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Linearizing the Heisenberg equations of motion around the ground state of an
interacting quantum many-body system, one gets a time-evolution generator in the
positive cone of a real symplectic Lie algebra. The presence of disorder in the
physical system determines a probability measure with support on this cone. The
present paper analyzes a discrete family of such measures of exponential type, and
does so in an attempt to capture, by a simple random matrix model, some generic
statistical features of the characteristic frequencies of disordered bosonic quasipar-
ticle systems. The level correlation functions of the said measures are shown to be
those of a determinantal process, and the kernel of the process is expressed as a
sum of biorthogonal polynomials. While the correlations in the bulk scaling limit
are in accord with sine-kernel or Gaussian Unitary Ensemble universality, at the
low-frequency end of the spectrum an unusual type of scaling behavior is found.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2356798�

I. INTRODUCTION

Perturbing the ground state of an interacting quantum many-body system and linearizing the
Heisenberg equations of motion for the boson Fock operators, one faces the standard problem of
small oscillations. Concrete examples are furnished by the vibrational modes of a solid, the spin
waves in a magnet, the electromagnetic modes in an optical medium, and the oscillations of the
superfluid density of a Bose–Einstein condensate. Common to these excitations is that they
second-quantize as bosons or bosonic quasiparticles.

Adding some amount of disorder to the system, one may ask: what are the statistical features
of the excitation spectrum and, in particular, which of these features �if any� reflect the bosonic
nature of the quasiparticle excitations? Is there some kind of universality akin to the Wigner–
Dyson universality known from other disordered systems? If so, what are the universal laws, and
what is the role of symmetry in determining these laws?

In the parallel case of fermionic quasiparticles the situation is now fairly well understood. If
the system is of metallic type and in the ergodic limit, the statistical behavior at high energies is
in accord with the universal laws of Wigner–Dyson statistics. For low excitation energies, how-
ever, the canonical anticommutation relations obeyed by the fermion operators make themselves
felt: they constrain the form of the Hamiltonian matrix and thus give rise to several new univer-
sality classes beyond Dyson’s threefold way.1 Some of these are realized by chiral Dirac fermions
in a random gauge field,2 others by quasiparticles in disordered gapless superconductors.3,4 A
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complete symmetry classification of quadratic fermion Hamiltonians has been carried out,5 and the
role of Riemannian symmetric spaces and superspaces in providing an effective description has
been emphasized.6,7

Progress has been slower for bosonic systems, and so for good reason, as these are set apart
by several distinctive features from other random problems studied and solved in the past. For one
thing, in the case of bosons it makes little sense to choose—as one often does for fermions—the
matrix elements of the quasiparticle Hamiltonian as independent and identically distributed ran-
dom variables. In fact, most of the boson Hamiltonians produced in such a manner would generate
runaway dynamics rather than oscillatory motion around a stable ground state. In the case of
bosons one therefore has to pay attention to the fact that the matrix elements depend in a com-
plicated way on the ground state of the many-boson system and, hence, on the disorder of the
microscopic parent problem.8,9 As a technical consequence, a direct analog of the so-called Gauss-
ian Ensembles, which were pivotal in initiating the Wigner–Dyson theory and establishing its
universal statistics, is unavailable in the context of bosons.

For another complication, low-frequency bosons are usually insensitive to weak disorder.
Many of the excitations listed above are Goldstone bosons associated with a spontaneously broken
symmetry, and for such excitations low frequency is tantamount to low wave number, or large
wavelength, which causes the scattering by disorder to be suppressed, as the disorder is effectively
seen only on average over regions of size given by the large wavelength. Thus the disorder
averages out and becomes less effective, and hence, the behavior of weakly disordered Goldstone
bosons tends to be system specific. �Of course this still leaves it possible for weakly disordered
bosons of non-Goldstone type to exhibit universal statistics.8,9� In order for any universality to set
in, the disorder strength often has to be so large that standard calculational tools such as the
impurity diagram technique fail to apply.

In the present paper we are going to introduce and completely solve a simple random matrix
model of disordered bosonic quasiparticles, which we believe to be most closely analogous to the
Wigner–Dyson Gaussian Ensembles while retaining the crucial features of bosonic statistics and
stability of the motion. In a follow-up paper we will investigate the question whether this simple
model might be representative of a whole universality class of related problems.

To formulate the model, let qj , pj �j=1, . . . ,N� be a canonical set of position and momentum
operators, and consider their linearized Heisenberg equations of motion in the most general form

q̇j = �
i=1

N

�qiAij + piCij�, − ṗj = �
i=1

N

�qiBij + piAji� ,

where Bij =Bji, Cij =Cji, and Aij are real numbers. If the system was invariant under time reversal
�qj �qj , pj �−pj�, the coefficients Aij would have to be zero, but we here consider the generic
case without symmetries. The criterion for stability of the dynamics is that the stability matrix be
positive

h ª �B A

At C
� � 0.

Assuming ht=h�0, the generator of the Heisenberg time evolution

X ª �A − B

C − At � ,

has eigenvalues that come as imaginary pairs ±i� j where � j �0 �j=1, . . . ,N� are the characteristic
frequencies �or single-boson energies� of the small-amplitude motion. In a classical setting one
would introduce the generator X as the symplectic gradient of the Hamiltonian function linearized
at a stable equilibrium point of the classical flow.

The natural transformation group of the problem at hand is the real symplectic group in 2N
dimensions, Sp2N�R�, acting by linear canonical transformations on the operators qj , pj and by
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conjugation on the generator X. We can now explain one of the distinctive features of the present
problem: when formulating the Gaussian Ensembles of the Wigner–Dyson theory one makes the
postulate that the transformation group of the problem �ON, UN, or USp2N, as the case may be� also
be the symmetry group of the chosen probability measure, whereas in our case no such simplifi-
cation is possible. Indeed, Sp2N�R� is noncompact, and a probability measure d� cannot be
invariant under a noncompact group action and at the same time have total mass � d�=1.

One is therefore looking for some construction principle other than symmetry. Our key here is
the positivity of the real symmetric stability matrix h: a natural way of building positive real
symmetric matrices h is by adding a sufficient number of rank-one projectors with positive
weights. Equivalently, we may put

hij = �
�=1

M

vi�v j� �i, j = 1, . . . ,2N� �1.1�

for some set of real numbers vi�. We now consider the vi� as the fundamental variables, and
choose them to be independent and normal �or Gaussian� distributed random variables with zero
mean and variance �−1. Then we use Eq. �1.1� to push forward the normal distribution for the vi�

to a probability distribution d��h� for h �and, hence, for X�. If M �2N, the result is

d��h� � e−�1/2��TrhDet�h��1/2��l−1�	
i�j

dhij, l = M − 2N � 0, �1.2�

with the domain for h still defined by h�0. The probability distribution �1.2� is the object of study
of this paper.

We now give a summary of the contents and the results of the paper. After collecting some
basic facts from symplectic linear algebra in Sec. II, we reduce d��h� in Sec. III to a probability
distribution on the space of characteristic frequencies �1 , . . . ,�N �the positive eigenvalues of −iX�,
and find this to be

d�N,l��1, . . . ,�N� = cN,l���	
i	j

��i − � j���i
2 − � j

2�	
k=1

N

�k
l e−r�kd�k. �1.3�

Using the method of biorthogonal polynomials we show in Sec. V C that the n-level correlation
functions of this probability distribution are of determinant type and are completely determined in
the usual way—see Eq. �5.19�—by a certain kernel KN�� , �̃� given as a sum over biorthogonal
polynomials. We compute the large-N asymptotics of this kernel in the bulk of the spectrum �in
Sec. V D� and at the “hard” edge �=0 �Sec. V E�, using a contour integral representation of the
biorthogonal polynomials �Sec. V C�. In the former case we establish the scaling limit

� lim
N→


KN�Nx/� + �,Nx/� + �̃� =
sin���
�x��� − �̃��

��� − �̃�
e−r�x���−�̃�, �1.4�

which is independent of l. The function �
�x� of the scaling variable x=�� /N is the large-N limit
of the level density. Viewing ��
�x� as the imaginary part of a Green’s function lim→0+g�x
+ i�, the function r�x� is the real part. We compute �
�x� by two independent methods �from a
variational calculation in Sec. IV, and from biorthogonal polynomials in Sec. V D�, with the result
being

�
�x� =
�

2�
�x/b�−1/3��1 + 
1 − x2/b2�1/3 − �1 − 
1 − x2/b2�1/3� �0 	 x � b = 3
3� . �1.5�

Apart from the last factor, which is irrelevant since it cancels on passing to the level correlation
functions, the right-hand side of Eq. �1.4� is the famous sine kernel known from systems with
unitary symmetry. Thus we recover Wigner–Dyson universality of the class of the Gaussian
Unitary Ensemble �GUE� at bulk frequencies.
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At low frequencies ��N−1/2 we find convergence to an unusual kind of scaling limit

lim
N→


N−1/2KN�N−1/2y1/�,N−1/2y2/�� =
�2

2�2�
iR+

du
U1

dv
v

e−y1/u+y2/v�v/u�l e
u2−v2

− 1

u2 − v2 , �1.6�

where U1 denotes the unit circle in C, and iR+ is any axis in the right half plane parallel to the
imaginary axis. The result �1.6� is reminiscent of formulas obtained by Efetov’s supersymmetry
method, with u and v playing the role of radial polar coordinates of a Riemannian symmetric
superspace. We intend to elucidate this connection in a future publication.

II. THE HAMILTONIANS OF STABLE MOTIONS

Let there be some position variables q1 , . . . ,qN and canonical momenta p1 , . . . , pN, and con-
sider Hamiltonians H of the quadratic form

H =
1

2 �
i,j=1

N

�Cijpipj + Bijqiqj + Aij�qipj + pjqi�� , �2.1�

where A, B, and C are real matrices satisfying B=Bt and C=Ct. Rewriting H as

H =
1

2
�q p��A − B

C − At �� p

− q
� ,

we see that the matrix, X, of H satisfies the linear condition

XtJ + JX = 0, J = � 0 − 1N

1N 0
�, X = �A − B

C − At � . �2.2�

This is saying that X lies in sp2N�R�, the Lie algebra of the real symplectic group defined by

Sp2N�R� = �g � GL2N�R��gtJg = J� .

A matrix X�sp2N�R� need not be diagonalizable �e.g., the generator of free motion, A=B=0 and
C=1N, is not�; and even if it is, the eigenvalues will in general be complex.

We now impose the condition

h ª �B A

At C
� � 0, �2.3�

i.e., we require all eigenvalues of the real symmetric matrix h to be positive. The corresponding
domain in sp2N�R� will be denoted by E0:

E0
ª �X � sp2N�R��X = hJ,h = ht � 0� . �2.4�

Although the eigenvalues of h have no direct relation to the dynamics of the system, positivity of
h ensures that the motion generated by the Hamiltonian H is stable, or “elliptic.” As a consequence
of ellipticity, there exists some linear canonical transformation �q ,p�→ �Q ,P� which takes the
Hamiltonian to a sum of harmonic oscillators

H =
1

2�
i=1

N

�Pi
2 + �i

2Qi
2� ,

with �i
2�0. Put differently, for X�E0 one can always find a symplectic transformation g

�Sp2N�R� that conjugates X to quasidiagonal form
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X = g�g−1, � = �0 − �

� 0
�, � = diag��1,�2, . . . ,�N� , �2.5�

with real and positive �i �i=1, . . . ,N�.
All of the discussion below will be based on the elliptic domain E0. Let us therefore collect

some of its mathematical properties. First of all, if X is in E0, then so is its conjugate gXg−1 by any
element g�Sp2N�R�. Thus E0 is invariant under the action of Sp2N�R� on E0 by conjugation.
Second, let t denote the Abelian algebra of block-diagonal matrices of the form of � in Eq. �2.5�
but with diagonal elements �i that are any real numbers �not necessarily positive�. Let t+� t be the
subset of block-diagonal � with positive �i. Then, as we said earlier, every X�E0 is conjugate to
a unique �� t+ by some g�Sp2N�R�. Third, introducing Tªexp�t�, which is an N-dimensional
compact torus, T��S1�N, let G /T be the quotient of G�Sp2N�R� by the right action of T. Then the
mapping

�G/T� � t+ → E0, �gT,�� � g�g−1 �2.6�

�the reverse of the process of quasidiagonalization�, is a smooth bijection.
We are stating these facts without proof, as they are standard facts of symplectic linear

algebra.

III. PROBABILITY MEASURE

By placing a probability distribution on the elliptic domain E0, one gets a random matrix
model for disordered bosonic quasiparticles. We are then interested in the statistics of the charac-
teristic frequencies or levels �i.

It is well known that in the Wigner–Dyson situation of random Hermitian or random real
symmetric matrices, where the symmetry group is compact, the level correlation functions exhibit
universal behavior in a suitable scaling limit. One may therefore ask whether a similar scenario—
leading to universal laws, possibly of a new kind—might be at work in the case being considered.

To answer this question we need to investigate a class of probability distributions on E0 as
wide as possible. As a first step, the present paper deals with a family of well motivated distribu-
tions which are easy to analyze.

A. Choice of measure

Coming from the standard Wigner–Dyson situation with a compact symmetry group, one
might be inclined to try and consider a Gaussian distribution

P�X�dX�
?

e−TrX2
dX ,

where dX is a Lebesgue measure for E0:

dX ª 	
i,j

dAij	
i�j

dBijdCij . �3.1�

However, such a distribution has infinite mass, since it is invariant under the action X�gXg−1 by
the noncompact group Sp2N�R�, and it therefore cannot be normalized to be a probability measure.

Staying within the class of Gaussian distributions, a better choice of distribution function is

P�X = Jh� � e−�Trh/2−�Trh2
= e−�Tr�J−1X�/2−�Tr�J−1X�2

�3.2�

for some positive parameters � ,�. Because of the presence of J−1 under the trace, this distribution
function is invariant under conjugation X�gXg−1 only if g�Sp2N�R� satisfies the additional
condition g−1Jg=J. Combining the two conditions, gtJg=J=g−1Jg, one sees that the invariance
group of the function P�X� in Eq. �3.2� is the intersection of the real symplectic and orthogonal
groups in 2N dimensions
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K = Sp2N�R� � SO2N�R� . �3.3�

This group K is isomorphic to UN, the group of unitary transformations in N complex dimensions.
Indeed, changing from the symplectic basis �q1 , . . . ,qN , p1 , . . . , pN� to the oscillator basis

�a1, . . . ,aN,a1
†, . . . ,aN

† �, aj =
1

2

�qj + ipj�, aj
† =

1

2

�qj − ipj� ,

one finds that K is the subgroup of canonical transformations that do not mix the lowering
operators �aj� with the raising operators �aj

†�. Moreover, UN�K�Sp2N�R� is known to be a
maximal compact subgroup. It therefore is the biggest symmetry group possible in our problem.

In the sequel we will consider Eq. �3.2� with �=0. Thus we take our probability distribution
to be

P�X�dX ª cN���e−�Tr�J−1X�/2dX , �3.4�

with the normalization constant cN��� chosen in such a way that �E0P�X�dX=1. Further motivation
for this choice of distribution was put forth in the introduction �Sec. I�.

B. Polar decomposition and reduction

Let now F�X�=F�gXg−1� be some function on E0 which is radial, i.e., invariant under con-
jugation by every element g�Sp2N�R�. Given such a function F, which depends only on the
eigenfrequencies �1 , . . . ,�N of X, we wish to take the expectation of F with respect to the
probability measure P�X�dX:

�F� ª �
E

0
F�X�P�X�dX . �3.5�

The problem of computing such expectations is best tackled by using the polar decomposition
E0� t+� �G /T� which is given by quasidiagonalization of X; see Eq. �2.6�. Inserting that decom-
position into Eq. �3.5� one has

�F� = �
t+

��
G/T

P�g�g−1�dgT�F���j���d�, d� = d�1d�2 ¯ d�N, �3.6�

where gT is a G-invariant measure for G /T, and j��� is the Jacobian of the change of variables
X=g�g−1.

Let us calculate this Jacobian. Differentiating the polar coordinate mapping Eq. �2.6� we get

��g�g−1� = g��� + �g−1�g,���g−1.

The Jacobian we are seeking is the product of all nonzero eigenvalues of the linear operator
X� �X ,��. These eigenvalues are called the roots of the pair �sp2N�R� , t�. They are

±��i + � j� �i � j�, ± ��i − � j� �i 	 j� ,

each with multiplicity one. Thus, by taking the product of all nonvanishing roots

j���d� = 	
i	j

��i
2 − � j

2�2	
k=1

N

�2�k�2d�k. �3.7�

To complete the polar integration formula �3.6� we need �G/TP�g�g−1�dgT. In the next sub-
section we are going to show that this integral can be calculated in closed form and depends on
�1 , . . . ,�N as
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�
G/T

P�g�g−1�dgT � 	
i	j

��i + � j�−1	
k=1

N

�k
−1e−��k. �3.8�

Thus, in total, the expectation of a radial observable F�X�=F����F��1 , . . . ,�N� becomes

�F� = c̃N����
R+

N
F��1, . . . ,�N�	

i	j

��i − � j���i
2 − � j

2�	
k=1

N

e−��k�kd�k, �3.9�

where c̃N��� is another normalization constant. This expectation, for the special choices of F that
give the level correlation functions, will be calculated in Sec. V of the paper.

C. Computation of the integral „3.8…

We now establish Eq. �3.8�. Omitting a normalization constant, we denote the integral on the
left-hand side of Eq. �3.8� by

I��� ª �
G/T

e−�Tr�J−1g�g−1�/2dgT. �3.10�

What makes this integral computable in closed form is that J lies in sp2N�R� and ��g�g−1 is the
adjoint action of G=Sp2N�R� on its Lie algebra. These circumstances place the integral in the class
of integrals of Harish–Chandra–Itzykson–Zuber type, which are covered by the Duistermaat–
Heckman theorem and its generalizations. In the present case, the integral can be computed in a
particularly simple manner, as follows.

Let dg and dt be Haar measures for G and T, respectively, with dg=dgTdt and �Tdt=vol�T�.
Our first step is to switch from G /T to integrating over the full symplectic group G:

I��� =
1

vol�T��G

e−�Tr�J−1g�g−1�/2dg .

Next we use that dg is invariant under inversion, g�g−1. After this transformation the inte-
grand is expressed in terms of the combination gJ−1g−1=−gJg−1. Since kJk−1=J for k�K�UN,
we can push down the resulting integral over G to an integral over the quotient space G /K. Let
dgK and dk be invariant resp. Haar measures for G /K and K so that dg=dgKdk. Then

I��� =
vol�K�
vol�T� �G/K

e�Tr��gJg−1�/2dgK, vol�K� = �
K

dk . �3.11�

The homogeneous space G /K�Sp2N�R� /UN has the salient feature of being a noncompact
symmetric space of Hermitian type. Such spaces carry the structure of a Kähler manifold, which
means that G /K comes with a non-degenerate, closed, and G-invariant two-form �the Kähler form
of G /K�. Writing gJg−1

¬Q this is the form

� = Tr�QdQ ∧ dQ� . �3.12�

Notice that dimRG /K=N�2N+1�−N2=N�N+1�. Raising � to its �1/2�N�N+1�th exterior power
one obtains a top-dimensional form, ��1/2�N�N+1�, which is still G-invariant and nonzero. Since G /K
is homogeneous, there can be at most one such form up to multiplication by scalars. Therefore,
there exists some �nonzero� constant such that

dgK = const ��1/2�N�N+1�. �3.13�

By Darboux’s theorem one can find local symplectic coordinates for G /K that bring � into
canonical form. While this fact by itself would not be of much practical help, in the present case
such coordinates exist globally and, moreover, they can be chosen in such a way that Tr��gJg−1�
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depends on them quadratically.
To describe these perfect coordinates, consider the space of complex symmetric N�N matri-

ces, Sym�CN�, which has dimension �1/2�N�N+1� over C and thus shares with G /K the dimension
N�N+1� over R. With every Z�Sym�CN� associate a positive Hermitian 2N�2N matrix g̃ by

g̃ = g̃�Z,Z†� = ��1 + ZZ†�1/2 Z

Z† �1 + Z†Z�1/2 � . �3.14�

Now if S is the matrix of the unitary transformation from the real symplectic basis �pj ,qj� of
R2N to the oscillator basis �aj ,aj

†�:

S ª

1

2

� 1N i1N

− 1N i1N
� ,

then gªS−1g̃S is immediately seen to be a real matrix and, using the relation

SJS−1 = i�3, �3 = �1N 0

0 − 1N
� ,

one finds that g=S−1g̃S satisfies g†Jg=gtJg=J and hence lies in Sp2N�R�. Moreover, the reverse

correspondence k� k̃=SkS−1 is the isomorphism between K and UN discussed in the paragraph
after Eq. �3.3�; it takes k�K to the block-diagonal form

k̃ = �U 0

0 Ū
�, U � UN.

It is now clear that the mapping Sym�CN�→G /K by Z�S−1g̃�Z ,Z†�SK�gK is a bijection. Using
it to express the Kähler form � in terms of the complex symmetric matrix Z, one obtains

� = Tr�QdQ ∧ dQ� = − 4iTr��3dg̃−1 ∧ dg̃� = 8iTr�dZ ∧ dZ†� . �3.15�

Thus, the top-dimensional form ��1/2�N�N+1� is constant in Z:

��1/2�N�N+1�

�1

2
N�N + 1��!

= �8i��1/2�N�N+1�2�1/2�N�N−1�	
i�j

dZij ∧ dZ̄ij , �3.16�

and from Eq. �3.13� the invariant measure dgK is a constant multiple of the Lebesgue measure for
Sym�CN�.

Finally, from g=S−1g̃S, SJS−1=i�3, and Eq. �3.14� one has

− Tr��gJg−1� = Tr��1 + 2ZZ†� + Tr��1 + 2Z†Z�, � = diag��1, . . . ,�N� .

Our integral �3.11� now becomes a Gaussian integral

I��� = const e−��k�k� e−2�TrZ†�Z�+�Z�	
i�j

dZijdZ̄ij .

Doing this integral one immediately obtains the result for I��� stated in Eq. �3.8�.

D. Generalization

A slight generalization of Eq. �3.4� is afforded by the observation that the determinant of X in
Eq. �2.2� is always positive:
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Det�X� = Det��� = 	
k=1

N

�k
2.

Thus, by multiplying the probability measure P�X�dX by some power l−1�−1 of the positive
square root Det�X�1/2 and adjusting the normalization constant, we get another probability measure

Pl�X�dX = const Det�X��1/2��l−1�e−�1/2��Tr�J−1X�dX . �3.17�

This measure is still UN invariant. By the process of quasidiagonalization and drawing on our
results above, we push it forward to a measure for the eigenfrequencies. The result is

d�N,l��1, . . . ,�N� = cN,l���	
i	j

��i − � j�2��i + � j�	
k=1

N

�k
l e−��kd�k. �3.18�

This, for any non-negative power l�Z, is the family of probability distributions to be studied in
the present paper.

IV. LARGE-N LIMIT OF THE ONE-POINT DENSITY IN THE BULK

The one-point density ����d� is defined as the probability density for any one of the eigen-
frequencies �i to have the value of �, irrespective of what the values of the other eigenfrequencies
are; thus ���� is the function

���� ª� �
i=1

N

��� − �i�d�N,l��1, . . . ,�N� , �4.1�

which has the properties �����0 and

�
0




����d� = N . �4.2�

We are now interested in the behavior of the density function ���� in the limit of N→
. From
the expression �3.18� and experience with similar problems �see, e.g., Ref. 11�, we expect that this
limit can be obtained by maximizing the functional

F =
1

2
�

0


 �
0




ln��� − ���2�� + �������������d��d� + �
0




ln��le−�������d� �4.3�

subject to the constraint �4.2� and the condition �����0. More precisely, the limit is expected to
exist in the scaled variable xª�� /N; i.e., there should exist a certain non-negative function �
�x�
with ��
�x�dx=1 such that ���� is asymptotic to ��
��� /N�.

Varying F with respect to ���� we get

�F

�����
= �

0




�2 ln�� − ��� + ln�� + ���������d�� + l ln � − �� .

We now insert the asymptotic equality ��Nx /�����
�x� and pass to the limit N→
 in the scaling
variable x. Let supp��
�= �0,b� be the region of support of �
. Then the condition �F /�����
=N�, where � is a Lagrange multiplier for the constraint �4.2�, yields the equation
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�
0

b

�2 ln�x − x�� + ln�x + x����
�x��dx� − x = � �0 	 x 	 b� , �4.4�

which no longer depends on the parameter l. It can be shown that our functional F is convex; as
a result, the solution �
 of Eq. �4.4� exists and is unique when supplemented by the normalization
condition

�
0

b

�
�x�dx = 1. �4.5�

In the following subsections, we are going to construct the solution to the mathematical
problem posed by Eqs. �4.4� and �4.5�. It will turn out to be

�
�x� =
1

2�
�x/b�−1/3��1 + 
1 − x2/b2�1/3 − �1 − 
1 − x2/b2�1/3� �0 	 x � b = 3
3� . �4.6�

The graph of this function is plotted in Fig. 1. From the expression �4.6� the behavior near the
lower edge x=0 is

�
�x� �
1

2�
�2b/x�1/3 �0 	 x � b� ,

while close to the upper edge x=b one gets

�
�x� �
1

3�
�1 − x2/b2�1/2 �x 	 b, x → b� .

In the vicinity of the upper and lower edges there exists crossover to a fine-scale behavior that
cannot be found by the present method of maximization of the functional F. The crossover at the
upper edge involves Airy functions on a scale N1/3, which is small compared to the bulk scale N.
At the lower edge, the crossover occurs on a very fine scale, N−1/2, which is small even in
comparison with the bulk mean level spacing �which is of order N0�.

A. Method of solution „idea…

We do not know how to solve Eq. �4.4� for the unknown function �
�x� directly. Therefore, to
simplify the problem we differentiate once with respect to x to obtain the equation

FIG. 1. The graph of the function �
.
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2P�
0

b �
�x��dx�

x − x�
+ �

0

b �
�x��dx�

x + x�
= 1, �4.7�

where P means the principal value of the integral. At this stage, the value of b is unknown but
assumed to be finite.

Introducing the Green’s function �or Stieltjes transform�

g�z� ª �
0

b ��x�dx

x − z
, z � C \ �0,b� , �4.8�

and the related functions

g±�x� ª lim
�→0+

g�x ± i��, g0�x� ª − g�− x� , �4.9�

we bring Eq. �4.7� into the form

g+�x� + g−�x� + g0�x� = − 1 �0 	 x 	 b� . �4.10�

To solve this equation, we are led to do an exercise in complex analysis which is motivated as
follows.

Let w� f�w� be some meromorphic function of a complex variable w, and let the equation
z= f�w� have r simple roots w1�z�, w2�z� , . . . ,wr�z�, i.e., z= f�w1�z��= . . . = f�wr�z��. If the function
f is analytic in 1/w at w=
, these roots add up to a constant

�
i=1

r

wi�z� = const ¬ c �independent of z� . �4.11�

Indeed, if � is a closed contour encircling all of the roots in the counterclockwise sense, then

� wi��z� = � 1

f��wi�z��
=

1

2�i


�

dw

f�w� − z
= 0,

where the second equality is by the residue theorem, and the last equality follows by contracting
� to the point at infinity. Thus �wi��z�=0 and, hence, �wi�z�=const.

Equation �4.11� for r=3 looks similar to Eq. �4.10� and can, in fact, be made to look identical
to it by the following observation. Notice that the function z�g�z� defined by Eq. �4.8� is
holomorphic in the interior of the left half of the complex plane. Suppose, therefore, that we have
found a root g�z� of z= f�g�z�� which is holomorphic in the left half plane, and that g±�x�
=lim�→0+g�x± i�� are its two analytic continuations to positive real x� �0,b�. Moreover, suppose
that the function f has a reflection symmetry

f�w� = − f�2a − w� �a � C� . �4.12�

Then z�2a−g�−z� is a root of z= f�w� holomorphic in the right half plane, and from Eq. �4.11�
we infer that

g+�x� + g−�x� + �2a − g�− x�� = c .

Setting g0�x��−g�−x� this becomes the same as Eq. �4.10� if

c − 2a = − 1. �4.13�

Thus we are inspired to interpret g+, g−, and 2a+g0 as the three roots of an equation z
= f�w�. Given this interpretation, solving Eq. �4.10� amounts to finding the function f .
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B. The good function f to consider

We are looking for a certain meromorphic function f on C. By adding a point at infinity we
can view such a function f as a mapping of the Riemann sphere S2=C� �
� to itself. We want this
mapping to have degree r=3; i.e., every regular point z of f is to have three distinct preimages

f−1�z� = �w1�z�,w2�z�,w3�z�� .

Such a mapping can be presented in the general form

f��� = f
 + �
i=1

3
bi

w − ai
�4.14�

with some complex numbers ai, bi, and f
.
Let us narrow down the choice of parameters. From the normalization condition �4.5� and the

definition of g�z� in Eq. �4.8�, we have the limit zg�z�→−1 for z→
. Therefore, since f�g�z��
=z by construction, we need f�w� to have a pole at w=g�
�=0 with residue −1. So we choose
a1=0 and b1=−1. The reflection symmetry �4.12� is then implemented by setting f
=0, b3=b1,
and ai= �i−1� a for i=1,2 ,3 and some a�C. Thus

f�w� = −
1

w
+

b2

w − a
−

1

w − 2a
,

where the parameters a and b2 are still unknown.
Next observe that for a degree-r holomorphic mapping f: S2→S2, the number of singular

points, where f��w�=0, is 2r−2. Indeed, writing f as f�w�= p�w� /q�w� where p and q are poly-
nomials of degree r, one has

f��w� =
p��w�q�w� − p�w�q��w�

q�w�2 ,

the numerator of which is a polynomial of degree 2r−2 and so has 2r−2 zeros.
Thus we should expect our function �4.14� to have 2�3−2=4 singular points. The reflection

symmetry �4.12� makes for their images �f�w��C � f��w�=0� to be arranged symmetrically around
z=0. Now notice that our Green’s function g�z�, being the Stieltjes transform of �
�x� with support
�0,b�, must have singularities at z=0 and z=b. The image of the singular set had better contain
these values, and thus is determined to be �−b ,0 , +b� by reflection symmetry. Actually, since our
situation calls for f to have four singular points, the singularity at z=0 �corresponding to w=
�
must have multiplicity two. This is achieved by choosing b2=−b1−b3= +2, so that

f�w� = −
1

w
+

2

w − a
−

1

w − 2a
=

− 2a2

w�w − a��w − 2a�
,

resulting in the behavior f�w��w−3 for w→
. The singular points of f now are w=a±a /
3, and

. These correspond to z= f�w�= ±3
3/a, and 0, respectively, so we infer

b = 3
3/�a� . �4.15�

It remains to pin down the last unknown parameter a. For that purpose, recall that the sum of
the roots f−1�z�= �w1�z� ,w2�z� ,w3�z�� is a constant, c, independent of z. To determine this constant,
look at �wi�
� and use that the poles of f are at w=0, a, 2a to obtain

c = �wi�z� = �wi�
� = 3a . �4.16�

We then conclude a=−1 from Eq. �4.13�, and b=3
3 from Eq. �4.15�. In summary, the good
meromorphic function f for us to consider is
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w � f�w� =
− 2

w�w + 1��w + 2�
. �4.17�

Let us mention in passing that the idea to consider the equation z= f�w� or, equivalently

w�w + 1��w + 2� + 2/z = 0,

first came to one of us �H.-J.S.� from previous work10 on the Green’s function of the Bures
measure, whose large-N limit leads to a similar equation.

C. Solution of the problem

The situation can now be succinctly described like this: thinking of

W ª C \ �− 1 + 1/
3,− 1 − 1/
3�, Z ª �C \ �b,0,− b�� � �
� �b = 3
3� ,

as two Riemann surfaces W and Z, the function f of Eq. �4.17� gives us a holomorphic cover

f:W → Z, f−1�z� = �w1�z�,w2�z�,w3�z�� .

What is the monodromy of this cover, i.e., what happens when the locally defined functions
z�wi�z� are analytically continued around one of the singular points z=b ,0 ,−b? At the point z
=0 �or w=
� we have a cubic singularity z�w−3. Consequently, the monodromy at z=0 cyclically
permutes the roots wi�z�. Turning to z= ±b, we see that linearization z= ±b+�z and w= f−1�±b�
+�w gives

�z � ��w�2.

In the latter two cases the monodromy must exchange two of the wi�z� while leaving the third one
invariant.

Now focus on the situation near the singular point z=−b and denote by w�z��g�z� the root
which, there, is trivial under monodromy and, hence, exists as a holomorphic function in some
neighborhood of z=−b. With the remaining two singularities being at z=0 and z=b, the function
g�z� actually extends to a holomorphic function on the Riemann sphere C� �
� cut along, say,
�0,b��R. Let us verify that this holomorphic function g : �C \ �0,b��� �
�→W coincides with the
Green’s function �4.8� solving our problem �4.10�.

By the holomorphic nature of g and Cauchy’s theorem, we have that

g�z� =
1

2�i


�

g�z��dz�

z� − z
,

where � is a small loop running around z in the counterclockwise sense. Since g is holomorphic
at infinity, the loop � can be deformed �through infinity� to a loop encircling the cut �0,b�, but now
with the orientation reversed. Collapse the deformed loop to the two line segments connecting 0
with b. Then, setting g±�x�=lim�→0+g�x± i�� and

�
�x� ª
g+�x� − g−�x�

2�i
�0 	 x 	 b� , �4.18�

g�z� is obviously given by the integral in Eq. �4.8�.
Because g+�x� and g−�x� arise by analytic continuation from g�z�� f−1�z�, these are two of the

three elements in the set f−1�x�. How is the third element of f−1�x� related to g�z�? To see that,
recall a=−1 and from Eq. �4.12� the invariance of the equation z= f�w� under �z ,w�� �−z ,2a
−w�. Thus, if g�−z� is a root over −z, then −2−g�−z� is a root over z, and it follows that g0�x�
−2 with g0�x�ª−g�−x� �for 0	x	b� is a root over x. The roots g+�x�, g−�x�, and g0�x�−2 all are
different as functions. In fact, Img+�x��0=Jmg0�x��Img−�x� for 0	x	b. So,
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f−1�x� = �g+�x�,g−�x�,g0�x� − 2� ,

and from Eq. �4.16� we deduce that

g+�x� + g−�x� + g0�x� − 2 = �
w�f−1�x�

w = c = 3a = − 3 �0 	 x 	 b� ,

which agrees with Eq. �4.10�. Recall that in order for our analysis to work out we must choose

b = 3
3. �4.19�

With a full understanding of the situation in hand, it is now an easy exercise to obtain �
�x�
in explicit form. Solving the equation z= f�w� one finds the holomorphic function g�z� in the
interval −b	x	0 to be

g�x� = �− x�−1/3�1 + 
1 − x2/b2�1/3 + �− x�−1/3�1 − 
1 − x2/b2�1/3 − 1,

where all square roots and cubic roots are understood to be positive. This function indeed extends
holomorphically to a neighborhood of x=−b, as the Taylor expansion at x=−b contains only even
powers of 
1−x2 /b2. Analytic continuation around the singularity at z=0 gives

g±�x� = x−1/3e±�i/3�1 + 
1 − x2/b2�1/3 + x−1/3e��i/3�1 − 
1 − x2/b2�1/3 − 1 �0 	 x � b� .

Computing the difference �4.18� we then get the result for �
�x� claimed in Eq. �4.6�, with the
value for b given by Eq. �4.19�.

As a final remark, let us note that the good form of g�z� to use near infinity is

g�z� = − 1 + ei�/6�
 1

b2 −
1

z2 +
i

z
�1/3

+ e−i�/6�
 1

b2 −
1

z2 −
i

z
�1/3

. �4.20�

From this, all moments of �
�x�dx can be found by expanding g�z� in powers of 1 /z.

V. EXACT SOLUTION USING BIORTHOGONAL POLYNOMIALS

We now express the probability measure �3.18� as

d�N,l��1, . . . ,�N� = cN,l���	
i	j

��i − � j���i
2 − � j

2�	
k=1

N

e−��k�k
l d�k, �5.1�

and embark on another approach to handling it.
To get started, recall the formula for the Vandermonde determinant

	
i�j

��i − � j� = Det�� j
i−1�i,j=1,. . .,N = �

1 1 ¯ 1

�1 �2 ¯ �N

] ] � ]

�1
N−1 �2

N−1
¯ �N

N−1
� .

Using it we reorganize the probability measure �5.1� as

d�N,l��1, . . . ,�N� = cN,l���Det�� j
i−1�Det�� j

2i−2�	
k=1

N

e−��k�k
l d�k. �5.2�

We also simplify our notation by setting �=1.
By standard properties of the determinant, Det�� j

i−1� changes only by a multiplicative constant
when the monomials � j

i−1 are replaced by any polynomials in � j of degree i−1. We have two
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Vandermonde determinants, �i	j��i−� j� and �i	j��i
2−� j

2�, so we introduce two sets of polyno-
mials, denoting those of the first set by Pi−1�� j� and those of the second one by Qi−1�� j

2�. Our
measure then becomes

d�N,l��1, . . . ,�N� = c̃N,lDet�Pi−1�� j��Det�Qi−1�� j
2��	

k=1

N

e−�k�k
l d�k. �5.3�

In order for the introduction of the polynomials Pn��� and Qn��2� to be useful we require
them to be orthogonal with respect to the integration measure e−��ld�:

Im,n � �
0




Pm���Qn��2�e−��ld� = hn�m,n, �5.4�

where the numbers hn= In,n depend on the choice of normalization for Pn��� and Qn��2�. Such
polynomials are constructed by a variant of the Gram–Schmidt algorithm, as follows.

A. Biorthogonal polynomials

We review the construction in the general setting of two real vector spaces V, W with a pairing
�or nondegenerate bilinear form�

�:V � W → R .

Given some basis v0 ,v1 ,v2 , . . . of V, and a basis w0 ,w1 ,w2 , . . . of W, let the entries of the corre-
sponding pairing matrix be denoted by

�m,n ª ��vm,wn� �m,n = 0,1,2, . . . � .

The goal now is to construct a new basis e0 ,e1 ,e2 , . . . of V, and a new basis f0 , f1 , f2 , . . . of W such
that

en = vn + �
n�=0

n−1

Ann�vn�, fn = wn + �
n�=0

n−1

Bnn�wn�,

�with real coefficients Ann� and Bnn��, and the transformed basis vectors form a biorthogonal
system

��em, fn� = 0 m � n .

This problem has a unique solution by the process of Gram–Schmidt orthogonalization. A nice
way of presenting the solution is by means of the following determinants �where, by a slight abuse
of notation, the matrix entries in the last column resp. last row are vectors, whereas all of the other
matrix entries are numbers�

en = Dn−1
−1 �

�0,0 ¯ �0,n−1 v0

�1,0 ¯ �1,n−1 v1

] � ] ]

�n,0 ¯ �n,n−1 vn

�, fn = Dn−1
−1 �

�0,0 �0,1 ¯ �0,n

] ] � ]

�n−1,0 �n−1,1 ¯ �n−1,n

w0 w1 ¯ wn

� �n = 1,2, . . . � ,

�5.5�

with normalization factor

Dn = ��0,0 ¯ �0,n

] � ]

�n,0 ¯ �n,n
� .
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These formulas are easily verified. Indeed, pairing em with wn for m�n one gets

��em,wn� = Dm−1
−1 �

�0,0 ¯ �0,m−1 �0,n

�1,0 ¯ �1,m−1 �1,n

] � ] ]

�m,0 ¯ �m,m−1 �m,n

� = 0,

which vanishes because the last column coincides with one of the other columns. Since fn is a
linear combination of the vectors wn� with n��n, it follows that ��em , fn�=0 for m�n. The same
conclusion for m	n follows by reversing the roles of V and W. Notice that en=1vn+. . . and fn

=1wn+. . . by insertion of the factor Dn−1
−1 . The nonvanishing pairing matrix elements for n�1 are

�n,n=��en , fn�=��en ,wn�=Dn /Dn−1.
To apply these general formulas to the case under consideration, we choose the vectors vm and

wn to be the functions ���m resp. ���2n, and take the pairing to be given by integration with
our measure e−��ld�:

�m,n = �
0




�m+2ne−��ld� = ��m + 2n + l + 1� . �5.6�

Making the identification en� Pn���, the general formula for en in Eq. �5.5� then gives P0���
=1 and

Pn��� = Dn−1
−1 �

��l + 1� ¯ ��l + 2n − 1� �0

��l + 2� ¯ ��l + 2n� �1

] � ] ]

��l + n + 1� ¯ ��l + 3n − 1� �n
� �n � 1� . �5.7�

Similarly, identifying fn�Qn��2� we obtain Q0��2�=1 and

Qn��2� = Dn−1
−1 �

��l + 1� ��l + 3� ¯ ��l + 2n + 1�
] ] � ]

��l + n� ��l + n + 2� ¯ ��l + 3n�
�0 �2

¯ �2n
� �n � 1� . �5.8�

Using the relation ��z+1�=z��z� an easy Gauss elimination process gives the normalization
constant as

Dn = � ��l + 1� ¯ ��l + 2n + 1�
] � ]

��l + n + 1� ¯ ��l + 3n + 1�
� = 	

k=0

n

2kk!�2k + 1�!. �5.9�

From this, note the diagonal pairing matrix elements h0= l! and

�
0




Pn���Qn��2�e−��ld� = hn = Dn/Dn−1 = 2nn!�2n + l�! �n � 1� . �5.10�
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B. n-level correlation functions

The n-level correlation function Rn��1 , . . . ,�n� in the present context is defined as

Rn��1,�2, . . . ,�n� = n!�
R+

N
�

i1	i2	¯	in

���1 − �̃i1
����2 − �̃i2

� ¯ ���n − �̃in
�d�N,l��̃1, . . . ,�̃N� .

�5.11�

A closed-form expression for it can be given from the biorthogonal polynomials Pn���� and
Qn���

2� for 0�n��N. The result will take its most succinct form when expressed in terms of the
modified functions

P̃n��� ª �− 2�−nn!−1e−�Pn��� , �5.12�

Q̃n��� ª �− 1�n�2n + l�!−1�lQn��2� , �5.13�

�the motivation for the sign �−1�n will become clear later�, which from Eqs. �5.4� and �5.10� obey
the orthogonality relations

�
0




P̃m���Q̃n���d� = �m,n. �5.14�

The probability measure �5.3� expressed by these functions takes the form

d�N,l��1, . . . ,�N� =
1

N!
Det�P̃i−1�� j��Det�Q̃i−1�� j��	

k

d�k.

Now, by using the multiplicative property of the determinant, we can also write

d�N,l��1, . . . ,�N� =
1

N!
Det�KN��i,� j��i,j=1,. . .,N	

k

d�k, �5.15�

where the kernel K��i ,� j� is defined by

KN��i,� j� = �
n=0

N−1

P̃n��i�Q̃n�� j� . �5.16�

From the orthogonality relations �5.14� this kernel has the reproducing property

�
0




KN��i,��KN��,� j�d� = KN��i,� j� , �5.17�

and the trace

�
0




KN��,��d� = N . �5.18�

To proceed further, take notice of the relation

�
0


 �KN��1,�1� ¯ KN��1,�n�
] � ]

KN��n,�1� ¯ KN��n,�n�
�d�n = �N − n + 1�� KN��1,�1� ¯ KN��1,�n−1�

] � ]

KN��n−1,�1� ¯ KN��n−1,�n−1�
� ,

which is proved by expanding the determinant with respect to the last row or column and exploit-
ing the properties �5.17� and �5.18�. Using it, an inductive procedure starting from

103304-17 Disordered bosons J. Math. Phys. 47, 103304 �2006�

Downloaded 02 Nov 2011 to 134.95.67.170. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



RN��1 , . . . ,�N�=Det�KN��i ,� j��i,j=1,. . .,N gives the n-level correlation functions as

Rn��1, . . . ,�n� = Det�KN��i,� j��i,j=1,. . .,n. �5.19�

Thus the correlations are those of a determinantal process and are completely determined by the
kernel KN��i ,� j�. The remaining discussion therefore focuses on this kernel, but first we make
another preparatory step.

C. Contour integral representation

We are now going to show that the functions P̃n��� and Q̃n��� have expressions as complex
contour integrals

P̃n��� = 
S�1�

e−�u�1 − u−2�−n−1ul−2du/�i , �5.20�

Q̃n��� = 
S�0�

e�v�1 − v−2�nu−l−1dv/2�i . �5.21�

Both integrals are over circles in the complex plane with radius  and counterclockwise orienta-
tion; the first circle is centered at u=1 and has radius 	2 �to avoid the singularity at u=−1�, the
second one is centered at v=0.

Our proof of these expressions for P̃n��� and Q̃n��� will be indirect and in two steps. First, we

establish some information on power series. In the case of Q̃n��� we insert the power series of the
exponential function e�v, use the binomial expansion of �1−v−2�n, and compute a residue to obtain

Q̃n��� = �
k=0

n �n

k
� �− 1�k�2k+l

�2k + l�!
. �5.22�

In the case of P̃n���, calculating the residue at u=1 we have that

P̃n��� = � 2

n!

dn

dun� e−�uun+l−1

�1 + u−1�n+1��
u=1

. �5.23�

In both cases, defining Pn��� and Qn��2� by the reverse of the relations �5.12� and �5.13�, we see
from Eqs. �5.22� and �5.23� that these are polynomials of degree n in � resp. �2 and that the
highest-degree term ��n resp. �2n� has coefficient one.

Recall now from Sec. V A that, given these properties, the polynomials Pn��� and Qn��2� are
completely determined by the orthogonality relations �5.4� for m�n. Via Eqs. �5.12� and �5.13�
the latter are in one-to-one correspondence with the orthogonality relations �5.14� �still for m
�n�. Therefore, defining

Ĩm,n = �
0




P̃m���Q̃n���d� , �5.24�

the second and final step of our proof is to show that Ĩm,n=0 for m�n.
To that end, we insert the expressions �5.20� and �5.21� into Eq. �5.24�. The � dependence

then is e−��u−v� with u�S�1� and v�S�0�. Taking the radius  to be very small ��1�, we have
that e−��u−v� decreases rapidly as � goes to +
. Therefore, the integral over � exists, and we may
interchange the order of integrations. Doing first the � integral
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�
0




e−��u−v�d� =
1

u − v
,

the remaining contour integrals for Ĩm,n defined by Eq. �5.24� are

Ĩm,n = 
S�1�

ul−2

�1 − u−2�m+1�
S�0�

�1 − v−2�ndv
vl+1�v − u� � du

2�2 .

To simplify the inner integral over v we use the identity

�1 − v−2

1 − u−2�n

= 1 −
v2 − u2

v2�1 − u2��k=0

n−1 �1 − v−2

1 − u−2�k

.

Inserting this into the expression for Ĩm,n we see that the terms in the k sum do not contribute as
the residue at v=0 vanishes for all of those terms. Doing the v integral for the first term on the
right-hand side, we get


S�0�

v−l−1�v − u�−1dv = − 2�iu−l−1,

so the remaining u integral is

Ĩm,n = ��i�−1
S�1�

�1 − u−2�n−m−1u−3du .

This integrand is holomorphic near u=1 for m	n, and the integral therefore vanishes in that case.
For m�n we use the invariance of the integration form under u→−u to write Im,n as an integral
over a sum of two circles

Ĩm,n =
1

2�i


�

u2m−2n−1du

�u2 − 1�m−n+1 , � = S�1� + S�− 1� .

The integrand in this case is holomorphic near u=0. In the punctured plane C \ �1,−1� the chain
S�1�+S�−1� is homologous to the circle at infinity, where the integrand vanishes. Therefore the

integral again is zero. This proves that Ĩm,n=0 for m�n, which in turn completes our proof that the

contour integrals �5.20� and �5.21� are the same as the functions P̃n���, Q̃n��� defined from Eqs.
�5.7� and �5.8� by Eqs. �5.12� and �5.13�. As a final check, note that

Ĩn,n = ��i�−1
S�1�

du

u�u2 − 1�
= 1,

which is what it ought to be in view of Eq. �5.14�.
Now we harvest a major benefit from the contour integral representations �5.20� and �5.21�:

using these, we can carry out the sum in the definition �5.16� of the kernel KN as a geometric sum.
The result is a double contour integral

KN��1,�2� = 
S�1�

du
S�0�

dvFN�u,v;�1,�2� , �5.25�
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FN�u,v;�1,�2� =
1

2�2e−�1u+�2v ulv−l+1

u2 − v2��1 − v−2

1 − u−2�N

− 1� . �5.26�

This exact expression represents the complete solution of our problem. We will now use it to
determine the large-N asymptotics in the bulk and at the hard edge �=0.

D. Asymptotics in the bulk

The kernel on the diagonal �1=�2 is the same as the one-level function, R1���=KN�� ,��; see
Eq. �5.19�. We already know from Sec. IV the asymptotics of R1�������� in the bulk: introduc-
ing the scaling variable x=� /N �formerly x=�� /N�, this is

lim
N→


KN�Nx,Nx� = �
�x� ,

with �
�x� given by Eq. �4.6�. In the present subsection we are going to demonstrate that the
scaling limit of the kernel KN��1 ,�2� off the diagonal leads to sine-kernel universality for all level
correlation functions:

lim
N→


Rn�Nx + �1, . . . ,Nx + �n� = Det� sin���
�x���i − � j��
���i − � j�

�
i,j=1,. . .,n

, �5.27�

as is expected for systems in the universality class of the Gaussian Unitary Ensemble. As a
corollary, we will obtain an independent confirmation of the result �4.6�.

Looking at the integral representation �5.25� one might think that the large-N limit could be
taken by applying the saddle-point method to that integral. However, as we shall see, the dominant
saddle points lie on the line u=v where the integrand has a singularity of type 0/0 which, albeit
removable, complicates the saddle-point evaluation.

Therefore, rather than calculating KN��1 ,�2� directly, we look at the product
��1−�2�KN��1 ,�2�. Using the relation ��2−�1�e�2v−�1u= ��v+�u�e�2v−�1u and partially integrat-
ing, we rewrite Eq. �5.25� as

��1 − �2�KN��1,�2� = 
S�1�

du
S�0�

dvF̃N�u,v;�1,�2� , �5.28�

F̃N�u,v;�1,�2� =
1

2�2e−�1u+�2v� �

�u
+

�

�u
� ulv−l+1

u2 − v2��1 − v−2

1 − u−2�N

− 1� , �5.29�

which constitutes the starting point for the following analysis.
In preparation for taking the limit N→
, we set �1=Nx+� and �2=Nx+ �̃. The deciding

factor in the integrand of ��1−�2�KN��1 ,�2� in the large-N limit will then be

exp�− Nx�u − v� + N log�1 − v−2� − N log�1 − u−2�� ,

leading to the saddle-point equation

��u� = x = ��v�, ��w� = − �w log�1 − w−2� =
− 2

w�w2 − 1�
. �5.30�

Notice that � is related to our function �4.17� by f�w−1�=��w�. A comprehensive study of the
equation f�w�=z and its solutions for w was made in Sec. IV. From there we know that the
saddle-point equation ��w�=x has three solutions in general, and for 0	x�b=3
3 these are
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w��x� = − x−1/3e−2�i�/3�1 + 
1 − x2/b2�1/3 − x−1/3e2�i�/3�1 − 
1 − x2/b2�1/3 �� = 1,− 1,0� .

�5.31�

In the range of interest �0	x	b� the first two solutions, w±1�x�, are complex conjugates of each
other while the third one, w0�x�, is negative. Expanding the logarithm of �1−v−2�N / �1−u−2�N to
second order around a pair of saddle points w�, w� we encounter the Gaussian

exp�1

2
N���w��x����u�2 −

1

2
N���w��x����v�2�, ���x� =

6w2 − 2

w2�w2 − 1�2 .

For the negative saddle point one has ���w0�x���0, so its path of steepest descent would be
perpendicular to the real axis in the case of u and along the real axis in the case of v. The latter is
inconsistent with the original integration contour for v being S�0�. In the former case, w0�x�	
−1 is inaccessible because of the singularity of �1−u−2�−N intervening at u=−1. Thus this saddle
point is irrelevant for present purposes and may be discarded.

We now make another preparation of the saddle-point evaluation of the integral, by investi-
gating the behavior of the integrand near the two remaining saddle points. We set

u = w��x� + N−1/2�u, v = w��x� + N−1/2�v ��,� = ± 1� ,

and first look at the diagonal case, �=�. Using the identity

1

u − v
� �

�u
+

�

�v
��1 − u−2

1 − u−2�N

= 2N
u2 + uv + v2 − 1

u�u2 − 1�v�v2 − 1��1 − v−2

1 − u−2�N

, �5.32�

we find the scaling limit of the integrand F̃N to be

lim
N→


N−1F̃N�w��x� + N−1/2�u,w��x� + N−1/2�v;Nx + �,Nx + �̃�

= �2��−2e−w��x���−�̃����w��x��e�1/2����w��x����u2−�v2�.

The same limit in the off-diagonal case ����� vanishes. Indeed,

w�
2 + w�w� + w�

2 − 1 =
w��w�

2 − 1� − w��w�
2 − 1�

w� − w�

=
− 2

w� − w�

�x−1 − x−1� = 0 �� � �� ,

and therefore the factor in the numerator on the right-hand side of Eq. �5.32� gives zero.
We now deform the contours of integration as indicated in Fig. 2. The deformed contours pass

through the saddle points w±1 but miss the saddle point w0. At w±1 the paths of steepest descent for
u and v cross at right angles, valleys in one case being mountains in the other case and vice versa.

Next we do the Gaussian integrals. Given the counterclockwise orientations of the original
contours S�1� resp. S�0�, and taking into account the directions of the paths of steepest descent,
we get

� e�1/2����w+1��u2
d��u� = 
2�����w+1��−1/2e�1/2��−�i−i arg ���w+1��,

� e−�1/2����w+1��v2
d��v� = 
2�����w+1��−1/2e�1/2��2�i−i arg ���w+1��.

The product of these two integrals is 2�i /���w+1�. The same calculation for the other saddle w−1

gives −2�i /���w−1�. Thus, putting the factors together and summing over the contributions from
diagonal pairs of saddle points ��=�� we obtain
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�� − �̃� lim
N→


KN�Nx + �,Nx + �̃� =
1

2�i
�e−w−1�x���−�̃� − e−w+1�x���−�̃�� .

Since Rew+1=Rew−1 and Imw+1=−Imw−1 this means that, with Imw+1�x�¬��
�x�, we have

lim
N→


KN�Nx + �,Nx + �̃� = e−Rew±1�x���−�̃�sin���
�x��� − �̃��
��� − �̃�

.

The exponential factor e−Rew±1�x���−�̃� drops out when forming the determinant on the right-hand
side of Eq. �5.19�. Thus we arrive at the universal sine-kernel �or GUE� correlation functions
�5.27�.

Setting �= �̃ notice the special result limN→
KN�Nx ,Nx�=�
�x�. Since the kernel on the
diagonal is none other than the one-level function, KN�� ,��=����, this gives another determina-
tion of the large-N level density �
. From Eq. �5.31� one sees that �
�x�=�−1Imw+1�x� agrees
with our earlier result Eq. �4.6�.

E. Asymptotics near �=0

At the lower edge ��=0� of the spectrum, a new type of behavior is expected to emerge. This
behavior, as we shall see presently, occurs on a scale ��N−1/2.

To exhibit the scaling limit near �=0, it is best to send the integration variables u, v to their
reciprocals, u→u−1 and v→v−1. Then du→−u−2du, dv→−v−2dv, and the integration contour for
v has its radius inverted and orientation reversed, S�0�→−S1/�0�. However, since the integrand
is holomorphic in v on C \ �0� we may return to the original radius  �or any other radius, for that
matter�. In the case of u we take the radius  of S�1� to be very small. Then inversion u→u−1

sends S�1� to itself �or, in any case, to the same homology class on C \ �1��, with no change of
orientation. Altogether, then, carrying out the transformation �u ,v�→ �u−1 ,v−1� the integral repre-
sentation �5.25� continues to hold true if we make the replacement

FN�u,v;�1,�2� → − u−2v−2FN�u−1,v−1;�1,�2� =
1

2�2e−�1/u+�2/v u−lvl−1

u2 − v2��1 − v2

1 − u2�N

− 1� .

FIG. 2. Sketch of the saddle points for the case of x=1. By deforming the original contours, which are small circles around
the singular points u=1 and v=0, one arranges for the contours of integration to pass through the saddle points w±1�x� in
the direction of steepest descent. Away from the saddle points the deformed contours are drawn as paths of constant phase,
which interpolate between different zeroes of the integrand: they run between 0 and +
 for u, and between 1 and −
 for
v.
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Next, as another preparation for taking the limit N→
, we deform the u-contour S�1� to
some axis parallel to the imaginary axis. The deformed contour crosses the real axis between u
=0 and u=1 and is directed from u= + i
 to u=−i
. We also reverse the direction of integration
for u and change the overall sign of the integral.

Then we set � j =N−1/2yj and rescale u→N−1/2u and v→N−1/2v accordingly. Again, in view of
the analytic properties of the integrand we can keep the integration contours fixed while rescaling.
Because the u integral converges at infinity we have a good limit

lim
N→


�1 − u2/N�−N = exp�u2� .

In total, we thus obtain the following scaling limit for our kernel KN:

k�y1,y2� ª lim
N→


N−1/2KN�N−1/2y1,N−1/2y2� =
1

2�2�
iR+

du�
U1

dv
v

e−y1/u+y2/v�v/u�l e
u2−v2

− 1

u2 − v2 ,

�5.33�

where U1�S1�0� means the unitary numbers, and iR+ is the imaginary axis translated by 
�0 into the right half of the complex plane. Plots of the scaling function k�y ,y� for l=0,1 are
shown in Fig. 3. Using the method of saddle-point evaluation as in Sec. V C one can show that this
function behaves as k�y ,y��y−1/3 for large y.

Taking the same scaling limit for the functions P̃N��� and Q̃N��� in Eqs. �5.20� and �5.21� one
gets

p�y� = lim
N→


N−�l−1�/2P̃N�N−1/2y� =
1

�i
�

iR+

eu2−y/uu−ldu , �5.34�

q�y� = lim
N→


Nl/2Q̃N�N−1/2y� =
1

2�i
�

U1

e−v2+y/vvl−1dv . �5.35�

Both functions have convergent series expansions

p�y� = �
n=0



�− y�n

n!���l + n + 1�/2�
, q�y� = yl�

n=0



�− y2�n

n!�2n + l�!
. �5.36�

The expansion for q�y� can be obtained either directly from Eq. �5.35�, or by taking the limit N
→
 in Eq. �5.22�. In the case of p�y�, the earlier formula �5.23� is not suitable; rather, in order to
verify Eq.�5.36� for p�y� one expands the integrand of Eq. �5.34� in powers of y, makes use of
Reu=�0 to write

FIG. 3. The graph of the scaling function k�y ,y� for the case of l=0 �left� and l=1 �right�.
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u−n−l = �n + l − 1�!−1�
0




e−tutn+l−1dt �n + l � 0� ,

does the Gaussian u integral by completing the square, and uses the duplication formula for the
Gamma function.

Note added in proof. After submission of this manuscript, P. Forrester pointed out to us that
the joint eigenvalue distribution derived and analyzed here falls in a broad class of models solved
by Borodin.12 Borodin’s expression for the kernel KN�x ,y� is equivalent to ours by old work of
Konhauser.13 The mathematical results of Konhauser were first introduced into random matrix
physics by Muttalib,14 who suggested to use them for an approximate treatment of the statistics of
transmission eigenvalues of disordered conductors.
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