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Abstract: ‘Superbosonization’ is a new variant of the method of commuting and
anti-commuting variables as used in studying random matrix models of disordered and
chaotic quantum systems. We here give a concise mathematical exposition of the key for-
mulas of superbosonization. Conceived by analogy with the bosonization technique for
Dirac fermions, the new method differs from the traditional one in that the superboson-
ization field is dual to the usual Hubbard-Stratonovich field. The present paper addresses
invariant random matrix ensembles with symmetry group Un , On , or USpn , giving pre-
cise definitions and conditions of validity in each case. The method is illustrated at the
example of Wegner’s n-orbital model. Superbosonization promises to become a pow-
erful tool for investigating the universality of spectral correlation functions for a broad
class of random matrix ensembles of non-Gaussian and/or non-invariant type.

1. Introduction and Overview

The past 25 years have seen substantial progress in the physical understanding of insu-
lating and metallic behavior in disordered quantum Hamiltonian systems of the random
Schrödinger and random band matrix type. A major role in this development, bearing
especially on the metallic regime and the metal-insulator transition, has been played by
the method of commuting and anti-commuting variables, or supersymmetry method for
short. Assuming a Gaussian distribution for the disorder, this method proceeds by mak-
ing a Hubbard-Stratonovich transformation followed by a saddle-point approximation
(or elimination of the massive modes) to arrive at an effective field theory of the non-
linear sigma model type. This effective description has yielded many new results includ-
ing, e.g., the level statistics in small metallic grains, localization in thick disordered
wires, and a scaling theory of critical systems in higher dimension [6].

While the method has been widely used and successfully so, there exist some limita-
tions and drawbacks. For one thing, the method works well only for systems with normal-
distributed disorder; consequently, addressing the universality question for non-Gaussian
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distributions (like the invariant ensembles studied via the orthogonal polynomial method)
has so far been beyond reach. For another, the symmetries of the effective theory are
not easy to keep manifest when using the mathematically well-founded approach of
Schäfer and Wegner [17]. A problem of lesser practical relevance is that the covariance
matrix of the random variables, which is to be inverted by the Hubbard-Stratonovich
transformation, does not always have an inverse [17].

In this paper we introduce a new variant of the supersymmetry approach which is
complementary to the traditional one. Inspired by the method of bosonization of Dirac
fermions, and following an appellation by Efetov and coworkers, we refer to the new
method as ‘superbosonization’. As we will see, in order for superbosonization to be use-
ful the distribution of the random Hamiltonians must be invariant under some symmetry
group, and this group cannot be ‘too small’ in a certain sense. We expect the method to be
at its best for random matrix ensembles with a local gauge symmetry such as Wegner’s
n-orbital model [20] with gauge group K = Un , On , or USpn .

Superbosonization differs in several ways from the traditional method of Schäfer
and Wegner [17] based on the Hubbard-Stratonovich (HS) transformation: (i) the
superbosonization field has the physical dimension of 1/energy (whereas the HS field
has the dimension of energy). (ii) For a fixed symmetry group K , the target space of the
superbosonization field is always the same product of compact and non-compact sym-
metric spaces regardless of where the energy parameters are, whereas the HS field of
the Schäfer-Wegner method changes as the energy parameters move across the real axis.
(iii) The method is not restricted to Gaussian disorder distributions. (iv) The symmetries
of the effective theory are manifest at all stages of the calculation.

A brief characterization of what is meant by the physics word of ‘superbosoniza-
tion’ is as follows. The object of departure of the supersymmetry method (in its old
variant as well as the new one) is the Fourier transform of the probability measure of
the given ensemble of disordered Hamiltonians. This Fourier transform is evaluated on
a supermatrix built from commuting and anti-commuting variables and thus becomes a
superfunction; more precisely a function, say f , which is defined on a complex vector
space V0 and takes values in the exterior algebra∧(V ∗1 ) of another complex vector space
V1. If the probability measure is invariant under a group K , so that the function f is
equivariant with respect to K acting on V0 and V1, then a standard result from invariant
theory tells us that f can be viewed as the pullback of a superfunction F defined on the
quotient of V = V0 ⊕ V1 by the group K . The heart of the superbosonization method
is a formula which reduces the integral of f to an integral of the lifted function F .
Depending on how the dimension of V compares with the rank of K , such a reduction
step may or may not be useful for further analysis of the integral. Roughly speaking,
superbosonization gets better with increasing value of rank(K ). From a mathematical
perspective, superbosonization certainly promises to become a powerful tool for the
investigation and proof of the universality of spectral correlations for a whole class of
random matrix ensembles that are not amenable to treatment by existing techniques.

Let us now outline the plan of the paper. In Sects. 1.1 and 1.2 we give an informal
introduction to our results, which should be accessible to physicists as well as mathema-
ticians. A concise summary of the motivation (driven by random matrix applications)
for the mathematical setting of this paper is given in Sect. 2.

In Sect. 3 we present a detailed treatment of the special situation of V1 ≡ 0 (the
so-called Boson-Boson sector), where anti-commuting variables are absent. This case
was treated in an inspiring paper by Fyodorov [8], and our final formula – the trans-
fer of the integral of f to an integral of F – coincides with his. The details of the
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derivation, however, are different. While Fyodorov employs something he calls the
Ingham-Siegel integral, our approach proceeds directly by push forward to the quotient
V0//K C. Another difference is that our treatment covers each of the three classical
symmetry groups K = Un , On , and USpn , not just the first two.

Section 4 handles the complementary situation V0 = 0 (the so-called Fermion-
Fermion sector). In this case the starting point is the Berezin integral of f ∈ ∧(V ∗1 ), i.e.,
one differentiates once with respect to each of the anti-commuting variables, or projects
on the top-degree component of ∧(V ∗1 ). From a theoretical physicist’s perspective, this
case is perhaps the most striking one, as it calls for the mysterious step of transforming
the Berezin integral of f to an integral of the lifted function F over a compact symmetric
space. The conceptual difficulty here is that many choices of F exist, and any serious
theoretical discussion of the matter has to be augmented by a proof that the final answer
does not depend on the specific choice which is made.

Finally, Sect. 5 handles the full situation where V0 �= 0 and V1 �= 0 (i.e., both types
of variable, commuting and anti-commuting, are present). Heuristic ideas as to how one
might tackle this situation are originally due to Lehmann, Saher, Sokolov and Som-
mers [15] and to Hackenbroich and Weidenmüller [10]. These ideas have recently been
pursued by Efetov and his group [7] and by Guhr [9], but their papers are short of math-
ematical detail – in particular, the domain of integration after the superbosonization step
is left unspecified – and address only the case of unitary symmetry. In Sect. 5 we supply
the details missing from these earlier works and prove the superbosonization formula for
the cases of K = Un , On , and USpn , giving sufficient conditions of validity in each case.
While it should certainly be possible to construct a proof based solely on supersymmetry
and invariant-theoretic notions including Howe dual pairs, Lie superalgebra symmetries
and the existence of an invariant Berezin measure, our approach here is different and
more constructive: we use a chain of variable transformations reducing the general case
to the cases dealt with in Sects. 3 and 4.

1.1. Basic setting. Motivated by the method of commuting and anti-commuting vari-
ables as reviewed in Sect. 2, let there be a set of complex variables Zi

c with complex

conjugates Z̃ c
i := Zi

c, where indices are in the range i = 1, . . . , n and c = 1, . . . , p.
Let there also be two sets of anti-commuting variables ζ i

e and ζ̃ e
i with index range

i = 1, . . . , n and e = 1, . . . , q. (Borrowing the language from the physics context
where the method is to be applied, one calls n the number of orbitals and p and q the
number of bosonic resp. fermionic replicas.) It is convenient and useful to arrange the
variables Zi

c, ζ i
e in the form of rectangular matrices Z , ζ with n rows and p resp. q

columns. A similar arrangement as rectangular matrices is made for the variables Z̃ c
i ,

ζ̃ e
i , but now with p resp. q rows and n columns.

We are going to consider integrals over these variables in the sense of Berezin [1].
Let

DZ ,Z̄;ζ,ζ̃ := 2pn
p∏

c=1

n∏

i=1

|dRe(Zi
c) dIm(Zi

c)| ⊗ (2π)−qn
q∏

e=1

n∏

j=1

∂2

∂ζ
j

e ∂ζ̃
e
j

, (1.1)

where the derivatives are left derivatives, i.e., we use the sign convention ∂2

∂ζ∂ζ̃
ζ̃ ζ = 1,

and the product of derivatives projects on the component of maximum degree in the anti-
commuting variables. The other factor is Lebesgue measure for the commuting complex
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variables Z . We here denote such integrals by
∫

f ≡
∫

Matn,p(C)
DZ ,Z̄;ζ,ζ̃ f (Z , Z̃; ζ, ζ̃ ) (1.2)

for short. The domain of integration will be the linear space of all complex rectangular
n × p matrices Z , with Z̃ = Z† ∈ Mat p, n(C) being the Hermitian adjoint of Z . We
assume that our integrands f decrease at infinity so fast that the integral

∫
f exists.

In the present paper we will be discussing such integrals for the particular case where
the integrand f has a Lie group symmetry. More precisely, we assume that a Lie group K
is acting on C

n and this group is either the unitary group Un , or the real orthogonal group
On , or the unitary symplectic group USpn . The fundamental K -action on C

n gives rise
to a natural action by multiplication on the left resp. right of our rectangular matrices:
Z �→ gZ , ζ �→ gζ and Z̃ �→ Z̃ g−1, ζ̃ �→ ζ̃ g−1 (where g ∈ K ). The functions f to be
integrated shall have the property of being K -invariant:

f (Z , Z̃; ζ, ζ̃ ) = f (gZ , Z̃ g−1; gζ, ζ̃ g−1) (g ∈ K ). (1.3)

We wish to establish a reduction formula for the Berezin integral
∫

f of such functions.
This formula will take a form that varies slightly between the three cases of K = Un ,
K = On , and K = USpn .

1.1.1. The case of Un-symmetry. Let then f be an analytic and Un-invariant function
of our basic variables Z , Z̃ , ζ, ζ̃ for Z̃ = Z†. We now make the further assumption that
f extends to a GLn(C)-invariant holomorphic function when Z and Z̃ are viewed as
independent complex matrices; which means that the power series for f in terms of
Z and Z̃ converge everywhere and that the symmetry relation (1.3) for the extended
function f holds for all g ∈ GLn(C), the complexification of Un . The rationale behind
these assumptions about f is that they guarantee the existence of another function F
which lies ‘over’ f in the following sense.

It is a result of classical invariant theory [11] that the algebra of GLn(C)-invariant
polynomial functions in Z , Z̃ , ζ , ζ̃ is generated by the quadratic invariants

(Z̃ Z)c
′

c ≡ Z̃ c′
i Z i

c, (Z̃ζ )c
′

e ≡ Z̃ c′
i ζ

i
e , (ζ̃ Z)e

′
c ≡ ζ̃ e′

i Z i
c, (ζ̃ ζ )e

′
e ≡ ζ̃ e′

i ζ
i
e .

Here we are introducing the summation convention: an index that appears twice, once
as a subscript and once as a superscript, is understood to be summed over.

How does this invariant-theoretic fact bear on our situation? To answer that, let F be
a holomorphic function of complex variables xc′

c , ye′
e and anti-commuting variables σ c′

e ,
τ e′

c with index range c, c′ = 1, . . . , p and e, e′ = 1, . . . , q. Again, let us organize these
variables in the form of matrices, x = (xc′

c ), y = (ye′
e ), etc., and write F as

F(xc′
c , ye′

e ; σ c′
e , τ

e′
c ) ≡ F

(
x σ
τ y

)
.

Then the relevant statement from classical invariant theory in conjunction with [16] is
this: given any GLn(C)-invariant holomorphic function f of the variables Z , Z̃ , ζ, ζ̃ , it
is possible to find a holomorphic function F of the variables x, y, σ, τ so that

F

(
Z̃ Z Z̃ζ
ζ̃ Z ζ̃ ζ

)
= f (Z , Z̃; ζ, ζ̃ ). (1.4)
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To be sure, there exists no unique choice of such function F . Indeed, since the top degree
of the Grassmann algebra generated by the anti-commuting variables ζ i

e and ζ̃ e′
i is 2qn,

any monomial in the matrix variables y of degree higher than qn vanishes identically
upon making the substitution ye′

e = ζ̃ e′
i ζ

i
e .

In the following, we will use the abbreviated notation F = F(Q), where the symbol
Q stands for the supermatrix built from the matrices x, σ, τ, y :

Q =
(

x σ
τ y

)
. (1.5)

1.1.2. Orthogonal and symplectic symmetry. In the case of the symmetry group being
K = On the complex vector space C

n is equipped with a non-degenerate symmetric
tensor δi j = δ j i (which you may think of as the Kronecker delta symbol). By defini-
tion, the elements k of the orthogonal group On satisfy the conditions k−1 = k† and
ktδk = δ, where kt means the transpose of the matrix k. Let δi j denote the components
of the inverse tensor, δ−1. In addition to Z̃ Z , Z̃ζ , ζ̃ Z , ζ̃ ζ we now have the following
independent quadratic K -invariants:

(Z tδZ)c′c = Zi
c′δi j Z j

c , (Z̃δ−1 Z̃ t)c
′c = Z̃ c′

i δ
i j Z̃ c

j ,

(Z tδζ )c′e = Zi
c′δi jζ

j
e , (ζ̃ δ−1 Z̃ t)e

′c = ζ̃ e′
i δ

i j Z̃ c
j ,

(ζ tδζ )e′e = ζ i
e′δi jζ

j
e , (ζ̃ δ−1ζ̃ t)e

′e = ζ̃ e′
i δ

i j ζ̃ e
j .

In the case of symplectic symmetry, the dimension n has to be an even number and
C

n is equipped with a non-degenerate skew-symmetric tensor εi j = −ε j i . Elements k
of the unitary symplectic group USpn satisfy the conditions k−1 = k† and ktεk = ε. If
εi j = −ε j i are the components of ε−1, the extra quadratic invariants for this case are

(Z tεZ)c′c = Zi
c′εi j Z j

c , (Z̃ε−1 Z̃ t)c
′c = Z̃ c′

i ε
i j Z̃ c

j , etc.

To deal with the two cases of orthogonal and symplectic symmetry in parallel, we
introduce the notation β := δ for K = On and β := ε for K = USpn , and we organize
all quadratic invariants as a supermatrix:

⎛

⎜⎜⎝

Z̃ Z Z̃β−1 Z̃ t Z̃ζ Z̃β−1ζ̃ t

Z tβZ Z t Z̃ t Z tβζ Z t ζ̃ t

ζ̃ Z ζ̃ β−1 Z̃ t ζ̃ ζ ζ̃ β−1ζ̃ t

−ζ tβZ −ζ t Z̃ t −ζ tβζ −ζ t ζ̃ t

⎞

⎟⎟⎠. (1.6)

This particular matrix arrangement is motivated as follows.
Let Q be the supermatrix (1.5) of before, but now double the size of each block; thus

x here is a matrix of size 2p × 2p, the rectangular matrix σ is of size 2p × 2q, and so
on. Then impose on Q the symmetry relation Q = TβQst(Tβ)−1, where

Tδ =
⎛

⎜⎝

0 1p
1p 0

0 −1q
1q 0

⎞

⎟⎠, Tε =
⎛

⎜⎝

0 −1p
1p 0

0 1q
1q 0

⎞

⎟⎠,
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and Qst means the supertranspose:

Qst =
(

x t τ t

−σ t yt

)
.

It is easy to check that the supermatrix (1.6) obeys precisely this relation QTβ = TβQst.
For the symmetry groups K = On and K = USpn – with the complexified groups

being G = On(C) and G = Spn(C) – it is still true that the algebra of G-invariant
holomorphic functions f of Z , Z̃ , ζ, ζ̃ is generated by the invariants that arise at the
quadratic level. Thus, if f is any function of such kind, then there exists (though not
uniquely so) a holomorphic function F(Q) which pulls back to the given function f :

F

⎛

⎜⎜⎝

Z̃ Z Z̃β−1 Z̃ t Z̃ζ Z̃β−1ζ̃ t

Z tβZ Z t Z̃ t Z tβζ Z t ζ̃ t

ζ̃ Z ζ̃ β−1 Z̃ t ζ̃ ζ ζ̃ β−1ζ̃ t

−ζ tβZ −ζ t Z̃ t −ζ tβζ −ζ t ζ̃ t

⎞

⎟⎟⎠ = f (Z , Z̃; ζ, ζ̃ ). (1.7)

1.2. Superbosonization formula. A few more definitions are needed to state our main
result, which transfers the integral of f to an integral of F .

In (1.2) the definition of the Berezin integral
∫

f was given. Let us now specify
how we integrate the ‘lifted’ function F , beginning with the case of K = Un . There,
the domain of integration will be D = D0

p × D1
q , where D0

p is the symmetric space
of positive Hermitian p × p matrices and D1

q is the group of unitary q × q matrices,
D1

q = Uq . The Berezin superintegral form to be used for F(Q) is

DQ := dµD0
p
(x) dµD1

q
(y) (2π)−pq	W1 ◦ Detq(x − σ y−1τ)Det p(y − τ x−1σ), (1.8)

where the meaning of the various symbols is as follows. The Berezin form	W1 is defined
as the product of all derivatives with respect to the anti-commuting variables:

	W1 =
p∏

c=1

q∏

e=1

∂2

∂σ c
e ∂τ

e
c
. (1.9)

The symbol dµD1
q

denotes a suitably normalized Haar measure on D1
q = Uq and dµD0

p

means a positive measure on D0
p which is invariant with respect to the transformation

X �→ gXg† for all invertible complex p × p matrices g ∈ GLp(C). Our precise nor-
malization conventions for these measures are defined by the Gaussian limits

lim
t→+∞

√
t/π

p2
∫

D0
p

e−t Tr (x−Id)2 dµD0
p
(x) = 1 = lim

t→+∞
√

t/π
q2

∫

D1
q

et Tr (y−Id)2 dµD1
q
(y).

Now assume that p ≤ n. Then we assert that the superbosonization formula
∫

f = vol(Un)

vol(Un−p+q)

∫

D
DQ SDetn(Q) F(Q) (1.10)

holds for a large class of analytic functions with suitable falloff behavior at infinity. (In
the body of the paper we state and prove this formula for the class of Schwartz func-
tions, i.e., functions that decrease faster than any power. This, however, is not yet the
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optimal formulation, and we expect the formula (1.10) to hold in greater generality.)
Here vol(Un) :=

∫
dµD1

n
(y) is the volume of the unitary group, the integrands f and F

are assumed to be related by (1.4), and SDet is the superdeterminant function,

SDet

(
x σ
τ y

)
= Det(x)

Det(y − τ x−1σ)
.

It should be mentioned at this point that ideas toward the existence of such a formula
as (1.10) have been vented in the recent literature [7,9]. These publications, however,
do not give an answer to the important question of which integration domain to choose
for Q. Noting that the work of Efetov et al. is concerned with the case of n = 1 and
p = q � 1, let us emphasize that the inequality p ≤ n is in fact necessary in order
for our formula (1.10) to be true. (The situation for p > n is explored in a compan-
ion paper [3].) Moreover, be advised that analogous formulas for the related cases of
K = On,USpn have not been discussed at all in the published literature.

Turning to the latter two cases, we introduce two 2r × 2r matrices ts and ta :

ts =
(

0 1r
1r 0

)
, ta =

(
0 −1r
1r 0

)
,

where r = p or r = q depending on the context. Then let a linear space Symb(C
2r ) for

b := s or b := a be defined by

Symb(C
2r ) :=

{
M ∈ Mat2r,2r (C) | M = tb M t(tb)

−1
}
.

Thus the elements of Symb(C
2r ) are complex 2r × 2r matrices which are symmetric

with respect to transposition followed by conjugation with tb. With this notation, we can
rephrase the condition Q = TβQst(Tβ)−1 for the blocks x resp. y as saying they are in
Syms(C

2p) resp. Syma(C
2q) for β = δ and in Syma(C

2p) resp. Syms(C
2q) for β = ε.

The domain of integration for Q will now be Dβ := D0
β,p × D1

β, q , where

D0
δ,p = Herm+ ∩ Syms(C

2p), D1
δ, q = U ∩ Syma(C

2q),

in the case of β = δ (or K = On), and

D0
ε,p = Herm+ ∩ Syma(C

2p), D1
ε, q = U ∩ Syms(C

2q),

in the case of β = ε (or K = USpn). Thus in both cases, β = δ and β = ε, the
integration domains D0

β,p and D1
β, q are constructed by taking the intersection with the

positive Hermitian matrices and the unitary matrices, respectively.
The Berezin superintegral form DQ for the cases β = δ, ε has the expression

DQ := dµD0
β,p
(x) dµD1

β, q
(y)	W1 ◦

Detq(x − σ y−1τ)Det p(y − τ x−1σ)

(2π)2pq Det
1
2 mβ (1− x−1σ y−1τ)

, (1.11)

where mδ = 1 and mε = −1. The Berezin form 	W1 now is simply a product of deriv-
atives w.r.t. all of the anti-commuting variables in the matrix σ . (The entries of τ are
determined from those of σ by the relation Q = TβQst(Tβ)−1.) For β = δ one defines

	W1 =
p∏

c=1

q∏

e=1

∂2

∂σ c
e ∂σ

c+p
e+q

⊗
p∏

c=1

q∏

e=1

∂2

∂σ
c+p
e ∂σ c

e+q
, (1.12)



P. Littelmann, H.-J. Sommers, M. R. Zirnbauer

while for β = ε the definition is the same except that the ordering of the derivatives
∂/∂σ

c+p
e and ∂/∂σ c

e+q in the second product has to be reversed.
It remains to define the measures dµD0

β,p
and dµD1

β,q
. To do so, we first observe that

the complex group GL2p(C) acts on Symb(C
2p) by conjugation in a twisted sense:

x �→ gxτb(g
−1), τb(g

−1) = tb gt(tb)
−1 (b = s, a).

A derived group action on the restriction to the positive Hermitian matrices is then
obtained by restricting to the subgroup G ′ ⊂ GL2p(C) defined by the condition

τb(g
−1) = g†.

This subgroup G ′ turns out to be G ′ � GL2p(R) for b = s and G ′ � GLp(H), the
invertible p × p matrices whose entries are real quaternions, for b = a. In the sec-
tor of y, the unitary group U2q acts on D1

β, q = U ∩ Symb(C
2q) by the same twisted

conjugation,

y �→ gyτb(g
−1) (b = a, s).

Now in all cases, dµD0
β,p

and dµD1
β, q

are measures on D0
β,p and D1

β, q which are invariant

by the pertinent group action. Since the group actions at hand are transitive, all of our
invariant measures are unique up to multiplication by a constant. As before, we consider
a Gaussian limit in order to fix the normalization constant:

lim
t→+∞

√
t/π

p(2p+mβ )
∫

D0
β,p

e−
t
2 Tr (x−Id)2 dµD0

β,p
(x) = 1.

The normalization of dµD1
β, q

is specified by the corresponding formula where we make

the replacements p → q, and mβ → −mβ , and −Tr (x − Id)2 → +Tr (y − Id)2. An
explicit expression for each of these invariant measures is given in the Appendix.

We are now ready to state the superbosonization formula for the cases of orthogonal
and symplectic symmetry. Let the inequality of dimensions n ≥ 2p be satisfied. We then
assert that the following is true.

Let the Berezin integral
∫

f still be defined by (1.2), but now assume the holomor-
phically extended integrand f to be G-invariant with complexified symmetry group
G = On(C) for β = δ and G = Spn(C) for β = ε. Let Kn = On in the former case and
Kn = USpn in the latter case. Then, choosing any holomorphic function F(Q) related
to the given function f by (1.7), the integration formula

∫
f = 2(q−p)mβ

vol(Kn)

vol(Kn−2p+2q)

∫

Dβ
DQ SDetn/2(Q) F(Q) (1.13)

holds true, provided that f falls off sufficiently fast at infinity.
Thus the superbosonization formula takes the same form as in the previous case

K = Un , except that the exponent n now is reduced to n/2. The latter goes hand in hand
with the size of the supermatrix Q having been expanded by p → 2p and q → 2q.

Another remark is that the square root of the superdeterminant,

SDetn/2(Q) =
√

Detn(x )
/ √

Detn(y − τ x−1σ),
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Table 1. Isomorphisms between integration domains and symmetric spaces

K D0
p D̃0

p D1
q D̃1

q

Un Herm+ ∩Mat p,p(C) GL p(C)/Up U ∩Matq, q (C) Uq
On Herm+ ∩ Syms (C

2p) GL2p(R)/O2p U ∩ Syma(C
2q ) U2q/USp2q

USpn Herm+ ∩ Syma(C
2p) GL p(H)/USp2p U ∩ Syms (C

2q ) U2q/O2q

is always analytic in the sector of the matrix y. For the case of orthogonal symmetry this
is because D1

δ, q = U∩Syma(C
2q) is isomorphic to the unitary skew-symmetric 2q×2q

matrices and for such matrices the determinant has an analytic square root known as the
Pfaffian. (In the language of random matrix physics, D1

δ, q is the domain of definition
of the Circular Symplectic Ensemble, which has the feature of Kramers degeneracy.) In
the case of symplectic symmetry, where the number n is always even, no square root is
being taken in the first place.

As another remark, let us mention that each of our integration domains is isomorphic
to a symmetric space of compact or non-compact type. These isomorphisms D1

q � D̃1
q

and D0
p � D̃0

p are listed in Table 1. Detailed explanations are given in the main text.
Let us also mention that the expressions (1.8) and (1.11) for the Berezin integra-

tion forms DQ can be found from a supersymmetry principle: each DQ is associated
with one of three Riemannian symmetric superspaces in the sense of [22] (to be precise,
these are the supersymmetric non-linear sigma model spaces associated with the random
matrix symmetry classes AIII, B DI, and CII) and is in fact the Berezin integration form
which is invariant w.r.t. the action of the appropriate Lie superalgebra gl or osp. We will
make no use of this symmetry principle in the present paper. Instead, we will give a direct
proof of the superbosonization formulas (1.10) and (1.13), deriving the expressions (1.8)
and (1.11) by construction, not from a supersymmetry argument.

Finally, we wish to stress that in random matrix applications, where n typically is a
large number, the reduction brought about by the superbosonization formulas (1.10) and
(1.13) is a striking advance: by conversion from its original role as the number of inte-
grations to do, the big integer n has been turned into an exponent, whereby asymptotic
analysis of the integral by saddle-point methods becomes possible.

1.3. Illustration. To finish this introduction, let us illustrate the new method at the exam-
ple of Wegner’s n-orbital model with n orbitals per site and unitary symmetry.

The Hilbert space V of that model is an orthogonal sum, V = ⊕i∈
Vi , where i
labels the sites (or vertices) of a lattice 
 and the Vi ∼= C

n are Hermitian vector spaces
of dimension n. The Hamiltonians of Wegner’s model are random Hermitian operators
H : V → V distributed according to a Gaussian measure dµ(H). To specify the latter,
let�i : V → Vi be the orthogonal projector on Vi . The probability measure of Wegner’s
model is then given as a Gaussian distribution dµ(H) with Fourier transform

∫
e−i Tr (H K )dµ(H) = e−

1
2n

∑
i j Ci j Tr(K�i K� j ),

where K ∈ End(V ), and the variances Ci j = C j i are non-negative real numbers. We
observe that dµ(H) is invariant under conjugation H �→ gHg−1 by unitary trans-
formations g ∈ ∏

i∈
 U(Vi ); such an invariance is called a local gauge symmetry in
physics.
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Let us now be interested in, say, the average ratio of characteristic polynomials:

R(E0, E1) :=
∫

Det(E1 − H)

Det(E0 − H)
dµ(H) (Im E0 > 0).

To compute R(E0, E1) one traditionally uses a supersymmetry method involving the
so-called Hubbard-Stratonovich transformation. In order for this approach to work, one
needs to assume that the positive quadratic form with matrix coefficients Ci j has an
inverse. If it does, then the traditional approach leads to the following result [4]:

R(E0, E1) =
∫

e−
n
2

∑
i j (C

−1)i j (xi x j−yi y j )DHS(x, y)
∏

k∈


(yk − E1)
n−1

(xk − E0)n+1

dyk dxk

2π/i
,

where the integral is over xk ∈ R and yk ∈ iR. The factor DHS(x, y) is a fermion deter-
minant resulting from integration over the anti-commuting components of the Hubbard-
Stratonovich field; it is the determinant of the matrix with elements

n
(
δi j − (C−1)i j (xi − E0)(y j − E1)

)
.

Notice that the integration variables xk and yk carry the physical dimension of energy.
In contrast, using the new approach opened up by the superbosonization formula of

the present paper, we obtain

R(E0, E1) =
∫

e−
n
2

∑
i j Ci j (xi x j−yi y j )DSB(x, y)

∏

k∈


(
xk eiE0xk

yk eiE1 yk

)n
dxk dyk

2π i xk yk
.

Here the integral is over xk ∈ R+ and yk ∈ U1 (the unit circle in C). These integration
variables have the physical dimension of (energy)−1. The factor DSB(x, y) still is a fer-
mion determinant, which now arises from integration over the anti-commuting variables
of the superbosonization field; it is the determinant of the matrix with elements

n
(
δi j + Ci j xi y j

)
.

When both methods (Hubbard-Stratonovich and superbosonization) are applicable, our
two formulas for R(E0, E1) are exactly equivalent to each other. Please be warned,
however, that this equivalence is by no means easy to see directly.

From a practical viewpoint, the main difference between the two formulas is that
one of them is expressed by the quadratic form of variances Ci j whereas the other one
is expressed by the inverse of that quadratic form. A rigorous analysis based on the
formula from Hubbard-Stratonovich transformation (or, rather, the resulting formula for
the density of states) for the case of long-range Ci j and n = 1, was made in [4]. A
similar analysis based on the formula from superbosonization has not yet been done.

2. Motivation: Supersymmetry Method

Imagine some quantum mechanical setting where the Hilbert space is C
n equipped with

its standard Hermitian structure. On that finite-dimensional space, let us consider Her-
mitian operators H that are drawn at random from a probability distribution or ensemble
dµ(H). We might wish to compute the spectral correlation functions of the ensemble
or some other observable quantity of interest in random matrix physics.
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One approach to this problem is by the so-called supersymmetry method [6,21]. In
that method the observables one wishes to compute are written in terms of Green’s func-
tions, i.e., matrix coefficients of the resolvent operator of H , which are then expressed
as Gaussian integrals over commuting and anti-commuting variables.

The key object of the method is the characteristic function of dµ(H),

F (K ) =
∫

e−i Tr (H K )dµ(H),

where the exact meaning of the Fourier variable K depends on what observable is to be
computed. In the general case (with p bosonic and q fermionic ‘replicas’), defining the
matrix entries of K with respect to the standard basis {e1, . . . , en} of C

n by K e j = ei K i
j ,

one lets

K i
j := Zi

c Z̃ c
j + ζ i

e ζ̃
e
j ,

where Zi
c, Z̃ c

j and ζ i
e , ζ̃ e

j are the commuting and anti-commuting variables of Sect. 1
and the summation convention is still in force. To compute, say, the spectral correlation
functions of dµ(H), one multiplies F (K ) by the exponential function

exp
(

iZi
c Ec

c′ Z̃
c′
i + iζ j

e Fe
e′ ζ̃

e′
j

)
, Ec

c′ = Ecδ
c
c′ , Fe

e′ = Feδ
e
e′, (2.1)

where the parameters Ec and Fe have the physical meaning of energies, and one inte-
grates the product against the flat Berezin integration form DZ ,Z̄;ζ,ζ̃ over the real vector

space defined by Z̃ c
i = sgn(Im Ec)Zi

c (for c = 1, . . . , p and i = 1, . . . , n). The
desired correlation functions are then generated by a straightforward process of taking
derivatives with respect to the energy parameters at coinciding points. Note that for all
g ∈ GLn(C) the exponential (2.1) is invariant under

Zi
c �→ gi

j Z j
c , Z̃ c

i �→ Z̃ c
j (g

−1)
j
i , ζ i

e �→ gi
jζ

j
e , ζ̃ i

e �→ ζ̃
j

e (g
−1)

j
i .

Let us now pass to a basis-free formulation of this setup. For that we are going to
think of the sets of complex variables Zi

c and Z̃ c
i as bases of holomorphic linear functions

for the complex vector spaces Hom(Cp,Cn) resp. Hom(Cn,Cp), and we interpret the
anti-commuting variables ζ i

e and ζ̃ e
i as generators for the exterior algebras of the vector

spaces Hom(Cq ,Cn)∗ resp. Hom(Cn,Cq)∗. Let

V0 := Hom(Cp,Cn)⊕ Hom(Cn,Cp), V1 := Hom(Cq ,Cn)⊕ Hom(Cn,Cq).

If we now choose some fixed Hermitian operator H drawn from our random matrix
ensemble, the exponential e−i Tr (H K ) is seen to be a holomorphic function on V0 with
values in the exterior algebra ∧(V ∗1 ). Under mild assumptions on dµ(H) (e.g., bounded
support, or rapid decay at infinity) the holomorphic property carries over to the integral∫

exp(−iTr H K ) dµ(H). The characteristic function F (K ) in that case is a holomor-
phic function

F (K ) : V0 → ∧(V ∗1 ),
and so is the function resulting from F (K ) by multiplication with the Gaussian factor
(2.1). We denote this product of functions by f for short.
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Combining V0 and V1 to a Z2-graded vector space V := V0 ⊕ V1, we denote the
graded-commutative algebra of holomorphic functions V0 → ∧(V ∗1 ) by AV . The main
task in the supersymmetry method is to compute the Berezin superintegral of f ∈ AV .

This task is rather difficult to carry out for functions f corresponding to a general
probability measure dµ(H). Let us therefore imagine that f has some symmetries. Thus,
let a group G ⊂ GL(Cn) be acting on C

n , and let

g.(L ⊕ L̃) = L g−1 ⊕ gL̃ (g ∈ G),

for L ∈ Hom(Cn,Cp) and L̃ ∈ Hom(Cp,Cn) be the induced action of G on V0. We
also have the same G-action on V1, and the latter induces a G-action on ∧(V ∗1 ).

Now let the given probability measure dµ(H) be invariant with respect to conjuga-
tion by the elements of (a unitary form of) such a group G. Via the Fourier transform,
this symmetry gets transferred to the characteristic function F (K ), and also to the
product of F (K ) with the exponential (2.1). Our function f then satisfies the relation
f (v) = g. f (g−1v) for all g ∈ G and v ∈ V0 and thus is an element of the subalgebra
A G

V ⊂ AV of G-equivariant holomorphic functions.
Following Dyson [5] the complex symmetry groups G of prime interest in random

matrix theory are G = GLn(C), On(C), and Spn(C). These are the complexifications
of the compact symmetry groups Un , On , and USpn , corresponding to ensembles of
Hermitian matrices with unitary symmetry, real symmetric matrices with orthogonal
symmetry, and quaternion self-dual matrices with symplectic symmetry.

To summarize, in the present paper we will be concerned with the algebra A G
V of

G-equivariant holomorphic functions

f : V0 → ∧(V ∗1 ), v �→ f (v) = g. f (g−1v) (g ∈ G), (2.2)

for the classical Lie groups G = GLn(C), On(C), and Spn(C), and the vector spaces

V0 = Hom(Cn,Cp)⊕ Hom(Cp,Cn), (2.3)

V1 = Hom(Cn,Cq)⊕ Hom(Cq ,Cn). (2.4)

Our strategy will be to lift f ∈ A G
V to another algebra AW of holomorphic func-

tions F : W0 → ∧(W ∗
1 ), using a surjective homomorphism AW → A G

V . The thrust of
the paper then is to prove a statement of reduction – the superbosonization formula –
transferring the Berezin superintegral of f ∈ A G

V to such an integral of F ∈ AW .
The advantage of our treatment (as compared to the orthogonal polynomial method)

is that it readily extends to the case of symmetry groups G×G×· · ·×G with direct prod-
uct structure. This will make it possible in the future to treat such models as Wegner’s
gauge-invariant model [20] with n orbitals per site and gauge group G.

2.1. Notation. We now fix some notation which will be used throughout the paper.
If A and B are vector spaces and L : A → B is a linear mapping, we denote the canon-

ical adjoint transformation between the dual vector spaces B∗ and A∗ by L t : B∗ → A∗.
We call L t the ‘transpose’ of L . A Hermitian structure 〈, 〉 on a complex vector space A
determines a complex anti-linear isometry cA : A → A∗ by v �→ 〈v, ·〉. If both A and
B carry Hermitian structure, then L : A → B has a Hermitian adjoint L† : B → A
defined by L† = c−1

A ◦ L t ◦cB . The operator (L†)t : A∗ → B∗ is denoted by (L†)t ≡ L .
Note L = cB ◦ L ◦ c−1

A . Finally, if each of A and B is equipped with a non-degenerate
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pairing A× A → C and B× B → C, so that we are given complex linear isomorphisms
α : A → A∗ and β : B → B∗, then there exists a transpose LT : B → A by

LT : B
β→ B∗ L t→ A∗ α

−1→ A.

To emphasize that this is really a story about linear operators rather than basis-depen-
dent matrices, we use such notations as Hom(Cn,Cp) for the vector space of complex
linear transformations from C

n to C
p. In a small number of situations we will resort to

the alternative notation Mat p, n(C).
From here on in this article, Lie groups by default will be complex Lie groups; thus

GLn ≡ GL(Cn), On ≡ O(Cn), and Spn ≡ Sp(Cn), with n ∈ 2N in the last case.

3. Pushing Forward in the Boson-Boson Sector

In this section, we shall address the special situation of V1 = 0, or fermion replica
number q = 0. Thus we are now facing the commutative algebra A G

V ≡ O(V )G of
G-invariant holomorphic functions on the complex vector space

V ≡ V0 = Hom(Cn,Cp)⊕ Hom(Cp,Cn).

In order to deal with this function space we will use the fact that O(V ) can be viewed as
a completion of the symmetric algebra S(V ∗). Since the G-action on S(V ∗) preserves
the Z-grading

S(V ∗) = ⊕k≥0 Sk(V ∗)

and is reductive on each symmetric power Sk(V ∗), one has a subalgebra Sk(V ∗)G of
G-fixed elements in Sk(V ∗) for all k.

3.1. G-invariants at the quadratic level. It is a known fact of classical invariant theory
(see, e.g., [12]) that for each of the cases G = GLn , On , and Spn , all G-invariants in
S(V ∗) arise at the quadratic level, i.e., S(V ∗)G is generated by S2(V ∗)G . Let us therefore
sharpen our understanding of these quadratic invariants S2(V ∗)G .

3.1.1. The case of G = GLn. All quadratic invariants are just of a single type here: they
arise by composing the elements of Hom(Cp,Cn) with those of Hom(Cn,Cp).

Lemma 3.1. S2(V ∗)G is isomorphic as a complex vector space to W ∗ = End(Cp)∗.

Proof. Using the canonical transpose Hom(A, B) � Hom(B∗, A∗) we have

V � Hom(Cn,Cp)⊕ Hom((Cn)∗, (Cp)∗).

For G = GLn there exists no non-zero G-invariant tensor in C
n⊗C

n or (Cn)∗ ⊗ (Cn)∗.
Therefore S2(Hom(Cn,Cp))G = 0 and S2(Hom((Cn)∗, (Cp)∗))G = 0, resulting in

S2(V )G � (
Hom(Cn,Cp)⊗ Hom((Cn)∗, (Cp)∗)

)G
.
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The space of G-invariants in (Cn)∗ ⊗ C
n is one-dimensional (with generator ϕi ⊗ ei

given by the canonical pairing between a vector space and its dual). Since the action of
G on C

p is trivial, it follows that

S2(V )G � (
C

p ⊗ (Cn)∗ ⊗ C
n ⊗ (Cp)∗

)G � C
p ⊗ (Cp)∗ � End(Cp) ≡ W.

The action of G = GLn on S2(V ) and S2(V ∗) is reductive. Therefore there exists
a canonical pairing S2(V )G ⊗ S2(V ∗)G → C and the isomorphism S2(V )G → W
dualizes to an isomorphism W ∗ → (S2(V )G)∗ � S2(V ∗)G . ��

3.1.2. The cases of G = On, Spn. Here C
n is equipped with a G-invariant non-degen-

erate bilinear form or, equivalently, with a G-equivariant isomorphism

β : C
n → (Cn)∗,

which is symmetric for G = On and alternating for G = Spn . To distinguish between
these two, we sometimes write β = δ in the former case and β = ε in the latter case.

To describe S2(V ∗)G for both cases, we introduce the following notation. On
U := C

p ⊕ (Cp)∗ we have two canonical bilinear forms: the symmetric form

s(v ⊕ ϕ, v′ ⊕ ϕ′) = ϕ′(v) + ϕ(v′),

and the alternating form

a(v ⊕ ϕ, v′ ⊕ ϕ′) = ϕ′(v)− ϕ(v′).
Definition 3.2. Let b = s or b = a. An endomorphism L : U → U of the complex
vector space U = C

p ⊕ (Cp)∗ is called symmetric with respect to b if L = LT , i.e. if

b(L x, y) = b(x, L y)

for all x, y ∈ U. We denote the vector space of such endomorphisms by Symb(U ).

Lemma 3.3. If U = C
p ⊕ (Cp)∗, then the space of quadratic invariants S2(V ∗)G is

isomorphic as a complex vector space to W ∗, where W = Syms(U ) for G = On and
W = Syma(U ) for G = Spn.

Proof. We still have V � Hom(Cp,Cn)⊕ Hom((Cp)∗, (Cn)∗) but now, via the given
complex linear isomorphism β : Cn → (Cn)∗, we even have an identification

V � Hom(U,Cn) � U∗ ⊗ C
n, U = C

p ⊕ (Cp)∗.

Also, letting Sym(V, V ∗) denote the vector space of symmetric linear transformations

σ : V → V ∗, σ (v)(v′) = σ(v′)(v),
there is an isomorphism S2(V ∗)→ Sym(V, V ∗) by

ϕ′ϕ + ϕϕ′ �→ (
v �→ ϕ′(v)ϕ + ϕ(v)ϕ′

)
.

This descends to a vector space isomorphism between S2(V ∗)G and SymG(V, V ∗), the
G-equivariant mappings in Sym(V, V ∗).
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Consider now HomG(V, V ∗) � HomG(U∗ ⊗C
n,U ⊗ (Cn)∗). As a consequence of

the G-action on U and U∗ being trivial, one immediately deduces that

HomG(U
∗ ⊗ C

n,U ⊗ (Cn)∗) � Hom(U∗,U )⊗ HomG(C
n, (Cn)∗).

The vector space HomG(C
n, (Cn)∗) is one-dimensional with generator β. Because β is

symmetric for G = On and alternating for G = Spn , it follows that

S2(V ∗)G � SymG(U
∗ ⊗ C

n,U ⊗ (Cn)∗) �
{

Sym(U∗,U ), G = On,

Alt(U∗,U ), G = Spn,

where the notation Alt(U∗,U ) means the vector space of alternating homomorphisms
A : U∗ → U , i.e., ϕ(A(ϕ′)) = −ϕ′(A(ϕ)). Note that Sym(U∗,U ) � Sym(U,U∗)∗
and Alt(U∗,U ) � Alt(U,U∗)∗ by the trace form (A, B) �→ Tr (AB).

Now let L ∈ Symb(U ). Since b = s is symmetric and b = a is alternating, the image
of Symb(U ) in Hom(U,U∗) under the mapping L �→ φL defined by

φL(x)(y) := b(L x, y)

is Sym(U,U∗) for b = s and Alt(U,U∗) for b = a. Moreover, since the bilinear form
b is non-degenerate, this mapping is an isomorphism of C-vector spaces. Thus we have

S2(V ∗)G �
{

Sym(U∗,U ) � Sym(U,U∗)∗ � Syms(U )
∗, G = On,

Alt(U∗,U ) � Alt(U,U∗)∗ � Syma(U )
∗, G = Spn,

which is the statement that was to be proved. ��

3.2. The quadratic map Q . Summarizing the results of the previous subsection, the
vector space W of quadratic G-invariants in S(V ) is

W = S2(V )G =
⎧
⎨

⎩

End(Cp), G = GLn,

Syms(Up), G = On,

Syma(Up), G = Spn,

where U ≡ Up = C
p⊕ (Cp)∗. For notational convenience, we will sometimes think of

W = End(Cp) ↪→ End(Cp)⊕End((Cp)∗) for the first case (G = GLn) as the intersec-
tion Syms(Up)∩Syma(Up) of the vector spaces W for the last two cases (G = On,Spn).

In the following we will repeatedly use the decomposition of elements w ∈ W as

w =
(

A B
C At

)
∈

(
End(Cp) Hom((Cp)∗,Cp)

Hom(Cp, (Cp)∗) End((Cp)∗)

)
. (3.1)

Note that B and C are symmetric for the case of G = On and alternating for G = Spn .
The case of G = GLn is included by setting B = C = 0. Note also the dimensions
dim W = p2, p(2p + 1), and p(2p − 1) for G = GLn , On , and Spn , in this order.

Our treatment below is based on the relationship of O(V )G with the holomorphic
functions O(W ). To make this relation explicit, we now introduce a map

Q : V = Hom(Cn,Cp)⊕ Hom(Cp,Cn)→ End(Up)



P. Littelmann, H.-J. Sommers, M. R. Zirnbauer

by defining its blocks according to the decomposition (3.1) as

Q : L ⊕ L̃ �→
(

L L̃ L β−1L t

L̃ tβ L̃ L̃ t L t

)
.

Recall that the G-equivariant isomorphism β : C
n → (Cn)∗ is symmetric for G = On ,

alternating for G = Spn , and non-existent for G = GLn in which case the off-diagonal
blocks Lβ−1L t and L̃ tβ L̃ are understood to be zero. In all three cases this mapping Q
is G-invariant: Q(L ⊕ L̃) = Q(Lg−1 ⊕ gL̃) for all g ∈ G. In the last two cases this is
because gtβg = β by the very notion of what it means for β to be G-equivariant.

Lemma 3.4. The G-invariant mapping Q : V → End(U ) is into W .

Proof. Let G be one of the groups On or Spn and denote by L and L̃ the elements of
Hom(Cn,Cp) resp. Hom(Cp,Cn). Introducing two isomorphisms

ψ : V → Hom(Cn,U ), L ⊕ L̃ �→ L ⊕ L̃ tβ,

ψ̃ : V → Hom(U,Cn), L ⊕ L̃ �→ L̃ ⊕ β−1L t,

we have Q(v) = ψ(v)ψ̃(v) for v = L ⊕ L̃ . The two maps ψ and ψ̃ are related by

βψ̃(v) = ψ(v)tTb,

where Tb : U → U∗ is the isomorphism given by x �→ b(x, ·). Note that Tb is sym-
metric for b = s and alternating for b = a. Using the relations above, one computes
that

Q(v)t = ψ̃(v)tψ(v)t = T t
bψ(v)(β

t)−1βψ̃(v)T−1
b .

If parities σ(β), σ (Tb) ∈ {±1} are assigned to β and Tb by β t = σ(β) β and
T t

b = σ(Tb) Tb, then σ(β) = σ(Tb) by construction, and it follows that Q(v)t =
Tb Q(v)(Tb)

−1. This is equivalent to saying that Q(v) = Q(v)T ∈ Symb(U ) = W ,
which proves the statement for the groups G = On,Spn . The remaining case of G = GLn
is included as a subcase by the embedding End(Cp) ↪→ Syms(Up) ∩ Syma(Up). ��

While the map Q : V → W will not always be surjective, as the rank of
L ∈ Hom(Cn,Cp) is at most min(n, p), there is a pullback of algebras Q∗ : O(W )→
O(V )G in all cases. Let us now look more closely at Q∗ restricted to W ∗, the linear
functions on W . For this let {ei }, { f i }, {ec}, and { f c} be standard bases of C

n , (Cn)∗,
C

p, and (Cp)∗, respectively, and define bases {Zi
c} and {Z̃ c

i } of Hom(Cp,Cn)∗ and
Hom(Cn,Cp)∗ by

Zi
c(L̃) = f i (L̃ ec), Z̃ c

i (L) = f c(L ei ),

where i = 1, . . . , n and c = 1, . . . , p. Also, decomposing w ∈ W ⊂ End(U ) as in
(3.1), define a set of linear functions xc′

c , yc′c, and ycc′ on W by

xc′
c (w) = f c′(Aec), yc′c(w) = f c′(B f c), ycc′(w) = (Cec′)(ec).

Notice that yc′c = ±ycc′ and ycc′ = ±yc′c where the plus sign applies in the case of
G = On and the minus sign for G = Spn . The set of functions {xc′

c } is a basis of
W ∗ � End(Cp)∗ for the case of G = GLn . Expanding this set by including the set
of functions {yc′c, ycc′ }c≤c′ we get a basis of W ∗ for G = On . The same goes for
G = Spn if the condition on indices c ≤ c′ is replaced by c < c′.
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Lemma 3.5. The pullback of algebras Q∗ : O(W ) → O(V )G restricted to the linear
functions on W realizes the isomorphism of complex vector spaces W ∗ → S2(V ∗)G.

Proof. Applying Q∗ to the chosen basis of W ∗ we obtain the expressions

Q∗xc′
c = Z̃ c′

i Z i
c, Q∗yc′c = Z̃ c′

i β
i j Z̃ c

j , Q∗ycc′ = Zi
cβi j Z j

c′,

where β i j = f i (β−1 f j ) and βi j = (βe j )(ei ). Now the p2 functions Z̃ c′
i Z i

c are linearly
independent and form a basis of S2(V ∗)GLn . By including the p(p ± 1) linearly inde-
pendent functions Z̃ c′

i β
i j Z̃ c

j and Zi
cβi j Z j

c′ we get a basis of S2(V ∗)G for G = On resp.

Spn . Thus our linear map Q∗ : W ∗ → S2(V ∗)G is a bijection in all cases. ��

Proposition 3.6. The homomorphism Q∗ : O(W )→ O(V )G is surjective.

Proof. Let C[W ] = S(W ∗) and C[V ]G = S(V ∗)G be the rings of polynomial functions
on W and G-invariant polynomial functions on V , respectively. Pulling back func-
tions by the G-invariant quadratic map Q : V → W , we have a homomorphism
Q∗ : C[W ] → C[V ]G . This map Q∗ is surjective because C[V ]G = S(V ∗)G is gener-
ated by S2(V ∗)G and Q∗ : W ∗ → S2(V ∗)G is an isomorphism.

Our holomorphic functions are expressed by power series with infinite radius of con-
vergence. Therefore the surjective property of Q∗ : C[W ] → C[V ]G carries over to
Q∗ : O(W )→ O(V )G . ��

In the sequel, we will establish a finer result, relating the integral of an integrable
function Q∗F ∈ O(V )G along a real subspace of V to an integral of F ∈ O(W )

over a non-compact symmetric space in W . While Prop. 3.6 applies always, this relation
between integrals depends on the relative value of dimensions and will here be developed
only in the range n ≥ p (for G = GLn) or n ≥ 2p (for G = On,Spn).

We begin by specifying the integration domain in V. Using the standard Hermitian
structures of C

n and C
p, let a real subspace VR ⊂ V be defined as the graph of

† : Hom(Cn,Cp)→ Hom(Cp,Cn).

Thus in order for L ⊕ L̃ ∈ V to lie in VR the linear transformation L̃ : C
p → C

n has
to be the Hermitian adjoint (L̃ = L†) of L : Cn → C

p. Note that VR � Hom(Cn,Cp).
The real vector space VR is endowed with a Euclidean structure by the norm square

||L ⊕ L†||2 := Tr(L L†).

Let then dvolVR
denote the canonical volume density of this Euclidean vector space VR.

Our interest will be in the integral over VR of f dvolVR
for f ∈ O(V )G . To make sure

that the integral exists, we will assume that f is a Schwartz function along VR.
Note that the anti-linear bijection cp : C

p → (Cp)∗, v �→ 〈v, ·〉, determines a Hermi-
tian structure on (Cp)∗ by 〈ϕ, ϕ′〉 := 〈c−1

p ϕ′, c−1
p ϕ〉. The canonical Hermitian structure

of U = C
p ⊕ (Cp)∗ is then given by the sum 〈u ⊕ ϕ, u′ ⊕ ϕ′〉 = 〈u, u′〉 + 〈ϕ, ϕ′〉.

The following is a first step toward our goal of transferring the integral
∫

VR
f dvolVR

to an integral over a non-compact symmetric space in W .
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Lemma 3.7. The image of VR under the quadratic map Q lies in the intersection of W
and the non-negative Hermitian operators. Thus

Q(VR) ⊂
⎧
⎨

⎩

Herm≥0 ∩ End(Cp), G = GLn,

Herm≥0 ∩ Syms(C
p ⊕ (Cp)∗), G = On,

Herm≥0 ∩ Syma(C
p ⊕ (Cp)∗), G = Spn .

Proof. In the first case this is immediate from Q(L ⊕ L†) = L L† = (L L†)† ≥ 0. To
deal with the other two cases we recall the expression

Q(L ⊕ L†) =
(

L L† L β−1L t

LβL† L L t

)
.

We already know from Lemma 3.4 that Q(L⊕ L†) ∈ Symb(C
p⊕ (Cp)∗), where b = s

or b = a. The operator Q(L ⊕ L†) is self-adjoint because (L t)† = L and β† = β−1. It
is non-negative because 〈u ⊕ ϕ, Q(L ⊕ L†)(u ⊕ ϕ)〉 = |L†u + β−1L tϕ|2 ≥ 0. ��
Remark. The condition n ≥ p resp. n ≥ 2p emerging below, can be anticipated as the
condition for the Q-image of a generic element in VR to have full rank.

3.3. The symmetric space of regular K -orbits in VR. Recall that our groups G act on
V by g.(L ⊕ L̃) = L g−1 ⊕ gL̃ . By the relation (L g−1)† = gL† for unitary transfor-
mations g ∈ G, the G-action on V restricts to an action on VR by the unitary subgroup
K = Un , On(R), or USpn , of G = GLn , On(C), resp. Spn .

In this subsection we study the regular K -orbit structure of VR. For this purpose we
identify VR � Hom(Cn,Cp) by the K -equivariant isomorphism given by L⊕L† �→ L .

3.3.1. K = Un. Here and elsewhere let Hom′(A, B) denote the space of homomor-
phisms of maximal rank between two vector spaces A and B.

Lemma 3.8. If n ≥ p then Hom′(Cn,Cp)/Un � GLp/Up (diffeomorphism).

Proof. Since a regular transformation L ∈ Hom′(Cn,Cp) is surjective, the space im(L†)

has dimension p. Thus the decomposition C
n = ker(L) ⊕ im(L†) defines an element

of the Grassmannian (Up×Un−p)\Un of complex p-planes in C
n . Fixing some unitary

basis of im(L†), we can identify the restriction L : im(L†) → C
p with an element of

GLp. In other words,

Hom′(Cn,Cp) � GLp ×Up (Un−p\Un),

which gives the desired statement by taking the quotient by the right Un-action. ��

3.3.2. K = On. To establish a similar result for the case of orthogonal symmetry, we
need the following preparation. (Here and in the remainder of this subsection On ≡
On(R) means the real orthogonal group.) Recalling that we are given a symmetric iso-
morphism δ : C

n → (Cn)∗, we associate with L ∈ Hom(Cn,Cp) an extended complex
linear operator ψ(L) ∈ Hom(Cn,Cp ⊕ (Cp)∗) by

ψ(L)v = (L v)⊕ L δv.
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Lemma 3.9. The mapping ψ : L �→ L ⊕ (L ◦ δ) determines an On-equivariant
isomorphism Hom(Cn,Cp) → Hom(Rn,R2p) of vector spaces with complex struc-
ture.

Proof. Recall that L = cp ◦ L ◦ c−1
n , where cp : C

p → (Cp)∗ and cn : C
n → (Cn)∗

are the canonical anti-linear isomorphisms given by the Hermitian structures of C
p resp.

C
n . Writing T := c−1

n δ we have

ψ(L) = L ⊕ (cp L T ).

Because δ is a symmetric isomorphism, the anti-unitary operator T : Cn → C
n squares

to T 2 = 1. Let Fix(T ) ⊂ C
n denote the real subspace of fixed points v = T v, and define

on U = Cp ⊕ (Cp)∗ an anti-linear involution C by

C(u ⊕ ϕ) := (c−1
p ϕ)⊕ cp u.

If Fix(C) ⊂ U denotes the real subspace of fixed points of C , then from

Cψ(L)v = L T v ⊕ cp Lv
v=T v= ψ(L)v

we see that the C-linear operatorψ(L)maps Fix(T ) � R
n into Fix(C) � R

2p. Thus we
may identify ψ(L)with an element of Hom(Rn,R2p). The correspondence L �→ ψ(L)
is bijective and transforms multiplication by

√−1, L �→ iL , into ψ(L) �→ Jψ(L),
where J : u + cp u �→ iu − icp u is the complex structure of the real vector space
R

2p � Fix(C).
By definition, the elements of the real orthogonal group On commute with T . Thus

ψ(L) ◦ k = ψ(L k) for k ∈ On , which means that ψ is On-equivariant. ��
As before, let U = C

p ⊕ (Cp)∗ be equipped with the Hermitian structure which is
induced from that of C

p by 〈u⊕ ϕ, u′ ⊕ ϕ′〉 = 〈u, u′〉 + 〈c−1
p ϕ′, c−1

p ϕ〉. Its restriction to
Fix(C) � R

2p is a Euclidean structure defining the real orthogonal group O2p.

Lemma 3.10. If n ≥ 2p then Hom′(Rn,R2p)/On � GL2p(R)/O2p.

Proof. A regular linear operator L : R
n → R

2p determines an orthogonal decomposi-
tion R

n = ker(L) ⊕ im(L†) into Euclidean subspaces of dimension n − 2p, resp. 2p
and hence a point of the symmetric space (O2p×On−2p)\On . Therefore, arguing in the
same way as in the proof of Lemma 3.8, we have an identification

Hom′(Rn,R2p) � GL2p(R)×O2p (On−2p\On).

The desired statement follows by taking the quotient by On . ��
Remark. Although each of GL2p(R) and O2p has two connected components, their
quotient GL2p(R)/O2p = GL+

2p(R)/SO2p is connected.

For later purposes note that the anti-unitary map C : U → U combines with the
Hermitian structure of U to give the canonical symmetric bilinear form of U :

〈C(u ⊕ ϕ), u′ ⊕ ϕ′〉 = ϕ′(u) + ϕ(u′) = s(u ⊕ ϕ, u′ ⊕ ϕ′).
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3.3.3. K = USpn. In the final case to be addressed, we are given an alternating
isomorphism ε : C

n → (Cn)∗ and hence an anti-unitary operator T := c−1
n ε : C

n →
C

n which squares to T 2 = −1. Note n ∈ 2N. The Hermitian vector space C
n now

carries the extra structure of a complex symplectic vector space with symplectic form

ω(v, v′) := 〈T v, v′〉 = 〈T 2v, T v′〉 = −ω(v′, v).
The symmetry group of the Hermitian symplectic vector space C

n is K = USpn .
To do further analysis in this situation, it is convenient to fix some decomposition

C
n = P ⊕ T (P)

which is orthogonal with respect to the Hermitian structure of C
n and Lagrangian w.r.t.

the symplectic structure. The latter means that P and T (P) are non-degenerately paired
by ω, so that we have an isomorphism T (P)

∼→ P∗ by T v �→ ω(T v, ·) = −〈v, ·〉.
Writing U = C

p ⊕ (Cp)∗ we still define ψ : Hom(Cn,Cp)→ Hom(Cn,U ) by

ψ(L) = L ⊕ L ε = L ⊕ cp L T,

and invoke the canonical Hermitian structure of U to determine the adjoint ψ(L)†. For
future reference we note that the map L �→ ψ(L) is USpn-equivariant.

Lemma 3.11. The decomposition C
n = kerψ(L)⊕ imψ(L)† is a decomposition into

Hermitian symplectic subspaces.

Proof. By the definition of the operation of taking the Hermitian adjoint, the space
imψ(L)† is the orthogonal complement of kerψ(L) in the Hermitian vector space C

n .
Since U = C

p ⊕ (Cp)∗ is an orthogonal sum and cp : C
p → (Cp)∗ is a bijection, the

condition 0 = ψ(L)v = L v ⊕ cp L T v implies that if v is in the kernel of ψ(L) then
so is T v. Thus T preserves the subspace kerψ(L). Being anti-unitary, the operator T
then preserves also the orthogonal complement imψ(L)†. It therefore follows that ω
restricts to a non-degenerate symplectic form on both subspaces. ��

Next, let an anti-unitary operator C : U → U with square C2 = −1 be defined by

C(u ⊕ ϕ) = (c−1
p ϕ)⊕ (−cp u).

The associated symplectic structure of U is given by the canonical alternating form:

−〈C(u ⊕ ϕ), u′ ⊕ ϕ′〉 = ϕ′(u)− ϕ(u′) = a(u ⊕ ϕ, u′ ⊕ ϕ′).
A short computation shows that the complex linear operator ψ(L) : C

n → U satisfies
the relation ψ(L) = Cψ(L)T−1. Let us therefore decompose ψ(L) according to

ψ(L) : P ⊕ P∗ → C
p ⊕ (Cp)∗.

Recalling T 2 = −1 and the fact that the anti-unitary operator T exchanges the subspaces
P and P∗, we then see that ψ(L) = Cψ(L)T−1 is already determined by its blocks
α1 := ψ(L)|P→Cp and α2 := ψ(L)|P∗→Cp :

ψ(L) =
(
α1 α2
−ᾱ2 ᾱ1

)
.
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Table 2. Meaning of the groups Kn , Gp , Kp , Kn,p for the three choices of Gn

Gn Kn Gp Kp Kn,p

GLn(C) Un GLp(C) Up Un−p
On(C) On(R) GL2p(R) O2p(R) On−2p(R)
Spn(C) USpn GLp(H) USp2p USpn−2p

This means that the matrix expression of ψ(L) with respect to symplectic bases of
P ⊕ P∗ and C

p ⊕ (Cp)∗ consists of real quaternions q ∈ H :

q = q0

(
1 0
0 1

)
+ q1

(
0 i
i 0

)
+ q2

(
0 1
−1 0

)
+ q3

(
i 0
0 −i

)
(q j ∈ R).

Now assume that n ≥ 2p and ψ(L) is regular. Then ψ(L) : imψ(L)† → U is an
isomorphism of Hermitian symplectic vector spaces. On expressing this isomorphism
with respect to symplectic bases of imψ(L)† and U , we can identify it with an element
of GLp(H), the group of invertible p× p matrices with real quaternions for their entries.
Note that another characterization of the elements g of GLp(H) as a subgroup of GL(U )
is by the equation Cg = g C . The subgroup of unitary elements in GLp(H) is the unitary
symplectic group USp(U ) ≡ USp2p.

The rest of the argument goes the same way as before: a regular transformationψ(L)
is determined by a Hermitian symplectic decomposition C

n = kerψ(L) ⊕ imψ(L)†

together with a GLp(H)-transformation from imψ(L)† to U ; taking the quotient by the
right action of USpn we directly arrive at the following statement.

Lemma 3.12. If n ≥ 2p then the space of regular USpn-orbits in the image of
Hom(Cn,Cp) under ψ is isomorphic to GLp(H)/USp2p.

3.4. Integration formula for K -invariant functions. Let us now summarize the results
of the previous section. To do this in a concise way covering all three cases at once, we
will employ the notation laid down in Table 2.

Proposition 3.13. If rank(K p) ≤ rank(Kn) so that K p ⊂ Kn, the space of regular
Kn-orbits in Hom(Cn,Cp) is isomorphic to the non-compact symmetric space G p/K p.

Motivated by this result, our next goal is to reduce the integral of a Kn-invariant
function on VR � Hom(Cn,Cp) to an integral over G p/K p. To prepare this step we
introduce some further notations and definitions as follows.

First of all, let Up denote the Hermitian vector space

Up =
⎧
⎨

⎩

C
p Gn = GLn,

C
p ⊕ (Cp)∗; s Gn = On,

C
p ⊕ (Cp)∗; a Gn = Spn .

In the second case Up carries a Euclidean structure (on R
2p � Fix(C) ⊂ Up) by the

symmetric form s, in the third case it carries a symplectic structure by the alternating
form a. Then let us regard Up (assuming that, depending on the case, the inequality
p ≤ n or 2p ≤ n is satisfied) as a subspace of C

n with orthogonal complement Un,p,
thereby fixing an orthogonal decomposition C

n = Up ⊕ Un,p. This decomposition is
Hermitian, Euclidean, or Hermitian symplectic, respectively.
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Let now X p, n denote the vector space of structure-preserving linear transformations
Up ⊕Un,p → Up. Using the language of matrices one would say that

X p, n �
⎧
⎨

⎩

Mat p, n(C), Gn = GLn,

Mat2p, n(R), Gn = On,

Mat p, n/2(H), Gn = Spn .

A special element of X p, n is the projector� : Up⊕Un,p → Up on the first summand.
By construction, the symmetry group of the kernel space ker(�) = Un,p is Kn,p.

Next, we specify our normalization conventions for invariant measures on the Lie
groups and symmetric spaces at hand. For that purpose, let ψ denote the Kn-equivariant
isomorphism discussed in the previous subsection:

ψ : Hom(Cn,Cp)→ X p, n, L �→
⎧
⎨

⎩

L , Gn = GLn,

L ⊕ L δ, Gn = On,

L ⊕ L ε, Gn = Spn .

To avoid making case distinctions, we introduce an integer m taking the value
m = 0,+1,−1 for G = GLn , On , Spn , respectively. Then from TrCp L L† = Tr(Cp)∗ L L t

we have the relation

TrCp L L† = (1 + |m|)−1TrUp ψ(L)ψ(L)
†,

which transfers the Euclidean norm of the vector space VR � Hom(Cn,Cp) to a cor-
responding norm on X p, n . In view of the scaling implied by this transfer, we equip the
Lie algebra Lie(K p) = Te K p with the following trace form (or Euclidean structure):

Lie(K p)→ R, A �→‖ A ‖2:= −(1 + |m|)−1TrUp A2 ≥ 0.

The compact Lie group K p is then understood to carry the invariant metric tensor and
invariant volume density given by this Euclidean structure on Lie(K p). The same conven-
tion applies to the compact Lie groups Kn and Kn,p. Please note that these conventions
are standard and natural in that they imply, e.g., vol(U1) = vol(SO2) = 2π .

By the symbol dgK p we will denote the G p-invariant measure on the non-com-
pact symmetric space G p/K p. In keeping with the normalization convention we have
just defined, the restriction of dgK p to the tangent space To(G p/K p) at o := K p is the
Euclidean volume density determined by the trace form B �→‖ B ‖2= (1+|m|)−1TrUp B2,
which is positive for Hermitian matrices B = B†.

As a final preparation, we observe that the principal bundle G p → G p/K p is trivial
in all cases. Recall also that the Euclidean vector space VR � Hom(Cn,Cp) comes with
a canonical volume form (actually, a density) dvolVR

.

Proposition 3.14. For V = Hom(Cn,Cp)⊕Hom(Cp,Cn) let f ∈ O(V )Gn be a holo-
morphic function on V with the symmetry f (L ⊕ L̃) = f (L h ⊕ h−1 L̃) for all h ∈ Gn.
Restrict f to a Kn-invariant function fr on the real vector subspace VR � Hom(Cn,Cp)

by fr (L) := f (L ⊕ L†). If fr is a Schwartz function, then
∫

Hom(Cn ,Cp)

fr (L) dvolVR
(L) = vol(Kn)

vol(Kn,p)

∫

G p/K p

fr ◦ ψ−1(g�) J (g) dgK p ,

where the Jacobian function J : G p/K p → R is given by J (g) = 2p2−pn|Det(g)|2n

for Gn = GLn and J (g) = 22p2−pn|Det(g)|n for Gn = On,USpn.
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Proof. Convergence of the integral on both sides of the equation is guaranteed by the
requirement that the integrand fr be a Schwartz function.

The first step is to transform the integral on the left-hand side to the domain X p, n

with integrand (ψ−1)∗( f dvolVR
). Of course the space X ′p, n of regular elements in X p, n

has full measure with respect to (ψ−1)∗(dvolVR
). Now choose a section s of the trivial

principal bundle π : G p → G p/K p and parameterize X ′p, n by the diffeomorphism

φ : (G p/K p)× (Kn/Kn,p)→ X ′p, n, (x, kKn,p) �→ s(x)� k−1.

Using φ, transform the integral from X ′p, n to (G p/K p) × (Kn/Kn,p). Right Kn-
translations (as well as left K p-translations) are isometries of (ψ−1)∗(dvolVR

), and vary-
ing ψ(L) = s(x)� k−1 we get δψ(L) = δs(x)� k−1 − s(x)� k−1δk k−1. Therefore,
the pullback of dvolVR

by ψ−1 ◦ φ is proportional to the product of invariant measures
of G p/K p and Kn/Kn,p times a Jacobian j (x) which can be computed as the Jacobian
of the map

Ls(x) : X p, n → X p, n, L �→ s(x)L .

In the case of X p, n = Hom(Cn,Cp) this gives j (x) = |Det(s(x))|2n . In the other two
cases the dimension of Up is doubled while the (real) dimension of X p, n stays the same;
hence j (x) = |Det(s(x))|n . In all cases we may replace |Det(s(x))| by |Det(g)|, where
g is any point in the fiber π−1(x). Also, by the Kn-invariance of the integrand f one has
f ◦ ψ−1(s(x)� k−1) = f ◦ ψ−1(g�) independent of the choice of g ∈ π−1(x). This
already proves that the two integrals on the left-hand and right-hand side are proportional
to each other, with the constant of proportionality being independent of f .

It remains to ascertain the precise value of this constant. Doing the invariant integral
over Kn/Kn,p one just picks up the normalization factor of volumes vol(Kn)/vol(Kn,p).

The remaining factor 2p2−pn or 22p2−pn in J (g) is determined by the following consid-
eration. Decomposing the elements ξ ∈ k ≡ Lie(Kn) as

k � ξ =
(

A B
−B† D

)
∈

(
k ∩ End(Up) k ∩ Hom(Un,p,Up)

k ∩ Hom(Up,Un,p) k ∩ End(Un,p)

)
,

we have the norm square ‖ ξ ‖2= (1 + |m|)−1(−Tr A2 + 2 Tr B B† − Tr D2). On the
other hand, the differential of the mapping φ at (o, eKn,p) ∈ (G p/K p)× (Kn/Kn,p) is

H,

(
A B
−B† 0

)
�→ (H + A)⊕ B ∈ X p, n ∩ End(Up)⊕ X p, n ∩ Hom(Un,p,Up),

which gives the norm square ‖ (H + A)⊕ B ‖2= (1 + |m|)−1(Tr H2−Tr A2 + Tr B B†).
Thus the term Tr B B† gets scaled by a factor of two, and by counting the number of
independent freedoms in B ∈ Hom(Un,p,Up) we see that the Jacobian J (g) receives
an extra factor of 2p(n−p) for the case of Gn = GLn and 22p(n−2p)/2 for Gn = On , Spn .
��
Remark. For n = 2p and Gn = On the space Kn/Kn,p = On(R) consists of two con-
nected components and the volume factor means vol(Kn)/vol(Kn,p) = vol(On(R)) =
2 vol(SOn(R)). On the other hand, for n > 2p and the same case the volume factor is
that of the connected space Kn/Kn,p = On(R)/On−2p(R) = SOn(R)/SOn−2p(R).
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To finish this section, we cast Prop. 3.14 in a form closer in spirit to the rest of paper.
Recall that either we have G p = GL(Up), or else G p ⊂ GL(Up) is characterized

by the commutation rule g C = Cg. Since C† = C−1 = ±C , all our groups G p are
stabilized by the dagger operation. Thus there exists an involution

θ : G p → G p, g �→ (g−1)†,

which is actually a Cartan involution fixing the elements of the maximal compact sub-
group K p. The mapping

γ : G p/K p → G p, g �→ gθ(g−1) = gg†,

embeds the symmetric space into the group. To clarify the connection with the setting
of Sect. 3.2, let us understand the image of this embedding as a subspace of W .

Lemma 3.15. The Cartan embedding γ : G p/K p → G p ⊂ End(Up) projected to the
positive Hermitian operators in W ⊂ End(Up) is a bijection.

Proof. From ψ(L) = L in the first case, and ψ(L) = L ⊕ L β in the last two cases, we
immediately see that the composition of mappings

L ⊕ L† �→ ψ(L) �→ ψ(L)ψ(L)† = Q(L ⊕ L†) ∈ Q(VR)

is the quadratic map Q : V → W (Sect. 3.2) restricted to VR, and since g ∈ G p arises
from decomposingψ(L) = g� k−1, the positive Hermitian operator gg† = ψ(L)ψ(L)†
lies in Q(VR) ⊂ W . Thus the embedding G p/K p → G p is into Herm+ ∩W .

It remains to be shown that γ : G p/K p → Herm+ ∩W is one-to-one. In the case of
G p = GL(Up), every positive Hermitian operator h ∈ Herm+∩W has a unique positive
Hermitian square root

√
h, and h = √h θ(

√
h)−1 = √hk θ(

√
hk)−1 (k ∈ K p). Thus

there exists a unique inverse γ−1(h) = √hK p ∈ G p/K p.
To deal with the other two cases we recall the relation 〈Cb ·, ·′〉 = ±b(·, ·′), i.e.,

C ≡ Cb combines with the Hermitian structure of Up to give the bilinear form b, where
b = s or b = a. This implies that the symmetric transformations w ∈ W = Symb(Up)

are characterized by the commutation rule Cbw = w†Cb. Indeed,

〈Cbw ·, ·′〉 = ±b(w ·, ·′) = ±b(·, w ·′) = 〈Cb ·, w ·′〉 = 〈w†Cb ·, ·′〉,
and hence W ∩ Herm are exactly the elements of End(Up) that commute with Cb. The
desired statement now follows from the definition G p = {g ∈ GL(Up) | g Cb = Cb g}
because the squaring map on Herm+ ∩ GL(Up) remains a bijection when restricted to
the set of fixed points Herm+ ∩ G p of the involution w �→ Cb w (Cb)

−1. ��
In the sequel we will often use the abbreviations

n′ := (1 + |m|)−1n, Tr ′ := (1 + |m|)−1TrUp (m = 0, 1,−1 for G = GL,O,Sp).

Let now Dp := Herm+ ∩W denote the set of positive Hermitian operators in W :

Dp =
⎧
⎨

⎩

Herm+ ∩ End(Cp), Gn = GLn,

Herm+ ∩ Syms(C
p ⊕ (Cp)∗), Gn = On,

Herm+ ∩ Syma(C
p ⊕ (Cp)∗), Gn = Spn .
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Dp is equipped with a G p-invariant measure dµDp . In keeping with our general
conventions, we normalize dµDp so that (dµDp )o agrees with the Euclidean volume
density of the Euclidean vector space of Hermitian operators H ∈ Lie(G p) with norm
square ‖ H ‖2= (1 + |m|)−1Tr H2 = Tr ′H2. The Cartan embedding g �→ gθ(g−1) on
the Hermitian operators g = eH is the squaring map eH �→ e2H . Thus, pushing the G p-
invariant measure dgK p forward by the Cartan embedding we get 2−dim(G p/K p)dµDp .
Now since

dim(G p/K p) =
⎧
⎨

⎩

p2 Gn = GLn,

p(2p + 1) Gn = On,

p(2p − 1) Gn = Spn,

the following statement is a straightforward reformulation of Prop. 3.14.

Corollary 3.16. Given f ∈ O(V )Gn , and retaining the setup and the conditions of
Prop. 3.14, define F ∈ O(W ) by Q∗F = f . Then

∫

VR

f dvolVR
= 2−p(n+m) vol(Kn)

vol(Kn,p)

∫

Dp

F(x)Detn′(x) dµDp (x).

In particular, since the function x �→ F(x) = e−Tr ′x pulls back to L �→ f (L) =
e−Tr L L†

and the Gaussian integral
∫

e−Tr L L†
dvolVR

(L) has the value π pn , we infer the
formula

∫

Dp

e−Tr ′x Detn′(x) dµDp (x) = (2π)pn2pmvol(Kn,p)/vol(Kn). (3.2)

4. Lifting in the Fermion-Fermion Sector

Having settled the case of V1 = 0 (or q = 0) we now turn to the complementary case
where V0 = 0 (or p = 0). Thus, in the present section we consider

V ≡ V1 = Hom(Cn,Cq)⊕ Hom(Cq ,Cn) � C
2qn,

in which case our basic algebra AV becomes an exterior algebra of dimension 22qn :

AV = ∧(V ∗) � ∧(C2N ), N = qn.

In the sequel, we will prove an analog of Prop. 3.14 for this situation.

4.1. Quadratic G-invariants. This subsection is closely analogous to Sect. 3.1, the main
difference being that the role of the symmetric algebra S(V ∗) is now taken by the exterior
algebra ∧(V ∗). It remains true [12] that for each of the classical reductive complex Lie
groups G = GLn , On , and Spn , a basis of ∧2(V ∗)G is a generating system for ∧(V ∗)G .
Let us therefore make another study of these quadratic invariants.

Recall that on the direct sum Uq := C
q ⊕ (Cq)∗ we have the canonical symmetric

bilinear form s and the canonical alternating bilinear form a.
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Lemma 4.1. Let V = Hom(Cn,Cq)⊕Hom(Cq ,Cn) carry the G-action induced from
the fundamental action on C

n of G = GLn, On, or Spn. If Uq = C
q ⊕ (Cq)∗, then the

space of quadratic invariants ∧2(V ∗)G is isomorphic as a complex vector space to W ∗,
where W = End(Cq) for G = GLn, W = Syma(Uq) for G = On, and W = Syms(Uq)

for G = Spn.

Proof. (Sketch). There is no conceptual difference from the proofs of Lemma 3.1 and
Lemma 3.3, and we therefore give only a summary of the changes.

In the case of G = GLn , all quadratic invariants still arise by composing the elements
of Hom(Cq ,Cn) with those of Hom(Cn,Cq). Thus ∧2(V )G � End(Cq) and, since G
acts reductively and ∧2(V )G is paired with ∧2(V ∗)G , we have ∧2(V ∗)G � End(Cq)∗.

In the other cases we use the isomorphism ∧2(V ∗)→ Alt(V, V ∗) given by

ϕ′ϕ − ϕϕ′ �→ (
v �→ ϕ′(·)ϕ(v)− ϕ(·)ϕ′(v)) ,

which descends to an isomorphism ∧2(V ∗)G → AltG(V, V ∗). Then, writing U ≡ Uq
we make the G-equivariant identification V � U∗ ⊗ C

n and have

∧2(V ∗)G � AltG(U
∗ ⊗ C

n,U ⊗ (Cn)∗) �
{

Alt(U∗,U ), G = On,

Sym(U∗,U ), G = Spn .

This leads to the desired statement by the isomorphisms Alt(U∗,U ) � Alt(U,U∗)∗ �
Syma(U )

∗ and Sym(U∗,U ) � Sym(U,U∗)∗ � Syms(U )
∗. ��

As before, let the elements w ∈ W be decomposed as

w =
(

A B
C At

)
∈

(
End(Cq) Hom((Cq)∗,Cq)

Hom(Cq , (Cq)∗) End((Cq)∗)

)
.

Here B = −Bt and C = −C t for the case of G = On , while B = +Bt and C = +C t

for G = Spn , and B = C = 0 for G = GLn . By simple counting, the dimensions of W
are dim W = q2, q(2q − 1), and q(2q + 1) for G = GLn , On , and Spn , respectively.

One can now reconsider the quadratic mapping Q : V → W defined in Sect. 3.2,
with the twist that the elements of V in the present context are to be multiplied with
each other in the alternating sense of exterior algebras. However, what matters for our
purposes is not the mapping Q but the pullback of algebras Q∗ : O(W ) → ∧(V ∗)G .
Let us now specify the latter at the level of the isomorphism Q∗ : W ∗ → ∧2(V ∗)G .

For this let {ei }, { f i }, {ec}, and { f c} be standard bases of C
n , (Cn)∗, C

q , and (Cq)∗,
respectively, and define bases {ζ i

c } and {ζ̃ c
i } of Hom(Cq ,Cn)∗ and Hom(Cn,Cq)∗ by

ζ i
c (L̃) = f i (L̃ ec), ζ̃ c

i (L) = f c(L ei ),

where L ∈ Hom(Cn,Cq) and L̃ ∈ Hom(Cq ,Cn). Of course the index ranges are
i = 1, . . . , n and c = 1, . . . , q. Then, decomposing w ∈ W ⊂ End(U ) into blocks
A, B,C as above, define a set of linear functions xc′

c , yc′c, ycc′ : W → C by

xc′
c (w) = f c′(Aec), yc′c(w) = f c′(B f c), ycc′(w) = (Cec′)(ec).

Notice the symmetry relations yc′c = ∓ycc′ and ycc′ = ∓yc′c where the upper sign
applies in the case of G = On and the lower sign for G = Spn . The functions {xc′

c }
constitute a basis of W ∗ � End(Cq)∗ for the case of G = GLn . Inclusion of the set
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of functions {yc′c, ycc′ }c<c′ gives a basis of W ∗ for G = On . By including also the
functions yc′c and ycc′ for c = c′ we get a basis of W ∗ for G = Spn .

Recall that we are given a G-equivariant isomorphism β : C
n → (Cn)∗ which is

symmetric (β = δ) for G = On and alternating (β = ε) for G = Spn .

Lemma 4.2. The isomorphism W ∗ → ∧2(V ∗)G has a realization by

Q∗xc′
c = ζ̃ c′

i ζ
i
c , Q∗yc′c = ζ̃ c′

i β
i j ζ̃ c

j , Q∗ycc′ = ζ i
cβi jζ

j
c′,

where βi j =(βe j )(ei ) are the matrix entries of β : Cn→(Cn)∗, and β i j = f i (β−1 f j ).

Proof. All functions ζ̃ c′
i ζ

i
c , ζ̃ c′

i β
i j ζ̃ c

j and ζ i
cβi jζ

j
c′ are G-invariant in the pertinent cases.

The q2 functions ζ̃ c′
i ζ

i
c form a basis of ∧2(V ∗)GLn . By including the q(q − 1) functions

ζ̃ c′
i δ

i j ζ̃ c
j and ζ i

cδi jζ
j

c′ for c < c′, we get a basis of∧2(V ∗)On . Replacing β = δ by β = ε
and expanding the index range to c ≤ c′ we get a basis of ∧2(V ∗)Spn . Thus the linear
operator Q∗ takes one basis to another one and hence is an isomorphism. ��

Next, we review some useful representation-theoretic facts about ∧(V ∗)G .

4.2. G ′-irreducibility of A G
V . Taking V ⊕V ∗ � C

4N to be equipped with the canonical
symmetric form s(v ⊕ ϕ, v′ ⊕ ϕ′) = ϕ′(v) + ϕ(v′), one defines the Clifford algebra
Cl(V ⊕ V ∗) to be the associative algebra generated by V ⊕ V ∗ ⊕ C with relations

ww′ + w′w = s(w,w′)1 (w,w′ ∈ V ⊕ V ∗).

The linear span of the skew-symmetric quadratic elements (ww′ −w′w) is closed under
the commutator in Cl(V ⊕ V ∗) and is canonically isomorphic to the Lie algebra of
the orthogonal group of the vector space V ⊕ V ∗ with symmetric bilinear form s. By
exponentiating this Lie algebra inside the Clifford algebra, one obtains the spin group,
a connected and simply connected Lie group denoted by Spin(V ⊕ V ∗) = Spin4N .

Via their actions on V , the complex Lie groups G = GLn , On , and Spn , are realized
as subgroups of Spin4N . The centralizer of G in Spin4N is another complex Lie group,
G ′, called the Howe dual partner of G [12]. The list of such Howe dual pairs is

G × G ′ : GLn × G̃L2q , On × Spin4q , Spn × Sp4q .

Note that from On ⊂ GLn and Spn ⊂ GLn one has G̃L2q ⊂ Spin4q and G̃L2q ⊂ Sp4q .
In the case of n being odd, G̃L2q is a double covering of GL2q (see below).

A few words of explanation concerning the pairs G × G ′ are in order. In the case of
the first pair one regards the vector space V ⊕ V ∗ as

V ⊕ V ∗ � Uq ⊗ C
n ⊕ (Uq)

∗ ⊗ (Cn)∗, Uq = C
q ⊕ (Cq)∗,

and the centralizer of G = GLn in Spin(V⊕V ∗) is then seen to be G ′ = GL(Uq) ≡ GL2q
(or a double cover thereof if n is odd). In the last two cases the G-equivariant isomor-
phism β : C

n → (Cn)∗ leads to an identification

V ⊕ V ∗ � (Uq ⊕U∗
q )⊗ C

n .
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The symmetric bilinear form s on V ⊕V ∗ in conjunction with β induces a bilinear form
on Uq ⊕ (Uq)

∗. For G = On this form is the canonical symmetric bilinear form s and
one has the centralizer G ′ = Spin(Uq ⊕ U∗

q ; s) ≡ Spin4q . For G = Spn the induced
form is the canonical alternating form a and one has G ′ = Sp(Uq ⊕U∗

q ; a) ≡ Sp4q .
Now the exterior algebra∧(V ∗) carries the spinor representation of the Clifford alge-

bra Cl(V⊕V ∗). This is the representation which is obtained by letting vectors v ∈ V and
linear forms ϕ ∈ V ∗ operate by contraction ι(v) : ∧k(V ∗) → ∧k−1(V ∗) and exterior
multiplication ε(ϕ) : ∧k(V ∗)→ ∧k+1(V ∗).

By the inclusion G × G ′ ⊂ Spin4N ⊂ Cl(V ⊕ V ∗) the spinor representation of the
Clifford algebra gives rise to a representation on AV = ∧(V ∗) of each Howe dual pair
G×G ′. It is known [12] that AV decomposes as a direct sum⊕i (Ui⊗U ′

i ) of irreducible
G × G ′ representations such that Ui �� U j and U ′

i �� U ′
j for i �= j . In particular, the

representation of G ′ on the algebra of G-invariants A G
V = ∧(V ∗)G is irreducible.

Next we observe that each of our Howe dual groups G ′ has rank 2q. Moreover, one
can arrange for all of them to share the same maximal torus. This is the Abelian group
T = (C×)q × (C×)q acting on V = V1 = Hom(Cn,Cq)⊕ Hom(Cq ,Cn) by diagonal
transformations

(t1, t2).(L ⊕ L̃) �→ (t1L)⊕ (L̃ t2).

The induced action of elements H = (H1, H2) of the Cartan algebra t = Lie(T ) =
C

q ⊕ C
q on the spinor module is by operators

Ĥ = 1
2

∑
c

(
(H1)c[ι(ec

i ), ε( f i
c )] + (H2)c[ι(ei

c), ε( f c
i )]

)
. (4.1)

Here {ec
i } means the standard basis of Hom(Cn,Cq), and {ei

c} means the standard basis
of Hom(Cq ,Cn), while { f i

c } and { f c
i } are the corresponding dual bases. The factor of

1/2 in front of the sum reflects the fact that the spinor representation is a “square root”
representation.

The zero-degree component ∧0(V ∗) = C – the ‘vacuum’ in physics language – is
stabilized by the action of these operators Ĥ . Applying H as Ĥ to 1 ∈ ∧0(V ∗) we get

H.1 = λ(H)1, λ(H) = n

2

q∑

c=1

(
(H1)c + (H2)c

)
.

Note that the weight λ is integral for even n, but half-integral for odd n. (This is why the
latter case calls for the group GL2q to be replaced by a double cover G ′ = G̃L2q .) We
will denote the integrated weight or character by χ := eλ◦ln.

4.3. Berezin integral and lowest weight space. We are now going to think of the irre-
ducible G ′-representation space A G

V as an irreducible highest-weight module for the
Lie algebra of G ′. To keep the notation simple we omit the prime and denote this Lie
algebra by g := Lie(G ′). Thus

g =
⎧
⎨

⎩

gl2q , G = GLn,

o4q , G = On,

sp4q , G = Spn .
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The vacuum weight λ is a highest weight for the g-representation A G
V . We emphasize

this fact by making a change of notation A G
V ≡ V (λ).

The spinor module comes with a Z-grading by the degree, ∧(V ∗) = ⊕2N
k=0 ∧k (V ∗),

where N = 1
2 dim V = qn. Since G is defined on C

n and acts on V , this grading carries
over to the algebra A G

V = V (λ):

V (λ) =
⊕

k≥0
V (λ)k .

We denote the highest degree part by V (λ)top. The highest degree part ∧2N (V ∗) of the
spinor module is a complex line stable under the symmetry group G. It is easy to check
that G in fact acts trivially on ∧2N (V ∗), so V (λ)top = V (λ)2N = ∧2N (V ∗).

Now there exists a canonical generator 	V ∈ ∧2N (V ) by the following principle.
Since the trace form

Hom(Cn,Cq)⊗ Hom(Cq ,Cn)→ C, A ⊗ B �→ Tr AB,

is non-degenerate, the vector spaces Hom(Cn,Cq) and Hom(Cq ,Cn) are canonically
dual to each other. If {e1, . . . , eN } is any basis of Hom(Cn,Cq), let { f1, . . . , fN } be the
corresponding dual basis of Hom(Cq ,Cn). The exterior product

	V = fN ∧ eN ∧ · · · ∧ f1 ∧ e1

then is independent of the choice of basis and only depends on how we order the two
summands in V = Hom(Cn,Cq) ⊕ Hom(Cq ,Cn). For definiteness, let us say that
Hom(Cn,Cq) is the first summand. We then have a canonical element 	V ∈ ∧2N (V ),
and by evaluating the canonical pairing ∧2N (V )⊗∧2N (V ∗)→ C with fixed argument
	V in the first factor, we get an identification V (λ)2N = ∧2N (V ∗) � C.

Definition 4.3. The projectionπ : V (λ)→ V (λ)2N � C is called the Berezin integral,
and is here denoted by f �→ 	V [ f ].

Another way to view this projection is as follows. The vacuum ∧0(V ∗) is the space
of highest-weight vectors for g, whereas the top degree part ∧2N (V ∗) is the space of
lowest-weight vectors. The latter are the weight vectors of weight −λ. Indeed, going
from zero to top degree amounts to exchanging the operators ε and ι, and since the
expression (4.1) is skew-symmetric in these, the weight changes sign.

Now define the subgroup H ⊂ G ′ to be the intersection of the stabilizer of V (λ)0 =
∧0(V ∗) with the stabilizer of V (λ)2N = ∧2N (V ∗). For n ∈ 2N these are the groups

H =
⎧
⎨

⎩

GLq × GLq ⊂ G ′ = GL2q , G = GLn,

GL2q ⊂ G ′ = Spin4q , G = On,

GL2q ⊂ G ′ = Sp4q , G = Spn .

If n is odd, we replace H by the double cover forced on us by the square root nature of
the spinor representation or the highest weight λ being half-integral.

Let us now specify how the Lie algebra Lie(H) acts on the spinor module ∧(V ∗).
(This will do as a temporary substitute for the more detailed description of the H -action
on W ∗ = ∧2(V ∗)G given below.) In the first case, one has H = GL(Cq)×GL((Cq)∗) ≡
GLq × GLq and X = (A, D) ∈ Lie(H) acts on ∧(V ∗) as

X̂ = 1
2 [ι(Aec

i ), ε( f i
c )] + 1

2 [ι(ei
c), ε(D f c

i )],
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where the notation of (4.1) is being used. Note that X̂ .1 = n
2 (Tr A + Tr D). In the last

two cases, one uses V � Hom(Cn,Uq) and fixes a basis {eb
i }b=1,...,2q

i=1,...,n of Hom(Cn,Uq),

with dual basis { f i
b }. With these conventions, an element X of the Lie algebra of

H = GL(Uq) ≡ GL2q acts on ∧(V ∗) as X̂ = 1
2 [ι(Xeb

i ), ε( f i
b )]. Note X̂ .1 = n

2 Tr X .
By definition, the roots of H are the roots of g which are orthogonal to λ. Since all

groups H are connected subgroups of G ′ of maximal rank, they are in fact characterized
by their root systems. Note also that all of our groups H are reductive. Furthermore, the
character χ : T → C

× extends to the character χ : H → C
×, h �→ Detn/2(h).

Being orthogonal to the highest weight λ, the root system of H is orthogonal also
to the lowest weight −λ. It follows that the space of lowest-weight vectors V (λ)2N is
stable with respect to H : it is the one-dimensional representation of H corresponding to
the reciprocal character χ−1(h) = Det−n/2(h). Since H is reductive and the T -weight
space V (λ)2N = ∧top(V ∗) has dimension one, V (λ) decomposes canonically as a
H -representation space:

V (λ) = V (λ)2N ⊕U,

where U is the sum of all other H -subrepresentations in V (λ). From dim V (λ)2N = 1
we then infer that the space of H -equivariant homomorphisms HomH (V (λ),V (λ)2N )

is one-dimensional. Now the Berezin integral π : V (λ) → V (λ)2N is a non-zero
element of that space, and we therefore have the following result.

Lemma 4.4. HomH (V (λ),V (λ)2N ) = Cπ .

4.4. Parabolic induction. The g-representation V (λ) can be constructed in another way,
as follows. Decompose g as g = g−⊕h⊕g+, where h = Lie(H) and g± is the direct sum
of the root subspaces of g corresponding to positive resp. negative roots not orthogonal
to λ. Since the highest weight λ is the weight of the vacuum with generator 1 ∈ V (λ)0,
this implies that g+.1 = 0 and g−.1 = V (λ)2. Or, to put it in yet another way, g+ ⊂ g
is the subspace of elements represented on the spinor module by operators of type ιι,
while g− ⊂ g is the subspace of operators of type εε.

Let p := h⊕ g+. (The notation is to convey that p can be viewed as the Lie algebra
of a parabolic subgroup of G ′.) Since all roots of h are orthogonal to λ, the weight
λ : t → C extends in the trivial way to a linear function λ : h → C ; the latter is the
function λ(X) = (n/2)TrC2q X . We further extend λ trivially to all of p = h⊕ g+.

Let U (p) be the universal enveloping algebra of p and denote by Vλ := V (λ)0
the one-dimensional U (p)-representation defined by X.vλ = λ(X)vλ for a generator
vλ ∈ Vλ and elements X ∈ p. Then by the canonical left action of g on U (g), the tensor
product

M(λ) := U (g)⊗U (p) Vλ

is a U (g)-representation of highest weight λ and highest-weight vector

mλ = 1⊗ vλ.
This representation is called a generalized Verma module or the universal highest-weight
g-representation which is given by parabolic induction from the one-dimensional repre-
sentation Vλ of p. The module M(λ) has the following universal property.
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Lemma 4.5. Let W be any g-module with a vector w �= 0 such that i) X.w = λ(X)w
for all X ∈ p, and ii) U (g).w = W . Then there exists a surjective g-equivariant linear
map M(λ)→ W such that mλ �→ w.

In particular, our irreducible g-representation V (λ) is of this kind. Thus there exists
a surjective g-equivariant map

p : M(λ)→ V (λ).

4.5. H-structure of M(λ). The U (g)-representation M(λ) has infinite dimension and
cannot be integrated to a representation of G ′. As we shall now explain, however, the
situation is more benign for the subgroup H ⊂ G ′.

From g/p � g− we have an isomorphism of vector spaces U (g)⊗U (p)Vλ � U (g−).
By making the identification as

U (g−)⊗ Vλ � M(λ), n ⊗ vλ �→ nmλ,

we will actually get more, as follows. If α, β are any two roots such that α is orthogonal
to λ and β is not, then α + β is not orthogonal to λ. From this one directly concludes
that if h ∈ h and n ∈ g−, then [h, n] ∈ g−, i.e., g− (or g+, for that matter) is nor-
malized by h. This action of h on g− extends to an h-action on U (g−): supposing that
n = n1 · · · nr ∈ U (g−), where ni ∈ g− (i = 1, . . . , r ), we let

ad(h)n :=
∑

j
n1 · · · n j−1[h, n j ]n j+1 · · · nr ,

and by this definition we have the following commutation rule of operators in U (g):

hn = ad(h)n + nh.

If we now let U (h) act on M(λ) by the canonical left action and on U (g−)⊗ Vλ by

h.(n ⊗ vλ) := (ad(h)n)⊗ vλ + λ(h)n ⊗ vλ,
then we see that the identification U (g−) ⊗ Vλ

∼→ M(λ) by n ⊗ vλ �→ nmλ is an
isomorphism of U (h)-representations.

Now every element in U (g−) lies in an h-representation of finite dimension. Basic
principles therefore entail the following consequence.

Lemma 4.6. The representation of the Lie algebra h on M(λ) can be integrated to a
representation of the Lie group H.

In each of the three cases under consideration, g− is commutative and we can iden-
tify U (g−) with the ring of polynomial functions C[W ] on a suitable representation
W � (g−)∗ of H . From g− � g−.1 = V (λ)2 = ∧2(V ∗)G we have W = ∧2(V )G ,
the subspace of G-fixed vectors in ∧2(V ). The space W was described in Lemma 4.1
where we saw that W = End(Cq), Syma(Uq), and Syms(Uq) for G = GL, O, and
Sp, respectively. Note that in all cases W contains the identity element Id = IdCq or
Id = IdUq .

We now describe how the group H acts on W . In the last two cases, where H =
GL(Uq) ≡ GL2q (or a double cover thereof), we associate with each of the two bilinear
forms b = s or b = a an involution τb : H → H by the equation

b(τb(g)x, y) = b(x, g−1 y) (x, y ∈ Uq).
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The action of H on W = Symb(Uq) is then by twisted conjugation, g.w = gwτb(g−1).
In the notation of Sect. 1.1.2 we have τa(g−1) = ta gt(ta)−1 and τs(g−1) = ts gt(ts)−1.
Note that the group of fixed points of τb in H is the symplectic group Sp(Uq) = Sp2q
for b = a and the orthogonal group O(Uq) = O2q for b = s.

In the first case (G = GLn) the group H is the subgroup of GL(Uq) preserving the
decomposition Uq = C

q ⊕ (Cq)∗. Here again it will be best to think of the vector space
W as the intersection of the vector spaces for the other two cases:

W = End(Cq) � Syma(Uq) ∩ Syms(Uq).

This means that we think of End(Cq) as being embedded into End(Uq) as

End(Cq)→
(

End(Cq) Hom((Cq)∗,Cq)

Hom(Cq , (Cq)∗) End((Cq)∗)

)
, z �→

(
z 0
0 zt

)
=: w.

For an element g = (g1, g2) ∈ H = GL(Cq)×GL((Cq)∗) one now has τa(g1, g2)
−1 =

τs(g1, g2)
−1 = (gt

2, gt
1), and the action of H on W by twisted conjugation is given by

g.w = (g1, g2).

(
z 0
0 zt

)
=

(
g1z gt

2 0
0 g2ztgt

1

)
.

If we now define an involution τ0 by τ0(g
−1
1 , g−1

2 ) = (gt
2, gt

1), then this action can be
written in the short form g.w = gwτ0(g−1).

To sum up the situation, let τ = τ0 for G = GL, τ = τa for G = O, and τ = τs for
G = Sp. Then the H -action on W always takes the form

g.w = gwτ(g−1).

In all three cases it is a well-known fact (see for example [12]) that the ring C[W ]
is multiplicity-free as a representation space for H . It then follows that the universal
highest-weight representation M(λ) � C[W ] ⊗ Vλ is multiplicity-free.

Lemma 4.7. Let V−λ = V (λ)2N be the one-dimensional H-representation associated
to the character χ−1 = exp ◦(−λ) ◦ ln. Then the space

HomH (M(λ), V−λ)

of H-equivariant homomorphisms from M(λ) to V−λ has dimension one and is gener-
ated by π ◦ p, the composition of the projection p : M(λ) → V (λ) with the Berezin
integral π : V (λ)→ V−λ = V (λ)2N .

Proof. Since p is surjective, π ◦ p is non-trivial and the space HomH (M(λ), V−λ)
has at least dimension one. On the other hand, since M(λ) is multiplicity-free as an
H -representation, the dimension of HomH (M(λ), V ′) cannot be greater than one for
any irreducible representation V ′ of H . ��
Corollary 4.8. Let P : M(λ) = C[W ] ⊗ Vλ → V−λ be any non-trivial H-equivariant
linear mapping. Then there exists a non-zero constant cP such that for every f ∈ V (λ)
and any lift F ∈ p−1( f ) ⊂ C[W ] ⊗ Vλ one has

P[F] = cP 	[ f ].
We are now going to realize P by integration over a real domain in W .
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4.6. Construction of H-equivariant homomorphisms. Let o ≡ Id denote the identity
element of W . Then in all three cases the H -orbit H.o is open and dense in W and can
be characterized as the complement of the zero set of a polynomial D :

H.o = {w ∈ W | D(w) �= 0},
where D will be the Pfaffian function for the case of G = On and will be the determinant
function for G = GLn and G = Spn . Since D does not vanish on H.o, the map

H.o ↪→ W ⊕ C, w �→ (w, D(w)−1)

defines an inclusion, and one can view H.o as the zero set of a function on W ⊕ C :
H.o = {(w, t) ∈ W ⊕ C | D(w) t − 1 = 0}.

Hence the ring of algebraic functions on H.o, namely C[H.o], is the same as the ring
C[W ⊕ C] factored by the ideal generated by the function (w, t) �→ D(w) t − 1.

Let C(W ) be the field of rational functions on W . Thus an element r ∈ C(W ) can
be expressed as a quotient r = f/g of polynomial functions f, g ∈ C[W ]. Denote by
C[W ]D ⊂ C(W ) the subring of elements which can be written as a quotient r = f/Dn ,

C[W ]D =
{
w �→ f (w)/Dn(w) | f ∈ C[W ], n ≥ 0

}
.

We now identify C[H.o] with C[W ]D : an element in C[H.o] can be represented as a
polynomial of the form (w, t) �→ f0(w)+ f1(w) t + · · ·+ fs(w) t s , where the fi ∈ C[W ],
and the following map C[H.o] → C[W ]D then defines an isomorphism of rings:

(
(w, t) �→ f0(w) + f1(w) t + · · · + fs(w) t s

)
�→ f0

1
+

f1

D
+ · · · + fs

Ds
.

Our aim here is to construct an H -equivariant homomorphism M(λ)→ V−λ. By the
isomorphisms of H -representations: (V−λ)∗ � Vλ and Vλ ⊗ Vλ � V2λ, this is the same
as constructing an H -invariant homomorphism

M(λ)⊗ (V−λ)∗ = C[W ] ⊗ V2λ → C

to the trivial representation. For this purpose we identify the representation C[W ]⊗V2λ
with the following subspaces of C[W ]D :

C[W ] ⊗ V2λ �
⎧
⎨

⎩

Det−n
C[W ] ⊂ C[W ]Det, G = GLn,

Pfaff −n
C[W ] ⊂ C[W ]Pfaff , G = On,

Det−n/2
C[W ] ⊂ C[W ]Det, G = Spn .

In the first case, this identification is correct because g = (g1, g2) ∈ H operates on the
determinant function Det−n : W = End(Cq)→ C as

(g.Det−n)(z) = Det−n(g−1
1 z (gt

2)
−1) = Detn(g1)Detn(g2)Det−n(z),

which is the desired behavior since Detn(g1gt
2) agrees with the character χ(g1, g2)

2

associated with the H -representation V2λ . In the other two cases we have

(g.Det−n/2)(w) = Det−n/2(g−1w τb(g)
−1) = Detn(g)Det−n/2(w) (b = a, s).
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Again, this is as it should be since Detn(g) = χ(g)2 is the desired character for V2λ.
Here one should bear in mind that n is always an even number in the third case, and that√

Det = Pfaff in the second case.
Recall now that o ≡ Id denotes the identity element in W , let Ho = {h ∈ H | h.o= o}

be the isotropy group of o, and observe that H.o is isomorphic to H/Ho,

H/Ho =
⎧
⎨

⎩

(GLq × GLq)/GLq , G = GLn,

GL2q/Sp2q , G = On,

GL2q/O2q , G = Spn .

Then fix some maximal compact subgroup K ⊂ H such that the isotropy group Ko ⊂ K
is a maximal compact subgroup of the stabilizer Ho ⊂ H . Since Ho is a reductive group,
we have natural isomorphisms C[W ]D = C[H/Ho] = C[H ]Ho . The maximal com-
pact subgroup K ⊂ H is Zariski dense, i.e., a polynomial function that vanishes on K
also vanishes on H , so C[H ] = C[K ]. For the same reason, given any locally finite-
dimensional H -representation, the subspace of Ho-fixed points coincides with the
Ko-fixed points. Summarizing, we have

C[W ] ⊗ V2λ
i
↪→ C[W ]D = C[H/Ho] = C[H ]Ho = C[H ]Ko = C[K ]Ko .

The benefit from this sequence of identifications is that on the space C[K ] there exists a
natural and non-trivial K -invariant projection. Indeed, letting dk be a Haar measure on
K , we may view f ∈ C[W ]D as a function on K and integrate:

C[W ]D → C, f �→
∫

K
f (k.o) dk.

This projection is K -invariant, and its restriction to our space C[W ] ⊗ V2λ is still non-
trivial. In the first case this is because Detn ∈ C[W ] and hence C 1 ⊂ Det−n

C[W ]; in
the last two cases Detn/2 ∈ C[W ] and hence C 1 ⊂ Det−n/2

C[W ].
We can now reformulate Cor. 4.8 to make the statement more concrete.

Proposition 4.9. For each case G = GLn, On, or Spn, there is a choice of normalized
Haar measure dk so that the following holds for all f ∈ ∧(V ∗)G. If F ∈ C[W ] is any
lift w.r.t. the identification and projection C[W ] � C[W ] ⊗ Vλ → ∧(V ∗)G then

	V [ f ] =
∫

K
F(k.o)Det−n(k) dk.

Next, let us give another version of the ‘bosonization’ formula of Prop. 4.9 in order
to get a better match with the supersymmetric formula to be developed below. For that,
notice that Ko = USp2q for G = On , Ko = O2q(R) for G = Spn , and Ko = Uq acting
by elements (k, (k−1)t) for G = GLn . From this we see that Det−n(k) = 1 for k ∈ Ko
in all cases. We can therefore push down the integral over K to an integral over the orbit
K .o � K/Ko. We henceforth denote this orbit by Dq := K .o. Writing y := kτ(k−1) for
G = O, Sp we have Det−n(k) = Det−n/2(kτ(k)−1) = Det−n/2(y). Similarly, letting
y := k1(k2)

t for G = GL we have Det−n(k) = Det−n(k1)Det−n(k2) = Det−n(y). Thus
the relation Det−n(k) = Det−n′(y) always holds if we set n′ = (1+ |m|)−1n, i.e., n′ = n
for G = GL and n′ = n/2 for G = O, Sp.

Let now dµDq denote a K -invariant measure on the K -orbit Dq . According to our
general conventions, dµDq is normalized in such a way that (dµDq )o coincides with the
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Euclidean volume density on To Dq = W ∩ Lie(K ) which is induced by the quadratic
form A �→ −TrCp A2 for G = GL and A �→ − 1

2 TrUp A2 for G = O, Sp. We denote this
by A �→ −Tr ′A2 for short. Pushing the Haar measure dk forward by K → K .o = Dq
we obtain dµDq times a constant. Thus the formula of Prop. 4.9 becomes

	V [ f ] = const ×
∫

Dq

F(y)Det−n′(y) dµDq (y). (4.2)

To determine the unknown constant of proportionality, it suffices to compute both
sides of the equation for some special choice of f (and a corresponding function F). If
we choose F(y) = eTr ′y , then f is simply a Gaussian with Berezin integral	V [ f ] = 1.
However, the integral on the right-hand side is not quite so easy to do. We postpone this
computation until the end of the paper, where we will carry it out using a supersymmet-
ric reduction technique based on relations developed below. To state the outcome, we
recall the definition of the groups Kn,p and let the sign of the positive integer p now be
reversed; according to Table 2 of Sect. 3.4 this means that Kn,−p = Un+p, On+2p(R),
and USpn+2p for G = GL, O, and Sp.

Lemma 4.10.
∫

Dq
eTr ′y Det−n′(y) dµDq (y) = (2π)−qn2−qmvol(Kn,−q)/vol(Kn).

Remark. The similarity of this formula with Eq. (3.2) is not an accident; in fact, in Sect.
5.9 we will establish Lemma 4.10 by reduction to the latter result.

Using Lemma 4.10 we can now eliminate the unknown constant of proportionality
from (4.2). To state the resulting reformulation of Prop. 4.9, we will use the surjective
mapping Q∗ : O(W )→ ∧(V ∗)G defined in Sect. 4.1.

Theorem 4.11. For f ∈ ∧(V ∗)Gn , if F ∈ (Q∗)−1( f ) ∈ O(W ) is any holomorphic
function in the inverse image of f , the Berezin integral f �→ 	V [ f ] can be computed
as an integral over the compact symmetric space Dq � K/Ko :

	V [ f ] = (2π)qn2qm vol(Kn)

vol(Kn,−q)

∫

Dq

F(y)Det−n′(y) dµDq (y),

where n′ = n for Gn = GLn and n′ = n/2 for Gn = On, Spn.

4.7. Shifting by nilpotents. In this last subsection, we derive a result which will be needed
in the supersymmetric context of Sects. 5.8 and 5.9. Let p := To Dq be the tangent space
of Dq = K .o at the identity Id = o. Since H = K C, Ho = K C

o , Dq � K/Ko, and W
is the closure of H/Ho, the tangent space p is a real form of W . More precisely,

p = W ∩ Lie(K ).

Linearizing τ(y) = τ(kτ(k)−1) = τ(k)k−1 = y−1 at y = o, we note that ξ ∈ p satisfies
τ∗(ξ) = −ξ , where τ∗ is the differential τ∗ := dτ |o.

Let now Dq be equipped with the canonical Riemannian geometry in which K acts
by isometries and which is induced by the trace form −Tr on p. With each w ∈ W
associate a complex vector field tw ∈ �(Dq ,C⊗ T Dq) by

(tw f )(y) = d

dt
f (y + tw)

∣∣
t=0.



P. Littelmann, H.-J. Sommers, M. R. Zirnbauer

Lemma 4.12. The vector field tw has the divergence

div(tw)(y) = −(q − m/2)Tr (y−1w),

where m = 0,+1,−1 for G = GL, O, Sp.

Proof. For y ∈ Dq choose some fixed element k ∈ K so that y = kτ(k−1). Fixing an
orthonormal basis {eα} of p, define local coordinate functions xα in a neighborhood of
the point y by the equation

y′ = k exα(y′)eα τ (k−1).

By their construction via the exponential mapping, these are Riemann normal coordi-
nates centered at y. The Riemannian metric expands around y as

∑
α dxα ⊗ dxα + . . .,

with vanishing corrections of linear order in the coordinates xα .
Let ∂α = ∂/∂xα and express the vector field tw in this basis as tw = tαw∂α . Differen-

tiating the equation k−1(y′ + tw)τ(k) = exα(y′+tw)eα with the help of the relation

d

dt
xα(y′ + tw)

∣∣
t=0 = (Ltw xα)(y′) = tαw(y

′),

where Ltw is the Lie derivative w.r.t. the vector field tw, and then solving the resulting
equation for tαw, one obtains the following expansion of tαw in powers of the xβ :

tαw(·) = −Tr (k−1wτ(k)eα) +
1

2
xβ(·)Tr

(
k−1wτ(k)(eαeβ + eβeα)

)
+ . . . .

Since the metric tensor is of the locally Euclidean form
∑
α dxα ⊗ dxα + . . ., the diver-

gence is now readily computed to be

div(tw)(kτ(k)
−1) = (∂αtαw)(kτ(k)

−1) =
∑

α
Tr (k−1wτ(k)e2

α).

The sum of squares e2
α is independent of the choice of basis eα . Making any convenient

choice, a short computation shows that

−
∑

α
e2
α = (q − m/2) Id,

where m = 0,+1,−1 for G = GL, O, Sp. The statement of the lemma now follows by
inserting this result in the previous formula and recalling y = kτ(k−1). ��
Remark. A check on the formula for the sum of squares −∑

α e2
α is afforded by the

relations −Tr e2
α = 1 and dimR p = dimC W = q2, 2q(q − 1/2), 2q(q + 1/2) for

G = GL, O, Sp. Note also this: defined by the equation div(tw)dµDq = LtwdµDq , the
operation of taking the divergence does not depend on the choice of scale for the metric
tensor. Therefore we were free to use a normalization convention for the metric which
differs from that used elsewhere in this paper.

Lemma 4.13. Let F : Dq → C be an analytic function, and let N0 = ⊕k≥1 ∧2k (C•)
be the nilpotent even part of a (parameter) Grassmann algebra ∧(C•). Then for any
w ∈ N0 ⊗W one has

∫

Dq

F(y + w) dµDq (y) =
∫

Dq

F(y) dµDq (y)

Detq+m/2(Id − y−1w)
.
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Proof. Let tw be the vector field generating translations y �→ y + sw (s ∈ R). Sincew is
nilpotent, the exponential exp(sLtw) of the Lie derivative Ltw is a differential operator
of finite order. Applying it to the function F one has (esLtw F)(y) = F(y + sw).

Now for any density 	 on Dq the integral
∫

Dq
Ltw	 vanishes by Stokes’ theorem

for the closed manifold Dq . Therefore, partial integration gives
∫

Dq

F(y + sw) dµDq (y) =
∫

Dq

F(y) e−sLtw dµDq (y) =
∫

Dq

F(y) Js(y) dµDq (y),

where Js : Dq → C⊕ N0 is the function defined by e−sLtw dµDq = Js dµDq .
We now set up a differential equation for Js . For this we consider the derivative

d

ds

(
e−sLtw dµDq

)
= e−sLtw

(−LtwdµDq

)
.

By the relation LtwdµDq = div(tw)dµDq we then get

d

ds
Js dµDq = −e−sLtw

(
div(tw)dµDq

) = −e−sLtw (div(tw)) Js dµDq .

Using the expression for div(tw) from Lemma 4.12 we obtain the differential equation

d

ds
log Js(y) = (q − m/2)Tr (w(y − sw)−1) = −(q − m/2)

d

ds
Tr log(y − sw).

The solution of this differential equation with initial condition Js=0 = 1 is

Js(y) = Detq−m/2(y)

Detq−m/2(y − sw)
,

and setting s = 1 yields the statement of the lemma. ��

5. Full Supersymmetric Situation

We finally tackle the general situation of V = V0 ⊕ V1, where both V0 and V1 are
non-trivial. The superbosonization formulas (1.10, 1.13) in this situation will be proved
by a chain of variable transformations resulting in reduction to the cases treated in the
two preceding sections. This proof has the advantage of being constructive.

5.1. More notation. To continue the discussion in the supersymmetric context we need
some more notation. If V = V0⊕V1 is a Z2-graded vector space, one calls (V0∪V1)\{0}
the subset of homogeneous elements of V . A vector v ∈ V0\{0} is called even and
v ∈ V1\{0} is called odd. On the subset of homogeneous elements of V one defines a
parity function | · | by |v| = 0 for v even and |v| = 1 for v odd. Whenever the parity
function v �→ |v| appears in formulas and expressions, the vector v is understood to be
homogeneous even without explicit mention.

There exist two graded-commutative algebras that are canonically associated with
V = V0 ⊕ V1. To define them, let T (V ) = ⊕∞k=0T k(V ) be the tensor algebra of V , and
let I±(V ) ⊂ T (V ) be the two-sided ideal generated by multiplication of T (V ) with all
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combinations v ⊗ v′ ± (−1)|v||v′|v′ ⊗ v for homogeneous vectors v, v′ ∈ V . Then the
graded-symmetric algebra of V = V0 ⊕ V1 is the quotient

S(V ) := T (V )/I−(V ) � S(V0)⊗∧(V1),

which is isomorphic to the tensor product of the symmetric algebra of V0 with the exterior
algebra of V1. The graded-exterior algebra of V is the quotient

∧(V ) := T (V )/I+(V ) � ∧(V0)⊗ S(V1).

Here we have adopted Kostant’s language and notation [14].
Recall that our goal is to prove an integration formula for integrands in A G

V , the
graded-commutative algebra of G-equivariant holomorphic functions f : V0 → ∧(V ∗1 )
with V0 and V1 given in (2.3, 2.4). For that purpose we will view the basic algebra AV
as a completion of the graded-symmetric algebra

S(V ∗) = T (V ∗)/I−(V ∗) � S(V ∗0 )⊗∧(V ∗1 ).

The latter algebra is Z-graded by S(V ∗) = ⊕k≥0 Sk(V ∗), where

Sk(V ∗) �
⊕k

l=0

(
Sl(V ∗0 )⊗∧k−l(V ∗1 )

)
.

The action of G on V preserves the Z2-grading V = V0 ⊕ V1. Thus G acts on T (V ∗)
while leaving the two-sided ideal I−(V ∗) invariant, and it therefore makes sense to speak
of the subalgebra S(V ∗)G of G-fixed elements in S(V ∗).

It is a result of R. Howe – see Theorem 2 of [11] – that for each of the cases G = GLn ,
On , and Spn , the graded-commutative algebra S(V ∗)G is generated by S2(V ∗)G . Hence,
our attention once again turns to the subspace S2(V ∗)G of quadratic invariants.

5.2. Quadratic invariants. It follows from the definition of the graded-symmetric alge-
bra S(V ∗) that the subspace of quadratic elements decomposes as S2(V ∗0 ⊕ V ∗1 ) =
S2(V ∗0 )⊕∧2(V ∗1 )⊕ (V ∗0 ⊗ V ∗1 ). So, since G acts on V ∗0 and V ∗1 we have a decomposi-
tion

S2(V ∗0 ⊕ V ∗1 )G = S2(V ∗0 )G ⊕∧2(V ∗1 )G ⊕ (V ∗0 ⊗ V ∗1 )G.

To describe the components let us recall the notation Ur = C
r ⊕ (Cr )∗ for r = p, q.

Lemma 5.1. S2(V ∗)G is isomorphic as a Z2-graded complex vector space to W ∗, where
the even and odd components of W = W0 ⊕W1 are

W0 = W00 ×W11 =
⎧
⎨

⎩

End(Cp)× End(Cq), G = GLn,

Syms(Up)× Syma(Uq), G = On,

Syma(Up)× Syms(Uq), G = Spn,

W1 =
{

Hom(Cq ,Cp)⊕ Hom(Cp,Cq), G = GLn,

Hom(Uq ,Up), G = On,Spn .
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Proof. Writing S2(V ∗0 )G � W00 and ∧2(V ∗1 )G � W11, the statement concerning the
even part W0 ⊂ W is just a summary of Lemmas 3.1, 3.3, and 4.1. Thus what remains
to be done is to prove the isomorphism (V ∗0 ⊗ V ∗1 )G � W ∗

1 between odd components.
Let us prove the equivalent statement (V0 ⊗ V1)

G � W1.
In the case of G = GLn there are two types of invariant: we can compose an

element L̃ ∈ Hom(Cp,Cn) with an element K ∈ Hom(Cn,Cq) to form K L̃ ∈
Hom(Cp,Cq), or else compose K̃ ∈ Hom(Cq ,Cn) with L ∈ Hom(Cn,Cp) to form
L K̃ ∈ Hom(Cq ,Cp). This already gives the desired statement (V0 ⊗ V1)

GLn �
Hom(Cq ,Cp)⊕ Hom(Cp,Cq).

In the cases of G = On , Spn we use Hom(Cn,Cr ) � Hom((Cr )∗, (Cn)∗) and the
G-equivariant isomorphism β : C

n → (Cn)∗ to make the identifications

V0 � Hom(Cn,Up), V1 � Hom(Uq ,C
n).

After this, the G-invariants in V0⊗V1 are seen to be in one-to-one correspondence with
composites L K̃ ∈ Hom(Uq ,Up), where K̃ ∈ Hom(Uq ,C

n) and L ∈ Hom(Cn,Up).
��
Remark. Defining Z2-graded vector spaces C

p|q := C
p ⊕ C

q and Up|q := Up ⊕ Uq

we could say that S2(V )GLn � End(Cp|q), while S2(V )On � S2(Up|q) and S2(V )Spn �
∧2(Up|q). We will not use these identifications here.

5.3. Pullback from AW to A G
V . With W = W0⊕W1 as specified in Lemma 5.1, consider

now the algebra AW of holomorphic functions

F : W0 → ∧(W ∗
1 ).

At the linear level we have the isomorphism of Lemma 5.1, which we here denote by

Q∗2 : W ∗ → S2(V ∗)G .

This extends in the natural way to an isomorphism of tensor algebras

Q∗T : T (W ∗)→ T
(
S2(V ∗)G

)
.

Since Q∗2 is an isomorphism of Z2-graded vector spaces, Q∗T sends the ideal I−(W ∗) ⊂
T (W ∗) generated by the graded-skew elements w ⊗ w′ − (−1)|w||w′|w′ ⊗ w into the
ideal I−(V ∗) ⊂ T (V ∗) generated by the same type of element v⊗v′ − (−1)|v||v′|v′ ⊗v.

Now, taking the quotient of T (V ∗) by I−(V ∗) is compatible with the reductive action
of G, and it therefore follows that Q∗T descends to a mapping

Q∗ : S(W ∗)→ S(V ∗)G.

Because Q∗(W ∗) = Q∗2(W ∗) = S2(V ∗)G and S(V ∗)G is generated by S2(V ∗)G , the
map Q∗ : S(W ∗)→ S(V ∗)G is surjective.

The same holds true [18] at the level of our holomorphic functions AW and A G
V :

Proposition 5.2. The homomorphism of algebras Q∗ : AW → A G
V is surjective.
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5.4. Berezin superintegral form. For a Z2-graded complex vector space such as our
space V = V0 ⊕ V1 with dimensions dim V0 = 2pn and dim V1 = 2qn, we denote by
Ber(V ) the complex one-dimensional space

Ber(V ) = ∧2pn(V ∗0 )⊗∧2qn(V1).

Let now each of the Hermitian vector spaces V0 and V1 be endowed with an orienta-
tion. Then there is a canonical top-form 	̃V0 ∈ ∧2pn(V ∗0 ) and a canonical generator
	V1 ∈ ∧2qn(V1). Their tensor product 	V := 	̃V0 ⊗	V1 ∈ Ber(V ) is called the (flat)
Berezin superintegral form of V . Such a form 	V determines a linear mapping

	V : AV → �(V0,∧2pn(V ∗0 )), f �→ 	V [ f ],
from the algebra of holomorphic functions f : V0 → ∧(V ∗1 ) to the space of top-degree
holomorphic differential forms on V0. Indeed, if v is any element of V0, then by pair-
ing f (v) ∈ ∧(V ∗1 ) with the second factor 	V1 of 	V we get a complex number, and
subsequent multiplication by the first factor 	̃V0 results in an element of ∧2pn(V ∗0 ).

In keeping with the approach taken in Sect. 3, we want to integrate over the real
vector space V0,R defined as the graph of † : Hom(Cn,Cp) → Hom(Cp,Cn). For
this, let dvolV0,R denote the positive density dvolV0,R := |	̃V0 | restricted to V0,R. (This
change from top-degree forms to densities is made in anticipation of the fact that we
will transfer the integral to a symmetric space which in certain cases is non-orientable;
see the Appendix for more discussion of this issue.)

The Berezin superintegral of f ∈ AV over the integration domain V0,R is now defined
as the two-step process of first converting the integrand f ∈ AV into a holomorphic
function 	V1 [ f ] : V0 → C and then integrating this function against dvolV0,R over the
real subspace V0,R :

f �→
∫

V0,R

	V1 [ f ] dvolV0,R .

Our interest in the following will be in this kind of integral for the particular case of
G-equivariant holomorphic functions f : V0 → ∧(V ∗1 ) (i.e., for f ∈ A G

V ).

5.5. Exploiting equivariance. Recall from Sect. 3 the definition of the groups Kn , K p,
Kn,p, and G p. Recall also that X p, n = ψ(Hom(Cn,Cp)) denotes the vector space of
structure-preserving linear transformations C

n → Up. To simplify the notation, let the
isomorphism ψ now be understood, i.e., write ψ(L) ≡ L .

The subset of regular elements in X p, n is denoted by X ′p, n . Taking � ∈ X ′p, n to be
the orthogonal projector C

n = Up ⊕Un,p → Up we have the isomorphism

G p ×(K p×Kn,p) Kn
∼→ X ′p, n, (g, k) �→ g� k.

Note that X ′p, n is a left G p-space and a right Kn-space. Note also the relations� k = k�
for k ∈ K p and � k = 0 for k ∈ Kn,p.

Since the compact subgroup Kn ⊂ G acts on V0,R, the given integrand f ∈ A G
V

restricts to a function f : X ′p, n→∧(V ∗1 )which has the property of being Kn-equivariant:

f (L) = f (g� k) = k−1. f (g�) (k ∈ Kn).
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Now notice that since the action of G on ∧2qn(V1) is trivial, the Berezin form 	V1 is
invariant under G and hence invariant under the subgroup Kn :

k(	V1) = 	V1 ◦ k∗ = 	V1 (k ∈ Kn).

Consequently, applying 	V1 to the Kn-equivariant function f we obtain

	V1 [ f (g� k)] = 	V1 [k−1. f (g�)] = 	V1 [ f (g�)],
and this gives the following formula for the integral of f ,

∫
	V1 [ f (L)] dvolV0,R(L) =

vol(Kn)

vol(Kn,p)

∫

G p/K p

	V1 [ f (g�)] J (g)dgK p , (5.1)

as an immediate consequence of Prop. 3.14.
Based on this formula, our next step is to process the integrand 	V1 [ f (g�)].

5.6. Transforming the Berezin integral. It will now be convenient to regard the odd
vector space V1 = Hom(Cn,Cq)⊕ Hom(Cq ,Cn) for the case of G = GLn as

V1 � Hom(Cq ,Cn)⊕ Hom((Cq)∗, (Cn)∗) (G = GL).

In the other cases, using the isomorphism β : C
n → (Cn)∗ we make the identification

V1 � Hom(Cq ⊕ (Cq)∗,Cn) = Hom(Uq ,C
n), (G = O,Sp).

Following Sect. 3.4 we fix an orthogonal decomposition C
n = Up⊕Un,p for G = On ,

Spn and C
n = C

p⊕C
n−p for G = GLn , which is Euclidean, Hermitian symplectic, and

Hermitian, respectively, and let this induce a vector space decomposition V1 = V‖ ⊕V⊥
in the natural way. For G = On,Spn the summands are

V‖ = Hom(Uq ,Up), V⊥ = Hom(Uq ,Un,p) (G = O,Sp),

and in the case of G = GLn we have

V‖ = Hom(Cq ,Cp)⊕ Hom((Cq)∗, (Cp)∗),
V⊥ = Hom(Cq ,Cn−p)⊕ Hom((Cq)∗, (Cn−p)∗) (G = GL).

From the statement of Lemma 5.1 we see that V‖ is isomorphic to W1 as a complex
vector space (though not as a K p-space) in all three cases.

The decomposition V1 = V‖ ⊕ V⊥ induces a factorization

∧ (V ∗1 ) � ∧(V ∗‖ )⊗∧(V ∗⊥) (5.2)

of the exterior algebra of V ∗1 . In all three cases (GL, O, Sp) the decomposition of V1 and
that of ∧(V ∗1 ) is stabilized by the group K p × Kn,p. We further note that K p ↪→ Kn
acts trivially on ∧(V ∗⊥) while Kn,p ↪→ Kn acts trivially on ∧(V ∗‖ ).

To compute 	V1 [ f (g�)], we are going to disect the Berezin form 	V1 according
to the decomposition (5.2). For this, recall that if V = A ⊕ A∗ is the direct sum of an
N -dimensional vector space A and its dual A∗, then there exists a canonical generator
	V = 	A⊕A∗ ∈ ∧2N (A ⊕ A∗) which is given by 	A⊕A∗ = fN ∧ eN ∧ . . . ∧ f1 ∧ e1
for any basis {e j } of A with dual basis { f j } of A∗. Note that 	A⊕A∗ = (−1)N	A∗⊕A.

The following statement is an immediate consequence of the properties of ∧.
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Lemma 5.3. If A, B,C are vector spaces and A = B ⊕ C then

	A⊕A∗ = 	B⊕B∗ ∧	C⊕C∗ .

Now V1 and all of our spaces V⊥ and V‖ are the direct sum of a vector space and its
dual. Recall from Sect. 4.3 that 	V1 = 	Hom((Cq )∗,(Cn)∗)⊕Hom(Cq ,Cn), and let

	V‖ = 	Hom((Cq )∗,(Cp)∗)⊕Hom(Cq ,Cp), 	V⊥ = 	Hom((Cq )∗,(Cn−p)∗)⊕Hom(Cq ,Cn−p)

for G = GL, while in the case of G = O,Sp the corresponding definitions are

	V‖ = 	Hom((Cq )∗,Up)⊕Hom(Cq ,Up), 	V⊥ = 	Hom((Cq )∗,Un,p)⊕Hom(Cq ,Un,p).

Here the vector spaces Hom((Cq)∗, Up) and Hom(Cq , Up) are regarded as dual to each
other by the symmetric bilinear form s : Up ×Up → C for G = O and the alternating
bilinear form a : Up ×Up → C for G = Sp. This means that for G = O we have

	V‖ = 	Hom((Cq )∗,(Cp)∗)⊕Hom(Cq ,Cp) ∧	Hom((Cq )∗,Cp)⊕Hom(Cq ,(Cp)∗),

while the same Berezin form 	V‖ for G = Sp has an extra sign factor (−1)pq due to
the alternating property of a (cf. the sentence after the definition of 	W1 in Eq. (1.12)).
The same conventions hold good in the case of	V⊥ . For this we need only observe that
the given symmetric or alternating bilinear form on Un,p induces such a form on V⊥.

Now, applying Lemma 5.3 to the present situation we always have

	V1 = 	V‖ ∧	V⊥ .

5.6.1. Transformation of	V‖ . Recall the isomorphism of vector spaces V‖ � W1, which
we now realize as follows. Using the identifications V‖ � Hom(Uq ,Up) for the case
of G = O, Sp and V‖ � Hom(Cq ,Cp)⊕ Hom((Cq)∗, (Cp)∗) for G = GL, we apply
g∈G p to v∈V‖ to form gv, where gv for G=GL means gv=g.(L̃⊕L t)=(gL̃)⊕(gL t).
Note that the mapping (g, v) �→ gv has the property of being K p-invariant.

Given this isomorphism g : V‖ → W1, let (g−1)∗ : ∧(V ∗‖ )→ ∧(W ∗
1 ), f �→ g. f ,

be the induced isomorphism preserving the pairing between vectors and forms. Then

	V1 [ f (g�)] = (
g(	V‖) ∧	V⊥

) [g. f (g�)],
so our next step is to compute g(	V‖). Here it should be stressed that we define the
Berezin form 	W1 by the same ordering conventions we used to define 	V‖ above.

Lemma 5.4. Under the isomorphism V‖ → W1 by v �→ gv the Berezin forms 	W1 and
	V‖ are related by g(	V‖) = Detq(gg†)	W1 .

Proof. Consider first the case of G = O, Sp, where V‖ = Hom(Uq ,Up) and the same
choice of polarization Hom(Uq ,Up) = Hom((Cq)∗,Up)⊕ Hom(Cq ,Up) determines
both 	V‖ and 	W1 . Applying g ∈ G p to 	V‖ ∈ ∧4pq(V‖) we obtain

g(	V‖) = Det2q(g)	W1 .

The groups at hand are G p = GL2p(R), GLp(H), and Det(g) is real for these. Hence

Det2q(g) = (
Det(g)Det(g)

)q = Detq(gg†).

In the case of G = GL we have	V‖ = 	Hom((Cq )∗,(Cp)∗)⊕Hom(Cq ,Cp). Transforming

the second summand by L̃ �→ gL̃ for g ∈ GLp(C) we get the Jacobian Detq(g), trans-
forming the first summand by L t �→ gL t we get Detq(g). Thus, altogether we obtain
again g(	V‖) = Detq(g)Detq(g)	W1 = Detq(gg†)	W1 . ��
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5.6.2. Bosonization of 	V⊥ . We turn to the Berezin form 	V⊥ for the factor ∧(V ∗⊥) of
the decomposition (5.2). Recall that the elements of this exterior algebra∧(V ∗⊥) are fixed
under the action of K p. Since � k = 0 for k ∈ Kn,p, the Kn-equivariance of f ∈ A G

V
implies that g. f (g�) (for any fixed g ∈ G p) lies in ∧(W ∗

1 )⊗∧(V ∗⊥)Kn,p .
For future reference, we are now going to record a (bosonization) formula for the

Berezin integral	V⊥ : ∧(V ∗⊥)Kn,p → C. For this notice that, since the action of Kn,p is
complex linear we have ∧(V ∗⊥)Kn,p = ∧(V ∗⊥)Gn,p , where Gn,p is the complexification
of Kn,p. From Table 2 of Sect. 3.4 we read off that Gn,p = GLn−p(C), On−2p(C), and
Spn−2p(C) for our three cases of GL, O, and Sp, respectively.

The subalgebra ∧(V ∗⊥)Gn,p is generated, once again, by ∧2(V ∗⊥)Gn,p , the quadratic
invariants. Applying Lemma 4.1 with V ∗ ≡ V ∗⊥, G ≡ Gn,p, and W ≡ W11 we get

∧2(V ∗⊥)Kn,p = ∧2(V ∗⊥)Gn,p � W ∗
11.

Now by the principles expounded in Sect. 4 we lift a given element f⊥ ∈ ∧(V ∗⊥)Gn,p

to a holomorphic function F : W11 → C. To formalize this step, let

P∗⊥ : O(W11)→ ∧(V ∗⊥)Kn,p

be the surjective mapping which was introduced in Sect. 4.1 and denoted by the generic
symbol Q∗ there. For F ∈ O(W11) we then have with n′ = n/(1 + |m|) the result

	V⊥[P∗⊥F] = (2π)qn(1−p/n′)2qm vol(Kn,p)

vol(Kn,p−q)

∫

D1
q

F(y) dµD1
q
(y)

Detn′−p(y)
, (5.3)

as an immediate consequence of the formula of Thm. 4.11. Here we refined our notation
by writing D1

q for the compact symmetric spaces Dq of Sect. 4.6. The non-compact
symmetric spaces Dp introduced in Sect. 3.4 will henceforth be denoted by D0

p.

5.7. Decomposition of pullback. Recall from Sect. 5.3 that we have a pullback of graded-
commutative algebras Q∗ : AW → A G

V . To go further, we should decompose Q∗
according to the manipulations carried out in the previous two subsections. This, how-
ever, will only be possible in a restricted sense, as some of our transformations require
that the even part of w ∈ W be invertible.

We start with a summary of the sequence of operations we have carried out so far.
Recall that the elements of AW are holomorphic functions F : W0 → ∧(W ∗

1 ), where
W1 and W0 = W00×W11 were described in Lemma 5.1. Since our domain of integration
will be Dp ≡ D0

p � G p/K p, given F ∈ AW let F1 denote F restricted to D0
p ⊂ W00 :

F1 : D0
p ×W11 → ∧(W ∗

1 ). (5.4)

Now we use the Cartan embedding G p/K p → D0
p ⊂ G p by g �→ gθ(g−1) = gg†

to pull back F1 in its first argument from D0
p to G p/K p. Applying also the mapping

P∗⊥ : O(W11)→ ∧(V ∗⊥)Kn,p we go to the second function

F2 : G p/K p → ∧(W ∗
1 )⊗∧(V ∗⊥)Kn,p . (5.5)
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In the next step, employing the isomorphism V‖ → W1, v �→ gv (pointwise for each
coset gK p ∈ G p/K p) we pull back F2 to a K p-equivariant function

F3 : G p → ∧(V ∗‖ )⊗∧(V ∗⊥)Kn,p . (5.6)

Be advised that we are now at the level of the integrand F3(g) = f (g�) of (5.1). In the
final step, we pass to the unique extension of F3 to a Kn-equivariant function

F4 : X ′p, n
Kn−eqvt−→ ∧(V ∗1 ) (5.7)

by F4(L) = F4(g�k) := F3(g). Let us give a name to this sequence of steps.

Definition 5.5. We denote by P∗ the homomorphism of graded-commutative algebras
taking F1 : D0

p×W11 → ∧(W ∗
1 ) to the Kn-equivariant function F4 : X ′p, n → ∧(V ∗1 ).

The main point of this subsection will be to show that Q∗ (restricted to D0
p × W11)

is the composition of P∗ with another homomorphism, S∗, which we describe next.
Consider first the case of G = GL, where W = W0 ⊕W1 and

W0 = W00 ⊕W11 = End(Cp)⊕ End(Cq),

W1 = W01 ⊕W10 = Hom(Cq ,Cp)⊕ Hom(Cp,Cq),

and let W ′
00 denote the subset of regular elements in W00. On W ′ := (W ′

00 × W11) ×
(W01 ⊕W10) define a non-linear mapping S : W ′ → W ′ by

S(x, y ; σ, τ) = (x, y + τ x−1σ ; σ, τ).
This mapping is compatible with the structure of the graded-commutative algebra AW
which is induced from the Z2-grading W = W0⊕W1. Therefore, viewing the entries of
σ and τ as anti-commuting generators, S determines an automorphism S∗ : A ′

W → A ′
W

of the superalgebra A ′
W of holomorphic functions from W ′

00×W11 to∧(W ∗
1 ). Adopting

the supermatrix notation commonly used in physics one would write

(S∗F)

(
x σ
τ y

)
= F

(
x σ

τ y + τ x−1σ

)
.

Next consider the case of G = On , where W00 = Syms(Up), W11 = Syma(Uq), and
W1 = Hom(Uq ,Up). Here we have the bilinear forms s on Up and a on Uq , and these
determine an isomorphism Hom(Uq ,Up)→ Hom(Up,Uq), σ �→ σ T by

s(σv, u) = a(v, σ T u) (u ∈ Up, v ∈ Uq).

However, since σ and v in this definition are to be considered as odd and σ moves past
v, the good isomorphism to use (the ’supertranspose’) has an extra minus sign:

σ �→ σ sT := −σ T .

Restricting again to the regular elements W ′
00 of W00, define a mapping S : W ′ → W ′

on W ′ = (W ′
00 ×W11)×W1 by

S(x, y ; σ) = (x, y + σ sT x−1σ ; σ).
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From x−1 ∈ Syms(Up) and the definition of the transposition operation σ �→ σ sT via
the bilinear forms s and a, it is immediate that σ sT x−1σ ∈ W11. Now for the same
reasons as before, S determines an automorphism S∗ : A ′

W → A ′
W .

The definitions for the last case G = Spn are the same as for G = On but for the fact
that the two bilinear forms s and a exchange roles.

From here on we consider S∗ to be restricted to the functions with domain D0
p×W11.

Lemma 5.6. The homomorphism of superalgebras Q∗ : AW → A G
V , when restricted

to a homomorphism Q∗ taking functions D0
p ×W11 → ∧(W ∗

1 ) to Kn-equivariant func-
tions X ′p, n → ∧(V ∗1 ), decomposes as

Q∗ = P∗S∗.

Proof. Since the isomorphism Q∗ : W ∗ ∼→ S2(V ∗)G determines Q∗ : AW → A G
V , it

suffices to check Q∗ = P∗S∗ at the level of the quadratic map Q : V → W .
Let us write out the proof for the case of G = GL (the other cases are no different).

Recall that the quadratic map Q : V → W in this case is given by

Q : (L ⊕ L̃)⊕ (K ⊕ K̃ ) �→
(

L L̃ L K̃
K L̃ K K̃

)
.

Now, fixing a regular element (L , L†) ∈ X ′p, n , we have an orthogonal decomposition

C
n = ker(L)⊕ im(L†),

where im(L†) � C
p and ker(L) � C

n−p. Let �L := L†(L L†)−1L denote the orthog-
onal projection �L : C

n → im(L†). If we decompose K , K̃ as

K = K‖(L) + K⊥(L), K‖(L) = K �L , K̃ = K̃‖(L) + K̃⊥(L), K̃‖(L) = �L K̃ ,

then our homomorphism P∗ is the pullback of algebras determined by the map

P : X ′p, n × V1 → W ′,

((L , L†), (K ⊕ K̃ )) �→
(

L L† L K̃‖(L)
K‖(L)L† K⊥(L)K̃⊥(L)

)
=

(
L L† L K̃
K L† K (Id −�L)K̃

)
.

When the second map S : W ′ → W ′ is applied to this result, all blocks remain the same
but for the W11-block, which transforms as

K (Id −�L)K̃ �→ K (Id −�L)K̃ + (K L†)(L L†)−1(L K̃ ) = K K̃ .

Thus S ◦ P agrees with Q on X ′p, n × V1, which implies the desired result Q∗ = P∗S∗.
��

We now state an intermediate result en route to the proof of the superbosonization
formula. Let f ∈ A G

V and F ∈ AW be related by f = Q∗F . We then do the fol-
lowing steps: (i) start from formula (5.1) for

∫
	V1 [P∗S∗F] dvolV0,R ; (ii) transform the

Berezin integral 	V1 [(P∗S∗F)(g�)] by Lemma 5.4 for the part 	V‖ and Eq. (5.3) for
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	V⊥ ; (iii) use Cor. 3.16 to push the integral over G p/K p forward to D0
p by the Cartan

embedding; (iv) use Detq(gg†) = Detq(x). The outcome of these steps is the formula
∫
	V1 [ f ] dvolV0,R = 2(q−p)(n+m)π qn(2π)−pq(1+|m|) vol(Kn)

vol(Kn,p−q)

×
∫

D0
p

(∫

D1
q

	W1 [S∗F(x, y)]Det p−n′(y) dµD1
q
(y)

)
Detq+n′(x) dµD0

p
(x). (5.8)

Let us recall once more that n′ = n for G = GL and n′ = n/2 for G = O, Sp.

5.8. Superbosonization formula. We are now in a position to reap the fruits of all our
labors. Introducing the notation (S∗x Det)(y) = Det(y + τ x−1σ) for G = GL and
(S∗x Det)(y) = Det(y + σ sT x−1σ) for G = O and G = Sp, we note that the superdeter-
minant function SDet : D0

p × D1
q → ∧(W ∗

1 ) is given by

SDet(x, y) = Det(x)

((S∗x )−1Det)(y)
.

We define a related function J : D0
p × D1

q → ∧(W ∗
1 ) by

J (x, y) = Detq(x)Detq−m/2(y)

((S∗x )−1Detq−m/2−p)(y)
.

Theorem 5.7. Let f : V0 → ∧(V ∗1 )G be a G-equivariant holomorphic function which
restricts to a Schwartz function along the real subspace V0,R. If F : W0 → ∧(W ∗

1 ) is
any holomorphic function that pulls back to Q∗F = f , then

∫
	̃V1 [ f ] dvolV0,R = 2(q−p)m vol(Kn)

vol(Kn,p−q)

×
∫

D0
p

∫

D1
q

	̃W1 [(J · SDetn′ · F)(x, y)] dµD1
q
(y) dµD0

p
(x),

where n′ = n/(1 + |m|) ≥ p, and 	̃V1 := 2pn(2π)−qn	V1 and 	̃W1 := (2π)−pq(1+|m|)
	W1 are Berezin integral forms with adjusted normalization.

Proof. We first observe that in the present context the formula of Lemma 4.13 can be
written as

∫

D1
q

(S∗F)(x, y) dµD1
q
(y) =

∫

D1
q

F(x, y)Detq−m/2(y)

((S∗x )−1Detq−m/2)(y)
dµD1

q
(y).

Our starting point now is Eq. (5.8). We interchange the linear operations of doing the
ordinary integral

∫
Dq
(...) dµDq and the Berezin integral 	W1 [...]. The inner integral

over y is then transformed as

∫

D1
q

(S∗F)(x, y)Det p−n′(y) dµD1
q
(y) =

∫

D1
q

F(x, y)Detq−m/2(y) dµD1
q
(y)

((S∗x )−1Detn′−p+q−m/2)(y)
.
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The factor ((S∗x )−1Det−n′)(y) combines with the factor Detn′(x) of the outer integral
over x to give the power of a superdeterminant:

((S∗x )−1Det−n′)(y)Detn′(x) = SDetn′(x, y).

Then, restoring the integrations to their original order (i.e., Berezin integral first, integral
over y second) we immediately arrive at the formula of the theorem. ��
Remark. The function J (x, y) is just the factor that appears in the definition of the
Berezin measure DQ in Sect. 1.2. Using supermatrix notation, this is seen from the
following computation:

J (x, y) = Detq(x)Detq−m/2(y)

Detq−m/2−p(y − τ x−1σ)
= Detq(x)Det p(y − τ x−1σ)

Detq−m/2(1− y−1τ x−1σ)

= Detq(x)Det p(y − τ x−1σ)

Det−q+m/2(1− x−1σ y−1τ)
= Detq(x − σ y−1τ)Det p(y − τ x−1σ)

Detm/2(1− x−1σ y−1τ)
.

We also have adjusted the normalization constants, so that dvolV0,R ⊗ 	̃V1 agrees with
the Berezin superintegral form DZ ,Z̄;ζ,ζ̃ of Eq. (1.1), and dµD0

p
dµD1

q
⊗ 	̃W1 ◦ J agrees

with DQ as defined in Eqs. (1.8, 1.11). Thus, assuming the validity of Thm. 4.11 we
have now completed the proof of our main formulas (1.10) and (1.13). To complete the
proof of Thm. 4.11 we have to establish the normalization given by Lemma 4.10.

5.9. Proof of Lemma 4.10. Lemma 4.10 states the value of the integral
∫

D1
q

eTr ′y Det−n′(y) dµD1
q
(y)

over the compact symmetric space D1
q . To verify that statement, we are now going to

compute this integral by supersymmetric reduction to a related integral,
∫

D0
q

e−Tr ′x Detn′+q(x) dµD0
q
(x),

over the corresponding non-compact symmetric space D0
q . For that purpose, consider

Cn, q :=
∫

D0
q

∫

D1
q

	W1 [(J · SDetn′+q)(x, y)] eTr ′y−Tr ′x dµD1
q
(y) dµD0

q
(x), (5.9)

(for each of the three cases G = GL,O,Sp) and first process the inner integral:
∫

D1
q

	W1 [(J · SDetn′+q)(x, y)] eTr ′y dµD1
q
(y)

=
∫

D1
q

	W1

[
Detn′+2q(x)Detq−m/2(y)

((S∗x )−1Detn′+q−m/2)(y)

]
eTr ′y dµD1

q
(y)

= Detn′+2q(x)
∫

D1
q

	W1 [S∗x (exp ◦Tr ′)(y)]Det−n′(y) dµD1
q
(y).
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Here, after inserting the definitions of SDetn′+q and J for p = q, we again made use of
the formula of Lemma 4.13, reading it backwards this time.

The next step is to calculate the Berezin integral 	W1 of S∗x (exp ◦Tr ′)(y). By the
definition of the shift operation S∗x this is a Gaussian integral. Its value is

	W1 [S∗(exp ◦Tr ′)(y)] = eTr ′y Detq(x−1)

in all three cases. Inserting this result into the above expression for Cn, q we get the
following product of two ordinary integrals:

Cn, q =
∫

D0
q

e−Tr ′x Detn′+q(x) dµD0
q
(x)×

∫

D1
q

eTr ′y Det−n′(y) dµD1
q
(y).

The first one is known to us from Eq. (3.2), while the second one is the integral that we
actually want. The formula claimed for this integral in Lemma 4.10 is readily seen to be
equivalent to the statement that Cn, q = (2π)(1+|m|)q2

. Thus our final task now is to show

that Cn, q = (2π)(1+|m|)q2
. This is straightforward to do by the localization technique for

supersymmetric integrals [19], as follows.
To get a clear view of the supersymmetries of our problem, let us go back to our

starting point: the algebra A G
V of G-equivariant holomorphic functions V0 → ∧(V ∗1 )

of the Z2-graded vector space V = V0 ⊕ V1 for V0 = Hom(Cn,Cp)⊕ Hom(Cp,Cn)

and V1 = Hom(Cn,Cq) ⊕ Hom(Cq ,Cn). There exists a canonical action of the Lie
superalgebra glp|q on C

p|q , hence on V � Hom(Cn,Cp|q) ⊕ Hom(Cp|q ,Cn), and

hence on the algebra A G
V . To describe this glp|q -action on A G

V , let {Ea
i }, {Ẽ i

a}, {eb
i },

and {ẽi
b} with index range i = 1, . . . , n and a = 1, . . . , p and b = 1, . . . , q be bases of

Hom(Cn,Cp), Hom(Cp,Cn), Hom(Cn,Cq), and Hom(Cq ,Cn), in this order. If {Fi
a},

{F̃a
i }, etc., denote the corresponding dual bases, then the odd generators of glp|q (the

even ones will not be needed here) are represented on A G
V by odd derivations

da
b = ε( f i

b )δ(E
a
i ) + µ(F̃a

i )ι(ẽ
i
b), d̃b

a = ε( f̃ b
i )δ(Ẽ

i
a)− µ(Fi

a)ι(e
b
i ),

where the operators ε( f ), δ(v), µ( f ), and ι(v) mean exterior multiplication by the
anti-commuting generator f , the directional derivative w.r.t. the vector v, (symmetric)
multiplication by the function f , and alternating contraction with the odd vector v.
Clearly, all of these derivations are G-invariant (for G = GLn , On , Spn ) and have
vanishing squares (da

b )
2 = (d̃b

a )
2 = 0. Using the coordinate language introduced in

Sect. 1.1 one could also write

da
b = ζ i

b
∂

∂Zi
a

+ Z̃ a
i
∂

∂ζ̃ b
i

, d̃b
a = ζ̃ b

i
∂

∂ Z̃ a
i

− Zi
a
∂

∂ζ i
b

.

It will be of importance below that the flat Berezin superintegral form dvolV0,R ⊗ 	V1

is glp|q -invariant, which means in particular that
∫
	V1 [da

b f ] dvolV0,R =
∫
	V1 [d̃b

a f ] dvolV0,R = 0

for any f ∈ AV with rapid decay when going toward infinity along V0,R.
Superbosonization involves the step of lifting f ∈ A G

V to F ∈ AW by the surjective

mapping Q∗ : AW → A G
V . Now, since W = S2(V )G = (

T 2(V )/I−(V )
)G and the Lie
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superalgebra glp|q acts on T 2(V ) by G-invariant derivations stabilizing I−(V ), we also
have a glp|q -action by linear transformations W → W . Realizing this action by deriva-
tions of AW we obtain a glp|q -action on AW . In particular, there exist such derivations

Da
b and D̃b

a that for every F ∈ AW we have

Q∗Da
b F = da

b Q∗F, Q∗D̃b
a F = d̃b

a Q∗F.

(In other words, our homomorphism of algebras Q∗ : AW → A G
V is glp|q -equivariant.)

For any positive integers p, q, n with n′ ≥ p consider now the Berezin superintegral

I n
p, q [F] :=

∫

D0
p

∫

D1
q

	W1 [J · SDetn′ · F] dµD1
q

dµD0
q
,

which includes our integral Cn, q of interest as a special case by letting p = q and
F(x, y) = SDetq(x, y) eTr ′y−Tr ′x .

Lemma 5.8. The odd derivations Da
b and D̃b

a are symmetries of F �→ I n
p, q [F]; i.e., the

integrals of Da
b F and D̃b

a F vanish,

I n
p, q [Da

b F] = I n
p, q [D̃b

a F] = 0 (a = 1, . . . , p ; b = 1, . . . , q),

for any integrand F ∈ AW such that Q∗F |V0,R is a Schwartz function.

Proof. While some further labor would certainly lead to a direct proof of this state-
ment, we will prove it here using the superbosonization formula of Thm. 5.7 in reverse.
(Of course, to avoid making a circular argument, we must pretend to be ignorant of the
constant of proportionality between the two integrals, which will remain an unknown
until the proof of Lemma 4.10 has been completed. Such ignorance does not cause a
problem here, as we only need to establish a null result.) Thus, applying the formula of
Thm. 5.7 in the backward direction with an unknown constant, we have

I n
p, q [Da

b F] = const ×
∫
	V1 [Q∗Da

b F]dvolV0,R .

We now use the intertwining relation Q∗Da
b = da

b Q∗ of glp|q -representations. The inte-
gral on the right-hand side is then seen to vanish because the integral form dvolV0,R⊗	V1

is glp|q -invariant. Thus I n
p, q [Da

b F] = 0. By same argument also I n
p, q [D̃b

a F] = 0. ��

Thus we have 2pq odd AW -derivations (or vector fields) Da
b and D̃b

a which are sym-
metries of I n

p, q . We mention in passing that for the cases of G = On and G = Spn
there exist further symmetries which promote the full symmetry algebra from glp|q to
osp2p|2q . This fact will not concern us here.

Let now p = q. Then there exists a distinguished symmetry

D := Da
a = D1

1 + D2
2 + . . . + D

q
q ,

which still satisfies D2 = 0.

Lemma 5.9. Viewed as a vector field on the supermanifold of functions D0
q × D1

q →
∧(W ∗

1 ), the numerical part of D vanishes at a single point o ≡ (Id, Id) ∈ D0
q × D1

q .
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Proof. We sketch the idea of the proof for G = GLn . In that case one verifies that D
has the coordinate expression

D = σ a
b

(
∂

∂xa
b

+
∂

∂ya
b

)
+

(
xa

b − ya
b

) ∂

∂τ a
b
.

The second summand, the numerical part of D , is zero only when the coordinate func-
tions xa

b and ya
b are equal to each other for all a, b = 1, . . . , q. Since D1

q = Uq and D0
q

is the set of positive Hermitian q × q matrices, this happens only for x = Id ∈ D0
q and

y = Id ∈ D1
q . The same strategy of proof works for the cases of G = On,Spn . ��

We are now in a position to apply the localization principle for supersymmetric inte-
grals [19]. Let F ∈ AW be a D-invariant function which is a Schwartz function on
D0

q . Choose a D-invariant function gloc : D0
q × D1

q → ∧(W ∗
1 ) with the property that

gloc = 1 on some neighborhood U (o) ⊂ V (o) of o and gloc = 0 outside of V (o). (Such
“localizing” functions do exist.) Then according to Theorem 1 of [19] we have

I n
q, q [F] = I n

q, q [gloc F],
since I n

q, q is D-invariant. (Although that theorem is stated and proved for compact
supermanifolds, the statement still holds for our non-compact situation subject to the
condition that integrands be Schwartz functions.)

Taking V (o) to be arbitrarily small we conclude that F → I n
q, q [F] depends only on

the numerical part of the value of F at o :
I n
q, q [F] = const × num(F(o)).

To determine the value of the constant for G = GLn we consider the special function

F = e−
t
2 (x

b
a xa

b−yb
a ya

b +2σ b
a τ

a
b ).

An easy calculation in the limit t → +∞ then gives I n
q, q [F] = (2π)q

2
num(F(o)) due

to our choice of normalization for dµD0
q

and dµD1
q
. The same calculation for the cases

of G = On,Spn gives I n
q, q [F] = (2π)2q2

num(F(o)).
These considerations apply to the integrand in Eq. (5.9) with num(F(o)) = 1. Thus

we do indeed get Cn, q = (2π)(1+|m|)q2
, and the proof of Lemma 4.10 is now finished.

6. Appendix: Invariant Measures

In the body of this paper we never gave any explicit expressions for the invariant measures
dµD0

p
and dµD1

q
. There was no need for that, as these measures are in fact determined

(up to multiplication by constants) by invariance with respect to a transitive group action,
and this invariance really was the only property that was required.

Nevertheless, we now provide assistance to the practical user by writing down explicit
formulas for our measures (or positive densities) dµD0

p
and dµD1

q
. For that purpose, we

will use the correspondence between densities and differential forms of top degree.
(Recall what the difference is: densities transform by the absolute value of the Jacobian,
whereas top-degree differential forms transform by the Jacobian including sign.) Thus
we shall give formulas for the differential forms corresponding to dµD0

p
and dµD1

q
. This
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is a convenient mode of presentation, as it allows us to utilize complex coordinates for
the complex ambient spaces as follows.

Consider first the case of G = GLn(C), where D0
p = Herm+ ∩ End(Cp) and D1

q =
U ∩ End(Cq). Then for r = p or r = q consider End(Cr ) and let zcc′ : End(Cr )→ C

(with c, c′ = 1, . . . , r ) be the canonical complex coordinates of End(Cr ), i.e., the set of
matrix elements with respect to the canonical basis of C

r . On the set of regular points
of End(Cr ) define a holomorphic differential form ω(r) by

ω(r) = Det−r (z)
r∧

c, c′=1

dzcc′,

where z = (zcc′) is the matrix of coordinate functions. By the multiplicativity of the
determinant and the alternating property of the wedge product, ω(r) is invariant under
transformations z �→ g1z g−1

2 for g1, g2 ∈ GLr (C). The desired invariant measures
(up to multiplication by an arbitrary normalization constant) are

dµD0
p
∝ ω(p)

∣∣
Herm+∩End(Cp)

, dµD1
q
∝ ω(q)∣∣U∩End(Cq )

, (6.10)

where we restrict ω(r) as indicated and reinterpret dµD•r as a positive density on the
orientable manifold D•r (r = p, q). For example, for r = 1 we have ω(1) = z−1dz. In
this case we get an invariant positive density |dx | on the positive real numbers Herm+ ∩
C = R+ by setting z = ex with x ∈ R , and a Haar measure |dy| on the unit circle
U ∩C = U1 = S1 by setting z = eiy with 0 ≤ y ≤ 2π . Our normalization conventions
for the invariant measures dµD•r are those described in Sect. 1.2.

We turn to the cases of G = On(C) and G = Spn(C) and recall that the condition on
elements M of the complex linear space Symb(C

2r ) is M = tb M t(tb)−1. On making
the substitution M = L tb this condition turns into

L = +L t for b = s,
L = −L t for b = a,

while the GL2r (C)-action on Symb(C
2r ) by twisted conjugation becomes g.L = gL gt

in both cases. Define the coordinate function zcc′ : Symb(C
2r )→ C to be the function

that assigns to M the matrix element of M(tb)−1 = L in row c and column c′. We then
have zcc′ = zc′c for b = s and zcc′ = −zc′c for b = a. As before let z = (zcc′) be the
matrix made from these coordinate functions (where the transpose zt = z for b = s and
zt = −z for b = a). Then let top-degree differential forms ω(r; b) be defined locally on
the regular points of Symb(C

2r ) by

ω(r; s) = Det−r−1/2(z)
∧

1≤c≤c′≤r

dzcc′,

ω(r; a) = Det−r+1/2(z)
∧

1≤c<c′≤r

dzcc′ .

These are invariant under pullback by L �→ gL gt , as the transformation behavior of
Det−r±1/2 is contragredient to that of the wedge product of differentials in both cases.
We emphasize that this really is just a local definition so far, as the presence of the square
root factors may be an obstruction to the global existence of such a form.
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Now focus on the case of G = On(C). There, restriction to the domains D0
δ,p and

D1
δ, q gives the differential forms ω(p; s)

∣∣
Herm+∩Syms (C

2p)
and ω(q; a)

∣∣
U∩Syma(C

2q )
. Both

of these are globally defined. Indeed, we can take the factor L �→ Det−1/2(L) in the first
differential form to be the reciprocal of the positive square root of the positive Hermitian
matrix M = L ts , and the square root L �→ Det1/2(L) appearing in the second form
makes global sense as the Pfaffian of the unitary skew-symmetric matrix L t = −L .
Reinterpreting these differential forms as densities we arrive at a GL2p(R)-invariant
measure on D0

δ,p and a U2q -invariant measure on D1
δ, q :

dµD0
δ,p
∝ ω(p; s)

∣∣
Herm+∩Syms (C

2p)
, dµD1

δ, q
∝ ω(q; a)

∣∣
U∩Syma(C

2q )
. (6.11)

Again, our normalization conventions for dµD•δ,r are those of Sect. 1.2.

In the final case of G = Spn(C) the roles of ω(•; s) and ω(•; a) are reversed. This
immediately leads to a good definition of dµD0

ε,p
for the non-compact symmetric space

D0
ε,p. However, the remaining case of D1

ε, q = U ∩ Syms(C
2q) is problematic because

there exists no global definition of Det1/2 on the unitary symmetric matrices. Thus
the locally defined differential form ω(q; s) does not extend to a globally defined form
on D1

ε, q . (Please be advised that this is inevitable, as the compact symmetric space
D1
ε, q � U2q/O2q lacks the property of orientability and on a non-orientable mani-

fold any globally defined top-degree differential form must have at least one zero and
therefore cannot be both non-zero and invariant in the required sense.)

Of course dµD1
ε, q

still exists as a density on the non-orientable manifold D1
ε, q . The

discussion above is just saying that there exists no globally defined differential form
corresponding to dµD1

ε, q
. Locally, we have dµD1

ε, q
∝ ω(q; s)

∣∣
U∩Syms (C

2q )
.

Acknowledgements. This paper is the product of a mathematics-physics research collaboration funded by the
Deutsche Forschungsgemeinschaft via SFB/TR 12.
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