U(n). HenceU/KF5Sp(n)/U(n), which in
Cartan’s notation is a compact Riemannian symmetric space of typeCI.

We are finally in a position to construct the full saddle-pointsupermanifold. Recall, first of all,
thatQ is subject to the conditionQ52gQTg21, which defines an orthosymplectic complex Lie
algebraG L :5osp(2nu2n) in EndL(W). The solution spaces inG L of the equationQ/v

21Q2150
are complex-analytic supermanifolds that are invariant under the adjoint action of the complex Lie
supergroupGL :5Osp(2nu2n). They can be regarded as Ad~GL! orbits of elementsQ0PLie~GL!
that are solutions of (Q0)

252v2. From the above analysis of the BB and FF sectors, we know
that the saddle-point supermanifold that dominates in the large-N limit is obtained by setting
Q05 ivSz whereSz51BuF^b5~EBB1EFF!^ sz^1n . If HL is the stability group ofQ0, the orbit
Ad(GL)Q0 is diffeomorphic to the coset spaceGL/HL . From gSz1Szg50 and the equation
hSzh

215Sz ~or, equivalently,h5SzhSz! for hPHL one infersHL.Gl(nun). Hence the unique
complex-analytic saddle-point supermanifold that dominates the large-N limit is
GL/HL.Osp(2nu2n)/Gl(nun).

Turning to the integral ~31! we note the relations STrQ0
252v2 STr 150 and

ln SDetQ05ln 150. These imply that the functionF(Q)5STr~Q2/2v21ln Q! vanishes identically
on Ad(GL)Q0 . Hence the exponent of the integrand in~31! restricted toGL/HL is

pv STrQ21v̂uGL /HL
1O ~1/N!52 ipB„v̂,Ad~g!Sz…1O ~1/N!.

To complete the steepest-descent evaluation of~31! we need to Taylor expand the exponent of the
integrand up to second order and do a Gaussian integral. By the Ad~GL! invariance of the function
NF(Q) it is sufficient to do this calculation for one element of the saddle-point supermanifold, say
Q5Q0 . PuttingQ5Q01Z ~ZPG L! we get

NF~Q01Z!5
N

2v2
STr~Z21ZSzZSz!1O ~Z3!.

Now we make the orthogonal decompositionG L5Lie~HL!1ML , Z5X1Y, whereY52SzYSz

are the degrees of freedom tangent to the saddle-point supermanifold, andX51SzXSz are the
degrees of freedom transverse to it. The translation-invariant Berezin measureDZ of G L factors
asDZ5DY DX. We thus obtain the transverse Gaussian integral

E DX expS 2
N

v2
STr X21O ~N0! D .

The integration domain forX is iKB3K F.iu(n)3u(n). By dim Lie(HL)5(p,q) and p5q,
this integral reduces to a constant independent ofN in the limit N→`.

What remains is an integral over the saddle-point supermanifold itself. SinceDY is the local
expression of the invariant Berezin measure ofGL/HL at Ad(eY)Q0uY505Q0 we arrive at the
following result.

Theorem 3.4: If DgH is a suitably normalized invariant holomorphic Berezin measure of the
complex-analytic supermanifoldGL/HL.Osp(2nu2n)/Gl(nun),
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lim
N→`

Zn,NS pvv̂

N D5E
MB3MF

DgH exp2 ipB„v̂,Ad~g!Sz…, ~32!

whereSz51BuF^sz^1n , MB.SO*(2n)/U(n), andMF.Sp(n)/U(n).
Remark 3.5:This result expresses the generating function forN→` as an integral over a

Riemannian symmetric superspace of typeDIII uCI ~see Tables I and II! with m5n.
In Ref. 44 then-level correlation functionRn is calculated exactly from~32! for all n.

IV. OTHER SYMMETRY CLASSES

There exist ten known universality classes of ergodic disordered single-particle systems.
These are the three classic Wigner-Dyson classes~GOE, GUE, GSE!, the three ‘‘chiral’’ ones
describing a Dirac particle in a random gauge field~chGUE, chGOE, chGSE!, and the four classes
that can be realized in mesoscopic normal-superconducting~NS! hybrid systems. In Ref. 25 it was
noted that there exists a one-to-one correspondence between these universality classes and the
large families of symmetric spaces~with the exception of the orthogonal group in odd dimen-
sions!. Specifically, the Gaussian random-matrix ensemble over the tangent space of the symmet-
ric space describes the corresponding universality class, in the limitN→`. In the notation of Table
I the correspondences areA↔GUE, AI↔GOE, AII↔GSE, AIII↔chGUE, BDI↔chGOE,
CII↔chGSE, and the four NS classes correspond toC, D, CI, andDIII.

We have shown in detail how to use the supersymmetry method for the Gaussian ensemble
overCN5sp(N), the tangent space of the symplectic Lie group. There are nine more ensembles to
study. We will now briefly run through all these cases, giving only a summary of the essential
changes.

A. Class D

Recall the definitions given at the beginning of Sec. III B and replace the symplectic unit by
C5sx^1N . What you get is a Gaussian random-matrix ensemble overDN5so(2N), the orthogo-
nal Lie algebra in 2N dimensions. The explicit form of the Hamiltonian is

H5S a b

b† 2aTD ,
wherea(b) is complex Hermitian~resp., skew!. The treatment of this ensemble closely parallels
that of typeC. A change first occurs in the consistency condition forg, which now reads as
g52gTs ~instead ofg51gTs! by C C 21T 5 11. The extra minus sign can be accommodated by
simply exchanging the BB and FF sectors~gB↔gF!. The linear constraintQ52gQTg21 again
defines an osp(2nu2n) Lie algebra, the only difference being that the BB sector is now ‘‘sym-
plectic’’ while the FF sector has turned ‘‘orthogonal.’’ Everything else goes through as before and
we arrive at the statement of Theorem 3.3 withU.so(2n),K.u(n), andK%M.sp~n,R!.

A novel feature arises in the large-N limit, where instead of one dominant saddle-point
supermanifold there now emergetwo. One of them is the orbit with respect to the adjoint action of
Osp(2nu2n) onQ05 iv1BuF^sz^1n as before, and the other one is the orbit of

Q15 ivEBB^ sz^1n1 ivEFF^ sz^ S E112(
i52

n

Eii D .
@The orbits ofQ0 andQ1 are disconnected because the Weyl group of so(2n) is ‘‘too small.’’#
Consequently, the right-hand side of Theorem 3.4 is replaced by a sum of two terms, one for each
of the two saddle-point supermanifolds. The integral is over a Riemannian symmetric superspace
of typeCIuDIII (m5n) in both cases.
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B. Class CI

Let V5C2^CN carry a Hermitian inner product~as always!, and consider the space,P, of
self-adjoint HamiltoniansHPEnd(V) of the form

H5HT52CHTC 215S a b

b 2aD , where C5 isy^1N5S 0 1N

21N 0 D .
TheN3N matricesa andb are real symmetric. It is easy to see25 that P is isomorphic to the
tangent space of the symmetric space Sp(N)/U(N) ~typeCI!. A Gaussian measuredm(H) onP is
completely specified by its first two moments,*P Tr(AH)dm(H)50 and

E
P
Tr~AH!Tr~BH!dm~H !5

v2

4N
Tr„A~B1BT!2AC ~B1BT!C 21

….

To deal with the random-matrix ensemble defined by this measure, we takeW5C1u1
^C2^C2^Cn.

RecallcPHoml(W,V) andc̃ P Homl̃(V,W). The symmetries ofH are copied tocc̃ by imposing
the linear conditions

c5C c̃ Tg21, c̃52gcTC 21; c5c̃ Tt21, c̃5tcT.

In order for these conditions to be mutually consistent,t, gPEnd0(W) must satisfy

g5gTs, t5tTs, gt2152tg21.

Without loss, we takeg andt to be orthogonal. The consistency conditions can then be written in
the form

g25s5t2, gt1tg50.

If Gl(W).Gl(4nu4n) is the Lie supergroup of regular elements in EndL(W), the equationg25s
in conjunction with gTT5sgs means that the automorphismĝ:Gl(W)→Gl(W) defined by
ĝ(g) 5 gg21Tg21 is involutory. The same is true fort̂ defined byt̂(g) 5 tg21Tt21 and, more-
over, ĝ and t̂ commute bygt1tg50. For definiteness we take

g5EBB^ gB1EFF^ gF ,
t5EBB^ tB1EFF^ tF ,

gB5sx^ sz^1n ,
tB512^ sx^1n ,

gF5 isy^12^1n ,
tF5sz^ isy^1n .

~This choice is consistent withc̃B 5 bcB
† , b5sz^12^1n .! Let

Q :5$QPEndL~W!uQ52gQTg2151tQTt21%

be the subspace distinguished by the symmetry properties ofc̃c. The group Gl(W) acts onQ by
Q°gQg21. We now ask what is the subgroupGL of Gl(W) that leaves the symmetries ofQ
invariant @the normalizer ofQ in Gl(W)#.

Lemma 4.1: GL is isomorphic to Osp(2nu2n)3Osp(2nu2n).
Proof: The conditions ongPGL can be phrased as follows:

g5gggT, t5gtgT.

Equivalently,GL can be described as the simultaneous ‘‘fixed point set’’45 of the involutory
automorphismsĝ and t̂. We first describe the fixed point set ofĝ+ t̂, which acts by
(ĝ+ t̂)(g)5ege21, wheree52igt21. From the explicit expressione51BuF^ sx^ sy^1n we see
that e has 4n eigenvalues equal to11, 4n eigenvalues equal to21, and these are equally
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distributed over the bosonic and fermionic subspaces. Hence the subgroup of Gl(W) fixed by ĝ+ t̂
is isomorphic to G13G2 , where G1.Gl(2nu2n).G2 . Denote the embedding
G13G2→Gl(W) by w(g1 ,g2)5g. The groupGL is the fixed point set oft̂ ~or, equivalently, of
ĝ! in w(G13G2) @t̂ commutes withĝ+ t̂ and therefore takesw(G13G2) into itself#. Note
et52te, e21T 5 2e, and forgPw(G13G2) do the following little calculation:

et̂~g!5etg21Tt2152teg21Tt215t~eg!21Tt215 t̂~eg!.

Combining this withew(g1 ,g2)5w(g1 ,2g2) one infers thatt̂ acting onw(G13G2) is of the
form t̂w(g1 ,g2)5w„t̂1(g1),t̂2(g2)…. By a short calculation~work in an eigenbasis ofe! one
sees that the involutory automorphismst̂ i : Gl(2nu2n)→Gl(2nu2n) ~i56! are expressed by
t̂ i(g) 5 t ig

21Tt i
21 with supersymmetrict i(t i 5 t i

Ts). It follows thatt̂ i fixes an orthosymplectic
subgroup ofGi.Gl(2nu2n), soGL.Osp(2nu2n)3Osp(2nu2n), as claimed.

Corollary 4.2:The spaceQ is isomorphic to the complement of osp(2nu2n)%osp(2nu2n) in
osp(4nu4n).

Proof: The solution space in EndL(W) of Q52gQTg21 is an osp(4nu4n) algebra. Imple-
menting the second conditionQ51tQTt21 amounts to removing from osp(4nu4n) the subalge-
bra fixed byX52tXTt21. By linearization of the conditionsg5ĝ(g)5 t̂(g), this subalgebra is
identified as Lie~GL!.osp(2nu2n)%osp(2nu2n). j

The Gaussian integral identity~10! continues to hold, albeit with a different value ofc51/4.
The proof is essentially the same as before.

SinceQ is not a Lie algebra, the description of the correct choice of integration domain for the
auxiliary variableQ is more complicated than before. In the FF sector we takeU: 5 $QFF

P QFFuQFF 5 2QFF
† %. By Corollary 4.2, sp(2n).„sp(n)%sp(n)…%U. To deal with the BB sector

we introduce the spaces

G5$XPgl~2n,C!uX52gBX
TgB

2152tBX
TtB

2152bX†b21%,

M5$YPG uY52bYb21%, P65$XPQBBuX52bX†b2156bXb21%,

whereb5sz^12^1n . The Lie algebraG is a noncompact real form of the BB part of Lie~GL!.
By bPiP1 and the commutation relations@M,P1#,P2 and@M,P2#,P1, we have an embed-
ding,

fb :P
13M→QBB5P C

11P C
2 ,

~X,Y!°b3~X1ead~Y!b!.

Similar considerations as in Sec. III E show that all integrals are rendered convergent by the
choice of integration domainfb~P

13M!3U ~b.0! for Q. With this choice we again arrive at
Theorem 3.3.

The large-N limit is dominated by a single saddle-point supermanifold, which can be taken as
the orbit ofQ05 ivSz ~hereSz51BuF^sz^12^1n! under the adjoint action ofGL . This orbit is
diffeomorphic toGL/HL , whereHL5$hPGLuhSzh

215Sz%. The stability groupHL can equiva-
lently be described as the fixed point set ofŜz :GL→GL , Ŝz(g)5SzgSz . By the relationsSz

5 Sz
T 5 2gSzg

21 5 tSzt
21 ~SzPQ !, the elementSz anticommutes withe52igt21, andŜz

commutes withĝ+ t̂. These relations are compatible with the existence of an embeddingf :
Osp(2nu2n)3Osp(2nu2n)→Gl(W), such that (Ŝz+f)(g1 ,g2)5f(g2 ,g1). ~Such an embed-
ding is easily constructed.! HenceHL.diag„Osp(2nu2n)3Osp(2nu2n)….Osp(2nu2n). In this
way we arrive at Theorem 3.4 withGL/HL.Osp(2nu2n), and the maximal Riemannian submani-
fold MB3MF , whereMB.SO~2n,C!/SO(2n) andMF.Sp(n) ~typeDuC!.47
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C. Class DIII

Consider forV5C2^C2^CN the linear space

P5$HPEnd~V!uH5H†52CHTC 2151T HTT 21%,

whereC5sx^12^1N and T 512^isy^1N . It has been shown25 that P is isomorphic to the
tangent space of SO(4N)/U(2N) ~a symmetric space of typeDIII !. Introducing an orthonormal
real basis ofV, we can representH by a 4N34N matrix. If C andT are given by

C5S 0 0 1N 0

0 0 0 1N

1N 0 0 0

0 1N 0 0

D , T 5S 0 1N 0 0

21N 0 0 0

0 0 0 1N

0 0 21N 0

D ,
the explicit form of such a matrix is

H5S a b c d

b† aT 2dT 2c†

c† 2dT 2aT b†

d 2c b 2a

D ,
where all entries are complexN3N matrices anda,d(b,c) are Hermitian~skew!.

The Gaussian random-matrix ensemble onP is defined by the Gaussian measuredm(H) with
vanishing first moment, and second moment,

E
P
Tr~AH!Tr~BH!dm~H !5

v2

4N
Tr„AB2ACBTC 211AT BTT 212A~C T !B~C T !21

….

Given the auxiliary spaceW:5C1u1
^C2^C2^Cn, we impose on cPHoml(W,V), c̃

P Homl̃(V,W) the linear conditions

c5gc̃ TC 21,

c5tc̃ TT 21,

c̃52C cTg21,

c̃5T cTt21,

with some invertible orthogonal elementsg,t of End0(W). Consistency requiresg252s5t2 and
gt1tg50. A possible choice is

g5~EBB^ isy^121EFF^ sx^ sz! ^1n ,

t5~EBB^ sz^ isy1EFF^12^ sx! ^1n .

Because this differs from classCI only by the exchange of the bosonic and fermionic subspaces,
the following development closely parallels that forCI, and we arrive at another variant of
Theorem 3.3.

The large-N limit is dominated by a pair of complex-analytic saddle-point supermanifolds,
each being isomorphic to Osp(2nu2n). @The reason why there are two is that O~2n,C! has two
connected components.# The first one is the orbit under Ad~GL! of Q05 iv1BuF^sz^12^1n , and
the second one is the orbit of
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Q15 ivS EBB^ sz^12^1n1EFF^ S 12^ sx^E111sz^12^ (
i52

n

Eii D D .
Both saddle-point supermanifolds are Riemannian symmetric superspaces of typeCuD with di-
mensionalitym52n ~Table II!.47

D. Class A III

The tangent space at the origin of U(p,q)/U(p)3U(q) consists of the matrices of the form

H5S 0 Z

Z† 0D ,
where Z is complex and has dimensionp3q. Such matrices are equivalently described by
H†5H52PHP21, whereP5diag(1p ,21q). For simplicity, we will consider only the case
p5q ~the general case has not yet been analyzed in the present formalism!. The Gaussian en-
semble of random matricesH is taken to have second moment

E Tr~AH!Tr~BH!dm~H !5
v2

2N
Tr~AB2APBP21!.

The physical space isV5C2^Cp, and the auxiliary space isW5C1u1
^C2^Cn. The definition ofv

is unchanged from classC. To implement the symmetry conditioncc̃52Pcc̃P21 we set

c5 iPcp21, c̃5 ipc̃P21,

wherep51BuF^isy^1n . This choice is consistent with the relationc̃B 5 bcB
† which ensures

convergence of the~c,c̃! integration. The auxiliary variableQ ranges over the complex-analytic
superspace

Q5$QPEndL~W!uQ52pQp21%,

and the normalizer ofQ in Gl(W) is

GL5$gPGl~W!ug5pgp21%.Gl~nun!3Gl~nun!.

For the integration domainU in the FF sector we again take the anti-Hermitian matrices inQFF.
In the BB sector we set

M5$YPEndC~WB!uY5pYp2152bYb215Y†%,

P65$XPEndC~WB!uX52pXp2156bXb2157X†%.

The treatment of Sec. III E then goes through as before, leading again to Theorem 3.3.
There is a single dominant saddle-point supermanifold, which is the Ad~GL! orbit of

Q05 iv1BuF^sz^1n and is diffeomorphic toGL/HL.Gl(nun). The integration domainMB3MF
is given byMB.Gl~n,C!/U(n) andMF5U(n). The invariant Berezin measure of this Riemannian
symmetric superspace of typeAuA was discussed forn51 in Example 2.4.
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E. Class BDI

The form of the random-matrix HamiltonianH for classBDI can be obtained from the
preceding case by taking thep3q matrix Z to be real. Put in formulas,H is subject to
H†5H5HT52PHP21. We again make the restriction top5q. The basic correlation law of the
Gaussian ensemble is

E Tr~AH!Tr~BH!dm~H !5
v2

4N
Tr„A~B1BT!2AP ~B1BT!P21

….

To accommodate the extra symmetryH5HT, auxiliary space is extended toW5C1u1
^C2^C2^Cn.

The symmetry conditions onc, c̃ are

c5 iPcp21, c̃5 ipc̃P21; c5c̃Tt21, c̃5tcT,

wherep51BuF^ isy^12^1n andt5~EBB^12^sx1EFF^12^isy!^1n. The auxiliary integration
space,

Q5$QPEndL~W!uQ52pQp2151tQTt21%,

has the symmetry group~or normalizer!

GL5$gPGl~W!ug5pgp215tg21Tt21%.Gl~2nu2n!.

For the integration domainU in the FF sector we once again take the anti-Hermitian matrices in
QFF. In the BB sector we set

M5$YPEndC~WB!uY5pYp2152tYTt2152bYb215Y†%,

P65$XPEndC~WB!uX52pXp2151tXTt2156bXb2157X†%.

The treatment of Sec. III E then goes through with modifications as in Sec. IV B.
There is a single dominant saddle-point supermanifold, which is the Ad~GL! orbit of

Q05 iv1BuF^ sz^12^1n and is diffeomorphic toGL/HL.Gl(2nu2n)/Osp(2nu2n). The integra-
tion domainMB3MF is given byMB.Gl~2n,R!/O(2n) andMF5U(2n)/Sp(n). This is a Rie-
mannian symmetric superspace of typeAIuAII with m52n ~Table II!.

F. Class CII

The tangent space at the origin of Sp(N,N)/Sp(N)3Sp(N) ~a noncompact symmetric space of
typeCII ! can be described by the equations

H†5H52PHP2152T HTT 21,

whereP5sz^12^1N andT 512^ isy^1N ~the physical space isV5C2^C2^CN!. The explicit
form of the matrices is

H5S 0 0 a b

0 0 2b̄ ā

a† 2bT 0 0

b† aT 0 0

D ,
if
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P5S 1N 0 0 0

0 1N 0 0

0 0 21N 0

0 0 0 21N

D
and

T 5S 0 1N 0 0

21N 0 0 0

0 0 0 1N

0 0 21N 0

D ,
wherea and b are complex and have dimensionN3N. The correlation law of the Gaussian
random-matrix ensemble of typeCII is

E Tr~AH!Tr~BH!dm~H !5
v2

4N
Tr~A2PAP21!~B2T BTT 21!.

As before,W5C1u1
^C2^C2^Cn. The symmetry conditions onc, c̃ are

c5 iPcp21, c̃5 ipc̃P21; c5T c̃Tt21, c̃5tcTT 21,

wherep51BuF^ isy^12^1n and t5~EBB^12^isy1EFF^12^sx!^1n . This differs from class
BDI only by the exchange of the bosonic and fermionic subspaces. Once more we arrive at
another version of Theorem 3.3.

There is only one complex-analytic supermanifold of saddle-points that dominates forN→`.
It is isomorphic to that for classBDI. The integration domainMB3MF changes to
MB.U*(2n)/Sp(n) andMF.U(2n)/O(2n) @not U(2n)/SO(2n)#. This is a Riemannian symmet-
ric superspace of typeAII uAI with m52n ~Table II!. The group U*(2n) is defined as the non-
compact real subgroup of Gl~2n,C! fixed byg5C ḡC 21, whereC5isy^1n .

G. Class A

This class forn51 was used to illustrate our general strategy in Sec. III A. Let us now do the
case of arbitraryn,

Zn~a1 ,...,an ;b1 ,...,bn!5E
i u~N!

)
i51

n

DetSH2b i

H2a i
Ddm~H !.

The classes treated so far~C,D,CI,DIII,AIII,BDI,CII ! all share one feature, namely the existence
of a particle-hole type of symmetry~H52PHP21 orH52CHTC 21!, which allows us to restrict
all ai to one-half of the complex plane. Such a symmetry is absent for the Wigner–Dyson
symmetry classesA, AI, andAII, which results in a somewhat different scenario, as it now matters
how manyai lie above or below the real axis. For definiteness let

Im a i,0 ~ i51,...,nA!, Im a j.0 ~ j5nA11,...,n!,

and setnR5n2nA .
Auxiliary space is taken to beW5C1u1

^Cn. The definition ofv changes to

5014 Martin R. Zirnbauer: Riemannian symmetric superspaces and their origin

J. Math. Phys., Vol. 37, No. 10, October 1996

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



v5EBB^ (
i51

n

a iEii1EFF^ (
j51

n

b jEj j .

Recall that the imaginary parts of theai steer the convergence of the~c,c̃! integration. Sincev
couples toc,c̃ by exp2i STrW vc̃c, convergence forces us to takec̃B 5 bcB

† , where

b5(
i51

nA

Eii2 (
j5nA11

n

Ej j .

There are no further constraints onc, c̃, or Q. Thus the complex-analytic auxiliary integration
space isQ5EndL(W), andGL5Gl(W).Gl(nun).

The integration domain forQ in the FF sector is taken to be the anti-Hermitian matrices
U5u(n). In the BB sector we introduce

G5$XPgl~n,C!uX52bX†b21%, K5$XPG uX5bXb21%.

The Lie algebraG is a noncompact real form u(nA ,nR) of gl~n,C!, andK5u(nA)%u(nR) is a
maximal compact subalgebra. The spaceM is defined by the Cartan decompositionG5K%M.
The integration domain forQBB is taken to beifb~K3M!, wherefb(X,Y) 5 b(X 1 ead(Y)b)
~b.0!. This gives Theorem 3.3.

By simple power counting, the limitN→` is again dominated by a single complex-analytic
saddle-point supermanifold, which is the Ad~GL!-orbit of Q05 iv1BuF^b. The stability groupHL

of Q0 is HL5Gl(nAunA)3Gl(nRunR), so

Ad~GL!Q0.GL /HL5Gl~nun!/Gl~nAunA!3Gl~nRunR!.

The intersection of Ad(GL)Q0 with ifv~K3M!3U is MB3MF , where
MB.U(nA ,nR)U(nA)3U(nR) andMF.U(nA1nR)/U(nA)3U(nR). This is a Riemannian sym-
metric superspace of typeAIII uAIII with m15n15nA andm25n25nR ~see Table II!.

H. Class A I

The tangent space of U(N)/O(N) is the same as~i times! the real symmetric matrices
H†5H5HT. It differs from the tangent space of SU(N)/SO(N), a symmetric space of typeAI in
an inessential way~just remove the multiples of the unit matrix!. The Gaussian ensemble over the
real symmetric matrices has its second moment given by

E Tr~AH!Tr~BH!dm~H !5
v2

2N
Tr~AB1ABT!.

This ensemble is related to typeA in the same way that typeCI is related to typeC.
To implement the symmetryH5HT we setW5C1u1

^C2^Cn and requirec5c̃Tt21, c̃5tcT,
wheret5~EBB^sx1EFF^isy!^1n . The auxiliary integration space,

Q5$QPEndL~W!uQ5tQTt21%,

has the symmetry group

GL5$gPGl~W!ug5tg21Tt21%.Osp~2nu2n!.

The intersectionU of the FF sectorQFF with the anti-Hermitian matrices is given by sp(n)%U

5u(2n). In theBB sector we put
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M5$YPEndC~WB!uY52tYTt2152bYb215Y†%,

P65$XPEndC~WB!uX51tXTt2156bXb2157X†%,

which leads to yet another version of Theorem 3.3.
The large-N limit is controlled by a single complex-analytic saddle-point supermanifold

Ad(GL)Q0.GL/HL , whereHL.Osp(2nAu2nA)3Osp(2nRu2nR) is the stability group ofQ0

5 iv1BuF ^ (( i51
nA Eii 2 ( j5nA11

n Ej j ). The intersection of Ad(GL)Q0 with the integration domain

fv~P
13M!3U is MB3MF , where MB.SO(2nA,2nR)/SO(2nA)3SO(2nR) and

MF.Sp(nA1nR)/Sp(nA)3Sp(nR). This is a Riemannian symmetric superspace of typeBDIuCII
~Table II! with m152n152nA andm252n252nR .

I. Class A II

Finally, the tangent space of U(2N)/Sp(N) @a symmetric space of typeAII, except for the
substitution SU(2N)→U(2N)# can be described as~i times! the subspace of End~C2^CN! fixed by
the linear equationsH†5H5T HTT 21, T 5isy^1N . The explicit matrix form ofH is

H5S a b

b† aTD ,
whereb is skew anda is Hermitian.

The conditions c5T c̃Tt21 and c̃5tcTT 21 are mutually consistent if, say,
t5~EBB^isy1EFF^sx!^1n . The rest of the manipulations leading up to Theorem 3.3 are the
same as for classAI, except for the exchange of the bosonic and fermionic subspaces~tB↔tF!.
The large-N limit is controlled by a single saddle-point supermanifold~GL/HL ,MB3MF!, where

GL /HL5Osp~2nu2n!/Osp~2nAu2nA!3Osp~2nRu2nR!,

MB5Sp~nA ,nR!/Sp~nA!3Sp~nR!,

MF5SO~2nA12nR!/SO~2nA!3SO~2nR!,

which is a Riemannian symmetric superspace of typeCII uBDI ~Table II! with m152n152nA and
m252n252nR .

V. SUMMARY

When Dyson realized46 that the random-matrix ensembles he had introduced were based on
the symmetric spaces of typeA, AI, andAII, he wrote: ‘‘The proof of~the! Theorem... is a mere
verification. It would be highly desirable to find a more illuminating proof, in which the appear-
ance of the~final result! might be related directly to the structure of the symmetric space...’’. The
advent of the supersymmetry method of Efetov and others has improved the situation lamented by
Dyson. The present work takes the Gaussian random-matrix ensembles defined over Cartan’s large
families of symmetric spaces and, going to the limit of large matrix dimension, expresses their
spectral correlation functions as integrals over the corresponding Riemannian symmetric super-
spaces. These correspondences are summarized in Table III. The Riemannian symmetric super-
spaces that appear there all have superdimension (p,q) with p5q. We say that they are ‘‘perfectly
graded’’ or ‘‘supersymmetric.’’ An interesting question for future mathematical research is
whether our procedure can be optimized by reducing it to a computation involving no more than
the root system of the symmetric space, thereby obviating the space- and time-consuming need to
distinguish cases.~Although I have treated all ten cases separately, it is possible, following
Efetov,3 to shorten the derivation by starting from a large ‘‘master ensemble’’ of highest symme-
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try and then reducing it by the addition of symmetry-breaking terms. I chose not to follow this
route as it involves handling large tensor products, which makes the computations less transparent
and the identification of the spaces involved more difficult.!

The great strength of the supersymmetry method, as compared to other methods of meso-
scopic physics, stems from the fact that it easily extends beyond the universal random-matrix limit
to diffusive and localized systems. What one obtains for these more general systems are field
theories of the nonlinears model type, with fields that take values in a Riemannian symmetric
superspace. The method also extends beyond spectral correlations and allows the calculation of
wave function statistics and of transport coefficients such as the electrical conductance~see the
literature cited in the Introduction!.

Let me end on a provocative note. Mathematicians and mathematical physicists working on
supermanifold theory have taken much guidance from developments in such esoteric subjects as
supergravity and superstring theory. Would it not be just as worthwhile to investigate the beautiful
structures outlined in the present paper, whose physical basis is not speculative but firmly estab-
lished, and which are of direct relevance to experiments that are currently being performed in
physics laboratories all over the world?
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