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Abstract. In the static limit of linear response theory, the electrical con-
ductivity is a linear operator taking closed electric fields into closed electric
current densities. The induced mapping in cohomology is called the electrical
conductance. Using the notion of relative de Rham cohomology of a mani-
fold M with boundary, we give a thorough discussion of what is meant by the
transport part of the conductance of an open mesoscopic system.

We then consider the quantum mechanical setting of a generalized Dirac
operator D acting on the sections of a Hermitian vector bundle over a Riemann-
ian manifold M with cylindrical ends. The Kubo formula of linear response
theory gives us an expression for the electrical conductivity in terms the re-
solvent kernel of D. Building on results from mathematical scattering theory,
we prove that the Kubo formula is equivalent to the Landauer-Büttiker for-
mula expressing the electrical conductance in terms of scattering data of the
generalized Dirac operator. This is a rigorous version of an argument made by
Baranger and Stone for the case of magnetic Schrödinger operators.

1. Introduction

The current response of an electrical conductor under standard conditions, say
one volt per meter applied to a millimeter size copper cable at room temperature,
is ruled approximately by Ohm’s law. Valid in the classical limit of charge carriers
with dissipative dynamics, this law in its local formulation relates the current den-
sity j to the electric field E . For a homogeneous isotropic material with electrical
conductivity σ , Ohm’s law in the static limit says that j = σ ? E where ? is the
Hodge star operator (taking the 1-form E to the twisted 2-form j).

In a sub-micron size conductor at sub-Kelvin temperatures and zero voltage bias,
the processes of electric charge transport want treatment in a quantum-theoretic
framework. In fact, under such ‘mesoscopic’ conditions the electron motion is close
to being dissipationless, phase coherence of the electron wave function is maintained
over length scales greater than the system size, and the relation between E and
j becomes nonlocal. The electrical conductivity, which in Ohm’s case was just a
number, now is a kernel (of the type of a bi-vector field) giving the current response
in the static, or d.c., limit as an integral: ji(x) =

∫
σii′(x, x′)Ei′(x′)ddx′.

Assuming the noninteracting electron approximation, Baranger and Stone [1]
have made a detailed analysis of the d.c. linear current response for the case of
magnetic Schrödinger operators, i.e., spinless nonrelativistic charged particles mov-
ing in a static electromagnetic field and in the mean field due to the other particles.
They demonstrated (see also a related paper by M. Janssen [8]) that the stan-
dard Kubo-Greenwood theory of d.c. linear current response is equivalent to the
scattering-theoretic approach of Landauer as reformulated by Büttiker.
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An important message from [1] in this context is the necessity to distinguish the
electrical conductivity from the electrical conductance. The d.c. linear response con-
ductivity is a linear operator taking rotationless electric fields E to divergenceless
current densities j . Conductance, on the other hand, is the induced map in coho-
mology, sending the cohomology class of E , namely the electrical voltage V := [E] ,
to the electrical current I := [j] . While the conductivity receives contributions
from electron states of all energies in general, the zero temperature limit of the
conductance is determined by Green’s functions at the Fermi energy εF alone. It is
the transport part of the latter which admits a Landauer-Büttiker formula in terms
of the on-shell scattering matrix evaluated at εF .

While the analysis of [1] was carried out for the case of electrons with magnetic
Schrödinger dynamics, the physical situation may sometimes call for a different
description of the charge carrier dynamics. Relevant examples that have received
much attention of late are graphene, i.e., two-dimensional graphite, and its cylin-
drical cousins, the so-called carbon nanotubes. In these systems the low-energy ef-
fective dynamics is governed by a first-order operator of Dirac type. In the present
paper we revisit the analysis of Baranger and Stone for such cases.

Our treatment is based on a d-dimensional compact Riemannian manifold M
modelling the mesoscopic conductor. M is chosen to have a boundary ∂M =: Y ,
and we attach cylindrical ends R+ × Y to it to build the configuration manifold
X := M ∪∂M (R+ × Y ) of our open quantum system. The quantum dynamics
is generated by a first-order differential operator D of Dirac type acting on the
sections of a Hermitian vector bundle over X . We make the important assumption
of translation invariant dynamics on R+×Y (called ‘perfectly conducting leads’ in
the physics literature), which is to ensure that

(1) the electrical conduction properties of (X, D) are determined by the meso-
scopic conductor, i.e., by (M, D) and not by the measuring device R+×Y ;

(2) we can set up a scattering-theoretic formalism for the problem;
(3) it is consistent and plausible on physical grounds to make the further as-

sumption that the electric field strength E vanishes far out in the leads.

In this concise setting, our goal is to achieve a rigorous understanding of the relation
between the formulas of Kubo and Landauer-Büttiker.

The paper begins, in Sect. 2, with a summary of some basic facts of cohomology
underlying electrical transport theory in the d.c. linear response limit. While the
electrical current I = [j] naturally fits into the scheme of twisted de Rham cohomol-
ogy (twisting being done by the orientation line bundle L of X), the proper notion
to use in the case of the electrical voltage V = [E] is cohomology with compact
supports. In this context we recall that there is a nondegenerate pairing between
currents I ∈ Hd−1(X;L) and voltages V ∈ H1

c (X) by Poincaré duality. Using the
notion of relative de Rham cohomology of a manifold with boundary, we show how
to eliminate ring voltages and loop currents from the formalism and give a precise
definition of what is meant by the transport part of the conductance.

In Sect. 3 we expand our considerations based on classical electrostatics by the
framework of quantum theory for charged particles. For the case of a Hermitian
vector bundle E → X with connection ∇, we construct the current operator J
associated to a differential operator D∇ by the principle of minimal substitution
D∇ → D∇+A with gauge field A. Transcribing this construction to the case of
kernels, we write down the Kubo formula for the bi-vector field of the electrical
conductivity as a current-current correlation function.

The heart of the paper is Sect. 4, where we set up the scattering formalism for
(X, D). To do so in a satisfactory manner, we make use of a variant of scattering
theory that applies to the case where the full Hamiltonian D acts in a Hilbert
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space which is different from that of the free Hamiltonian D0 . (In our case D0

is D restricted to the cyclindrical ends with suitable boundary conditions.) We
analytically continue the free scattering states to a Riemann surface constructed
from the spectral data of D0 . Drawing on work by Guillopé [6] and W. Müller
[10], we then carry out the steps that establish the connection between the Kubo
formula and the Landauer-Büttiker formula.

2. Cohomology of electrical transport

We begin by reviewing some fundamental aspects of electrical transport theory
in the mathematical context of a smooth d-dimensional manifold X. In the most
general setting of that theory X is neither compact, nor need it be orientable.

Recall that on a differentiable manifold X one has the differential forms of degree
k, namely Ωk(X); the closed k-forms, Zk(X); and the exact k-forms, Bk(X). The
de Rham cohomology groups of X are the quotients H•(X) = Z•(X)/B•(X).

In the most general setting, where X is not assumed to be orientable, one also
needs the notion of twisted cohomology, which is summarized as follows. One defines
the orientation bundle L → X as the real line bundle whose transition functions
are given by the sign of the Jacobian. L is a flat vector bundle, meaning that
the transition functions are locally constant. Twisted differential forms of degree
k with values in a general flat vector bundle F then are sections of the tensor
product bundle ∧k(T ∗X) ⊗ F . The vector space of twisted k-forms is denoted by
Ωk(X;F ). The calculus of differential forms has a straightforward generalization
to the twisted case. The exterior derivative d is well-defined with d2 = 0 since the
transition functions of the twisting bundle are locally constant. Furthermore, e.g.,
there exists a canonical notion of pullback of vector bundle, and using it to pull
back the sections of ∧q(T ∗M)⊗ F one defines i∗ : Ωq(M ; F ) → Ωq(∂M ; F ).

Closed and exact twisted k-forms are denoted by Zk(X;F ) resp. Bk(X; F ). The
cohomology groups of the twisted de Rham complex are

H•(X;F ) = Z•(X; F )/B•(X;F ) .

The significance of F = L stems from the fact that integration of forms twisted by
L can be defined even when the domain of integration fails to be orientable.

Compact support is indicated by a subscript ‘c’, e.g., Ωk
c (X). The cohomology for

compactly supported differential forms differs from the usual de Rham cohomology,
but is related to it by the so-called intersection form, which is the operation of taking
the wedge product and integrating:

Hq
c (X)×Hd−q(X;L) −→ R , ([ξ], [η]) 7→

∫

X

ξ ∧ η .

Poincaré duality in this context, and under the weak condition of existence of a
finite good cover for X, says that the intersection form is non-degenerate [3]. As a
result one has isomorphisms

Hq
c (X) ∼= Hd−q(X;L)∗ .

We will presently use this isomorphism in the case of q = 1, viewing electrical
voltages as linear functions on electrical currents.

2.1. Charge and current density. Finding the total amount of electric charge
in a domain U ⊂ X is a counting exercise that does not require U to be oriented
or even orientable. Accordingly, in the continuum approximation one models [7, 4]
the electric charge density ρ on X as a twisted d-form, ρ ∈ Ωd(X; L). The electric
charge Q(U) in U ⊂ X is computed from ρ by integration: Q(U) =

∫
U

ρ .
The electric current density, commonly denoted by j in physics, is the quantity

that encodes the information about the flow of the electric charges. The proper
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mathematical model for it is a twisted (d−1)-form, j ∈ Ωd−1(X; L). By integrating
j over a (d − 1)-dimensional submanifold S in X, one obtains the electric current
through S:

I(S) :=
∫

S

j .

I(S) comes with a sign which depends on the choice of outer orientation of S (by
which we mean a choice of direction of passing through the hypersurface S).

If S is a boundary, say S = ∂U , the law of conservation of electric charge says
that I(S) = − d

dtQ(U). The differential version of this law is dj = −ρ̇ . Here and
elsewhere the dot over a time-dependent quantity means the time derivative.

In a stationary situation where ρ̇ = 0 , the electric current density j ∈ Ωd−1(X, L)
is closed: dj = 0 . If we are not interested in the fine details of j but want only
its period integrals, i.e., integrals over closed hypersurfaces, then there is no loss
in sending j to its twisted de Rham cohomology class, [j] ∈ Hd−1(X; L). The
cohomology class I := [j] is called the (total) current for j .

2.2. Current vector field. From now on we assume that X carries a Riemannian
structure. The Riemannian metric induces canonical scalar products, 〈·, ·〉, on
all tensor bundles as well as a volume density dvolX . Moreover, the Hodge star
operator, which is characterized by the identity

(2.1) ω1 ∧ ∗ω2 = 〈ω1, ω2〉dvolX , ωj ∈ Ωk(X; L) or ωj ∈ Ωk(X),

gives isomorphisms

(2.2) Ωk(X) ↔ Ωd−k(X;L) .

Furthermore, the metric induces natural isomorphisms between covariant and con-
travariant tensor fields. Explicitly, for a vector field v ∈ Γ∞(TX) the corresponding
one-form v[ is characterized by v[(w) := 〈v, w〉, w ∈ Γ∞(TX). Composing [ with
the ∗-operator we obtain an identification between vector fields and twisted (d−1)-
forms. This will be used repeatedly in this paper, so we here record it.

Lemma 2.1. On a Riemannian manifold X with volume density dvolX the map
from Γ∞(TX) to Ωd−1(X; L) given by v 7→ ∗v[ = ι(v) dvolX is an isomorphism.

Thus one may think of the electric current density j in terms of the vector field
v which yields j upon contraction with dvolX :

ι(v) dvolX = j .

v is called the vector field of the electric current, or current vector field for short.
The divergence of a vector field v is defined via the Lie derivative Lv by

Lv dvolX = div(v) dvolX ,

and by Cartan’s formula, Lv = d ι(v) + ι(v) d , taking the exterior derivative of
j = ι(v) dvolX corresponds to taking the divergence of v :

(2.3) dj = div(v) dvolX .

By the integral of the vector field v over a (d − 1)-dimensional submanifold S we
mean

∫
S

v :=
∫

S
ι(v) dvolX .

2.3. Voltage. The electric field strength is a 1-form, E, while the magnetic field
strength is a 2-form, B. As part of Maxwell’s theory the field strengths obey
Faraday’s law of induction: dE = −Ḃ. Thus E is closed if Ḃ = 0. Let us then
consider sending E to its cohomology class, E 7→ [E]. In a strictly stationary
situation, it is a postulate of physics that the electric field has an electric potential:
E = dΦ, so the de Rham cohomology class [E] is always trivial in that case.
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However, there exist two reasons why in the physics problem at hand [E] may
still become nontrivial. Firstly, it may happen that Ḃ = 0 inside the mesosopic con-
ductor filling the region X, but Ḃ 6= 0 somewhere outside. In that case E restricted
to X is closed, but E need not be exact. Secondly, and more importantly, we will
make the assumption (which is always made in mesoscopic conductor physics) that
E vanishes outside some bounded region of space. The proper notion to use for E
then is not the (de Rham) cohomology but rather the (de Rham) cohomology with
compact supports, [E] ∈ H1

c (X). In the latter sense [E] may be nonzero even in a
truly stationary situation. V := [E] is called the (static) voltage in physics.

2.4. Conductivity as a map in cohomology. Suppose that the electric charges
of a physical system without external forces are at rest (so that j = 0). On imposing
a driving force by means of an external electric field, one expects the system to
respond with an electric current flow. For a sufficiently weak electric field the
relation between E and j is linear in general, and one then calls the linear operator
σ̂ : E 7→ j the linear-response electrical conductivity. In the stationary limit of
interest to us, one attaches to σ̂ the adjective ‘d.c.’ (standing for ‘directed current’
as opposed to ‘alternating current’, or ‘a.c.’).

Definition 2.2. The d.c. linear-response electrical conductivity is a linear mapping
σ̂ : Ω1

c(X) → Ωd−1(X; L), E 7→ j = σ̂(E) (depending, in general, on physical pa-
rameters such as gate voltages, magnetic fields, etc.) with the following properties.

• σ̂ takes rotationless electric fields to divergenceless electric current densities,
i.e., restricts to a linear mapping

(2.4) σ̂ : Z1
c (X) −→ Zd−1(X; L) .

• The linear operator σ̂ possesses a smooth integral kernel. Using the one-
to-one correspondence between vector fields and twisted (d − 1)-forms by
v ↔ ι(v) dvolX , one may view this kernel as a bi-vector field and express
j = σ̂(E) in components with respect to some basis as

(2.5) σ̂(E)i(x) =
∫

X

σii′(x, x′)Ei′(x′) dvolX(x′) .

• The components of the bi-vector field of σ̂ obey the Onsager relation

(2.6) σii′(x, x′; B) = σi′i(x′, x ;−B) .

In words: changing the sign of the magnetic field strength B (and, more
generally, changing the sign of all physical parameters that are odd w.r.t.
time inversion) sends the bi-vector field of σ̂ to its transpose.

Remark 2.3. There exists a consensus among physicists [1] that any reasonable
theory of d.c. linear response has to satisfy the properties asserted in Def. 2.2.

For the following statement and proof it will be helpful to have another notation.
If x = (x; v1, . . . , vd−1) with x ∈ X and vi ∈ TxX, let j(x) := jx(v1, . . . , vd−1), and
going back to the primary definition of the integral kernel of σ̂ as a twisted bi-
differential form of degree d− 1, introduce the short-hand notation

σ(x ,x′) := σx,x′(v1, . . . , vd−1; v′1, . . . , v
′
d−1) .

(2.5) then takes the invariant form

j(x) = σ̂(E)(x) =
∫

X

σ(x , ·) ∧ E .

The situation at hand involves two cochain complexes: the twisted de Rham
complex (Ω∗(X;L), d), and the cochain complex of compactly supported forms,
(Ω∗c(X), d). In algebraic topology, a linear mapping between (co)chain complexes
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is called a chain map if it commutes with the differential operator d . Our electrical
conductivity is not a chain map, but does share the following property.

Proposition 2.4. Under the postulates (2.4–2.6) above, the d.c. linear-response
electrical conductivity descends to a map in cohomology, H1

c (X) → Hd−1(X; L).

Proof. Given that σ̂ takes closed forms to closed forms by postulate (2.4), there is
a well-defined induced map in cohomology if σ̂(B1

c (X)) ⊂ Bd−1(X; L). Thus, the
statement to be proved is that if E = dΦ with compactly supported Φ, then the
twisted (d− 1)-form j = σ̂(E) is exact.

For notational clarity, we denote in this proof by d1 , d2 the exterior derivatives
with respect to the first resp. second argument of σ̂ . Our proof starts by integrating
d2Φ ∧ σ(x , ·) = d2 (Φ σ(x , ·)) − Φd2σ(x , ·) over X. By Stokes’ theorem for the
compactly supported form d2 (Φσ(x , ·)) this leads to

σ̂(dΦ)(x) = ±
∫

X

Φd2σ(x , ·) .

Since j = σ̂(dΦ) is closed for any function Φ by postulate (2.4), it follows that

(2.7) d1d2σ(·′, ·) = 0 ,

i.e., the bi-differential form σ becomes zero when an exterior derivative is applied
to each of its two sets of variable arguments.

Now integrate the closed form d2σ(· ,x′) (with variable first and fixed second
argument) against any compactly supported closed test form η ∈ Z1

c (X). Using
the Onsager relation (2.6) and moving the primed exterior derivative in front of the
integral over unprimed variables, one gets

∫

X

d2σ(· ,x′; B) ∧ η = d1

∫

X

σ(x′, · ;−B) ∧ η = 0 .

The right-hand side is zero, again by virtue of (2.4). It follows that σ̂(dΦ) vanishes
on integration against any closed form η ∈ Z1

c (X):
∫

X

σ̂(dΦ)
∣∣∣
B
∧ η = ±

∫ ′

X

Φ(·′)
∫

X

d2σ(·, ·′ ; B) ∧ η = 0 .

By Poincaré duality, H1
c (X) ∼= Hd−1(X; L)∗, this implies that σ̂(dΦ) is exact. ¤

2.5. Conductance. We have shown that the d.c. linear-response electrical conduc-
tivity σ̂ : Z1

c (X) → Zd−1(X; L) descends to a mapping in cohomology. This map,
taking voltages V = [E] ∈ H1

c (X) to currents I = [j] ∈ Hd−1(X; L), has a special
name in physics.

Definition 2.5. The induced map,

G : H1
c (X) −→ Hd−1(X; L) ,

is called the d.c. linear-response electrical conductance.

Remark 2.6. By Poincaré duality, one can reformulate the conductance as

G : H1
c (X) ∼= Hd−1(X; L)∗

g−→ Hd−1(X;L) ,

where g, being a map between a vector space and its dual, has a canonical adjoint
(or transpose), g∗. The Onsager relation (2.6) restated at the cohomological level
then says that

g(B)∗ = g(−B) .

Thus in the absence of magnetic fields (and other parameters that break time-
reversal symmetry) the conductance g is symmetric.
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While Def. 2.5 makes no reference to the physical system being ‘open’ or ‘closed’,
our interest in the present paper will be in the electrical transport of a certain class
of open systems. These are constructed by taking a compact manifold M with
boundary ∂M = Y and gluing the product R+ × Y to M along the common
boundary to form

(2.8) X := M ∪∂M (R+ × Y ) .

Y consists of several connected components Yα (α = 1, . . . , N) in general. We say
that the noncompact manifold X has cylindrical ends R+ × Yα .

On such a manifold X we distinguish between two kinds of electrical current
I ∈ Hd−1(X; L): currents flowing between the cylindrical ends of X are called
transport currents, while those circulating around non-contractible loops (if any) of
M are called inner currents. Motivated by the circumstance that the inner currents
might not be measured experimentally, we wish to remove these currents to arrive
at a mathematical framework that sees only the transport currents.

The good notion to use for that purpose is that of the relative de Rham cohomol-
ogy determined by the inclusion i : ∂M → M . There are three cochain complexes
which compute the relative de Rham cohomology, and for the convenience of the
reader we are going to summarize the facts in some detail. In order to treat the
twisted and the untwisted case simultaneously, we consider an auxiliary flat vector
bundle F and de Rham theory with coefficients in F . In the untwisted case F = R
is the trivial line bundle, while in the non-oriented case we may choose F to be the
orientation line bundle L . Let

Ωq
0(M, ∂M ;F ) :=

{
ω ∈ Ωq(M ; F )

∣∣ i∗ω = 0
}

be the kernel of the pullback i∗. Then we have an exact sequence

(2.9) 0 −→ Ω∗0(M, ∂M ; F ) α−→ Ω∗(M ;F ) i∗−→ Ω∗(∂M ;F ) −→ 0,

where α is the inclusion map. Furthermore, the mapping cone of i∗ is the cochain
complex Ω∗rel(M, ∂M ; F ) = ⊕q≥0 Ωq

rel(M, ∂M ; F ),

(2.10) Ωq
rel(M, ∂M ; F ) = Ωq(M ; F )⊕ Ωq−1(∂M ; F ) ,

with differential

d : (ω, θ) 7→ (dω, i∗ω − dθ) , ω ∈ Ωq(M) , θ ∈ Ωq−1(∂M) .

Note that if (ω, θ) represents a cohomology class in Hq
rel(M,∂M ; F ), then ω is a

closed q-form on M which restricts to an exact form i∗ω = dθ on ∂M .
With the natural chain maps

β : Ωq−1(∂M ; F ) −→ Ωq
rel(M, ∂M ;F ), θ 7→ (0, (−1)q−1θ),

γ : Ωq
rel(M,∂M ; F ) −→ Ωq(M ; F ), (ω, θ) 7→ ω ,

we obtain a second exact sequence of cochain complexes involving Ω∗(M ; F ) and
Ω∗(∂M ; F ):

(2.11) 0 −→ Ω∗−1(∂M ; F )
β−→ Ω∗rel(M, ∂M ; F )

γ−→ Ω∗(M ; F ) −→ 0 .

There is a natural inclusion of cochain complexes

ε : Ω∗0(M, ∂M ;F ) −→ Ω∗rel(M,∂M ;F ), ω 7→ (ω, 0) .
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It is straightforward to check that the long exact cohomology sequences of (2.9)
and (2.11) are connected by the following (sign) commutative diagram

(2.12) · · ·Hq
0 (M, ∂M)

α∗ //

ε

²²

Hq(M) i∗ //

id

²²

Hq(∂M) δ //

id

²²

Hq+1
0 (M,∂M) · · ·

ε

²²
· · ·Hq

rel(M, ∂M)
γ∗ // Hq(M) δ // Hq(∂M)

β∗ // Hq+1
rel (M,∂M) · · ·

(where the symbol F is omitted for brevity) and therefore, by the Five Lemma, ε
is a quasi-isomorphism of cochain complexes, i.e., ε∗ is an isomorphism.

Hence the cochain complexes Ω∗0(M, ∂M ;F ) and Ω∗rel(M, ∂M ; F ) both compute
the relative de Rham cohomology with coefficients in F of the pair (M,∂M). In
fact this relative cohomology is nothing but the cohomology with compact support
of the open manifold

◦
M := M \ ∂M :

Lemma 2.7. The natural inclusions

Ω∗c(
◦

M ; F ) ε1−→ Ω∗0(M, ∂M ; F ) ε2−→ Ω∗rel(M, ∂M ;F )

induce maps εj,∗ in cohomology which are isomorphisms (j = 1, 2). The pairing

Hq
rel(M, ∂M)⊗Hd−q(M ;L) → R , [(ω, θ)]⊗ [η] 7→

∫

M

ω ∧ η −
∫

∂M

θ ∧ i∗η ,

is well-defined and extends the intersection pairing Hq
c (

◦
M) ⊗ Hd−q(M ;L) −→ R

through ε2 ◦ ε1 .

Proof. For ε2 the claim follows from the (sign) commutative diagram (2.12). We
will present, however, an ad hoc proof which works for ε1 and ε2 simultaneously.
Let us first prove the following:

Claim. Let ω ∈ Ωq(M ; F ) such that there is a θ ∈ Ωq−1(∂M ; F ) with i∗(ω) = dθ
and d(ω|U ) = 0 for a collar neighborhood U of ∂M . Then there is a ξ ∈ Ωq−1(M ;F )
with i∗ξ = θ and d(ξ|V ) = ω in a maybe smaller collar neighborhood V of ∂M .

To see this, we note that the collar neighborhood U ' [0, 1)× ∂M is homotopi-
cally equivalent to ∂M and hence i∗ : Hq(U ; F ) → Hq(∂M ; F ) is an isomorphism.
Therefore, since i∗ω is exact, there exists ξ1 ∈ Ωq−1(U ;F ) with dξ1 = ω|U . De-
noting by π : U → ∂M the natural projection, we put ξ2 := ξ1 + π∗θ − π∗i∗ξ1.
Then dξ2 = ω|U and i∗ξ2 = θ. Using a cut-off function we now find a smooth form
ξ ∈ Ωq−1(M ; F ) which agrees with ξ2 in a suitable collar neighborhood V of ∂M .

Returning to the proof of the Lemma we now show that (ε2 ◦ ε1)∗ is injective:

Let ω ∈ Ωq
c(

◦
M ;F ) with dω = 0 and assume that (ω, 0) = d(η, θ) = (dη, i∗η−dθ)

for some η ∈ Ωq−1(M ; F ), θ ∈ Ωq−2(∂M ;F ). Since ω has compact support in the
interior of M \∂M we may apply the Claim to the form η and find a ξ ∈ Ωq−2(M ;F )
with i∗ξ = θ and dξ|U = η|U in a collar neighborhood of ∂M . The form η − dξ

then has compact support and d(η − dξ) = ω. Hence ω is exact in Ωq
c(

◦
M ;F ).

To prove surjectivity of (ε2 ◦ ε1)∗ let (ω, θ) ∈ Ωq
rel(M, ∂M ; F ) be closed, i.e.,

dω = 0, i∗ω = dθ. We apply the Claim to ω and find ξ ∈ Ωq−1(M ; F ) with dξ = ω
in a collar neighborhood of ∂M and i∗ξ = θ. Then (ω, θ)− d(ξ, 0) = (ω − dξ, 0) =
ε2(ε1(ω)), hence the cohomology class of (ω, θ) is represented by the image of the
compactly supported form ω − dξ.

Surjectivity of ε1 is proved the same way. The statement about the intersection
pairing follows immediately from Stokes’ Theorem. ¤
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The open manifold
◦

M is diffeomorphic (but of course not isometric) to the man-
ifold X = M ∪∂M (R+ × Y ) obtained by attaching cylinders to the boundary.
Therefore Hq

c (X;F ) is naturally isomorphic to Hq
rel(M, ∂M ; F ). Let us describe

this isomorphism in more concrete terms:
Denote by π the projection map

π : R+ × Y −→ Y , (r, y) 7→ y .

Integration over the fiber R+ of π yields a mapping of differential forms,

π∗ : Ωq
c(R+ × Y ) → Ωq−1(Y ) .

Using it one gets a linear mapping

(2.13) Ωq
c(X) 3 ω 7→ (ω|M ,−π∗ω|R+×Y ) ∈ Ωq

rel(M,∂M) .

It is straightforward to check that the mapping (2.13) is a chain map. If a form ω

has compact support in
◦

M then the map (2.13) sends ω to (ω, 0). Since Hq
c (X;F )

is isomorphic to Hq
c (

◦
M ; F ) every cohomology class in Hq

c (X; F ) may be represented
in this way and we have proved

Lemma 2.8. The mapping (2.13) induces an isomorphism of cohomology groups

H∗
c (X) −→ H∗

rel(M, ∂M) , [ω] 7→ [(ω|M ,−π∗ω|R+×Y )] ,

which sends the intersection form Hq
c (X)⊗Hd−q(X; L) → R to the pairing

Hq
rel(M, ∂M)⊗Hd−q(M ;L) → R , [(ε, φ)]⊗ [η] 7→

∫

M

ε ∧ η −
∫

∂M

φ ∧ i∗η .

Note that, since M is a deformation retract of X, the cohomology H∗(X;L) is
canonically isomorphic to H∗(M ; L).

Of course the intersection pairing Hq
rel(M, ∂M)⊗Hd−q(M ; L) → R is still non-

degenerate. This has the following consequence.

Corollary 2.9. In the setting of X = M ∪∂M (R+×Y ), the electrical conductance
G : H1

c (X) → Hd−1(X; L) may be regarded as a map

G : H1
rel(M,∂M) −→ Hd−1(M ; L) ∼= H1

rel(M,∂M)∗ .

2.6. Transport conductance. Consider now some cohomology class

[(j , θ)] ∈ Hd−1
rel (M,∂M ;L) ,

which means that j is a closed twisted (d−1)-form on M which becomes exact upon
restriction to the boundary ∂M . By Stokes theorem, the latter property implies
that

∫
Yα

j vanishes for each boundary component Yα ⊂ Y = ∂M . Thus a current
I ∈ Hd−1

rel (M, ∂M ; L) is what we call an inner current. When combined with the fact
that H∗(X; L) is isomorphic to H∗(M ; L), this observation will allow us to eliminate
the interior currents by taking a quotient of Hd−1(M ; L) by Hd−1

rel (M, ∂M ; L).
What is the corresponding reduction on the voltage side? To answer that, we

consider the long exact cohomology sequence of the short exact sequence (2.11):

(2.14) . . . −→ Hq−1(M) i∗−→ Hq−1(∂M)
β∗−→ Hq

rel(M, ∂M)
γ∗−→ Hq(M) −→ . . . .

Then we set q = 1 and consider some element

φ = (φ1, φ2, . . . , φN ) ∈ H0(∂M) ,

where each φα is a number (in physics language: an electric potential value), viewed
as a constant function on the corresponding boundary component Yα ⊂ Y = ∂M .
The map β∗ sends φ to

[(0, φ)] ∈ β∗H0(∂M) ⊂ H1
rel(M, ∂M) .
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To interpret [(0, φ)] note that if Φ : M → R satisfies the condition i∗Φ = φ , then

[(0, φ)] = [(0, φ)]− [(dΦ, i∗Φ)] = [(−dΦ, 0)] .

Thus the cohomology class [(0, φ)] ∈ β∗H0(∂M) corresponds to the class of exact
electric field strengths E = −dΦ on M which assume the given boundary values
i∗Φ = φ on ∂M . We call [(0, φ)] = [(−dΦ, 0)] an ‘outer’ voltage.

Definition 2.10. Given the full conductance G : H1
rel(M, ∂M) → Hd−1(M ; L),

one defines the transport conductance as the restricted map

Gtr : β∗H0(∂M) → Hd−1(M ;L)/γ∗Hd−1
rel (M, ∂M ; L) .

Thus in the transport setting at hand, one prepares the electric field E in such a
way that only an outer voltage V ∈ β∗H0(∂M) is present (and no inner or ring
voltage), and one chooses not to observe the inner current I ∈ Hd−1

rel (M,∂M ;L).

The following statement prepares our final formulation of transport conductance.

Lemma 2.11. The intersection form Hq
rel(M, ∂M) ⊗ Hd−q(M ;L) → R restricts

to a non-degenerate pairing

β∗Hq−1(∂M)⊗Hd−q(M ;L)/γ∗H
d−q
rel (M, ∂M ; L) −→ R .

Proof. Denote the intersection pairing by 〈·, ·〉 and note that for [θ] ∈ Hq−1(∂M),
[ω] ∈ Hd−q(M ; L) we have in view of Lemma 2.7

〈β∗[θ], [ω]〉 = 〈[(0, (−1)q−1θ)], [ω]〉

= (−1)q

∫

∂M

θ ∧ i∗ω = (−1)q〈[θ], i∗[ω]〉,(2.15)

where the pairing on the right-hand side is the intersection pairing on the boundary
∂M . If [ω] = γ∗[(ω, ξ)] with [(ω, ξ)] ∈ Hd−q

rel (M, ∂M ;L) then i∗[ω] = [dξ] = 0 and
hence by (2.15)

〈β∗[θ], [ω]〉 = ±〈[θ], i∗[ω]〉 = 0 .

Therefore (2.15) induces a well-defined bilinear pairing

β∗Hq−1(∂M)⊗Hd−q(M ; L)/γ∗H
d−q
rel (M, ∂M ;L) → R .

Furthermore, if 〈β∗[θ], [ω]〉 = 0 for all [ω] ∈ Hd−q(M ; L)/γ∗H
d−q
rel (M,∂M ;L) then

the non-degeneracy of the relative intersection pairing implies β∗[θ] = 0.
Conversely, if 0 = 〈β∗[θ], [ω]〉 = ±〈[θ], i∗[ω]〉 for all [θ] ∈ Hq−1(∂M) then the

non-degeneracy of the intersection pairing on ∂M implies i∗[ω] = 0 and hence
[ω] ∈ γ∗H

d−q
rel (M,∂M ; L). ¤

Using physics terminology one could say that, w.r.t. the pairing given by the
electrical power

∫
E ∧ j , outer voltages annihilate inner currents and vice versa.

By Lemma 2.11 the quotient space Hd−1(M ; L)/γ∗Hd−1
rel (M, ∂M ; L) is isomor-

phic to the dual vector space of β∗H0(∂M). Since β∗H0(∂M) ∼= H0(∂M)/i∗H0(M)
by exactness of the sequence (2.14), this leads us to the final formulation of the
transport conductance as a mapping

(2.16) Gtr : V −→ V ∗ , V = H0(∂M)/i∗H0(M) .

Notice that since M is connected and ∂M has N connected components, one has
V = H0(∂M)/i∗H0(M) ∼= RN−1. We may think of V as the vector space of outer
voltages, i.e., the set of potential differences between pairs of cylindrical ends. On
that space, the transport conductance Gtr : V → V ∗ determines a bilinear form

P : V × V → R , (V, V ′) 7→ Gtr(V )(V ′) ,

expressing the electrical power in terms of the outer voltages alone.
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2.7. Conductance as a double flux integral. For the purpose of further analysis
we need a convenient prescription for computing Gtr from a given conductivity bi-
vector field σ. It should be evident now how to do this. Choose a basis of homology
generators {Y1 , . . . , YN} of Hd−1(∂M), i.e., a set of N cross sections Yα , one for
each cylindrical lead. Let the orientation of each Yα be given by the normal vector
pointing outwards. Viewing the conductivity as a twisted double differential form
σ of degree d− 1 by the isomorphism Γ∞(TX) ∼= Ωd−1(X;L), compute the double
current flux integrals

(2.17) (Gtr)αβ := −
∫

xα∈Yα

∫

xβ∈Yβ

σ(xα, xβ) .

The electrical power then is

P (V ) = Gtr(V )(V ) =
N∑

α,β=1

(Gtr)αβVαVβ .

This descends to a quadratic form on the quotient V = H0(∂M)/i∗H0(M) because∑
α(Gtr)αβ =

∑
β(Gtr)αβ = 0 .

3. Conductivity from quantum mechanics

So far, our considerations have required no more than the setting of classical
particles and fields. Now, extending our framework to the quantum mechanics of
charged particles (in the first-quantized theory), we consider a Hamiltonian operator
D defined on the sections of a Hermitian vector bundle E over X. We review how
such an operator is associated with a divergenceless current vector field vD by the
principle of minimal substitution. While such a vector field can always be found,
one needs a covariant derivative ∇ for E in order for vD to be defined uniquely. We
distill from this construction a notion of current operator, which we use to associate
with a pair of integral kernels K1 and K2 a certain bi-vector field Σ(K1 ,K2). The
significance of Σ is that on inserting the resolvent kernel of D into it, we obtain the
Kubo expression for the electrical conductivity.

3.1. Quantum-theoretic framework. We now assume that we are given some
extension of the classical framework of Sect. 2 to a framework for charged quantum
particles. Let us briefly review what are the key features involved.

Building on the basic setting of a Riemannian manifold X, the axioms of quan-
tum mechanics require that there be a Hermitian vector bundle π : E → X, where
for each x ∈ X the fibre Ex

∼= Cr carries a Hermitian scalar product u, v 7→ hx(u, v).
(By the standard conventions of quantum physics, hx is complex linear in the sec-
ond argument and complex anti-linear in the first argument.) The Hermitian vector
bundle E is supposed to be equipped with a compatible covariant derivative ∇.

In this geometric setting, sections of E play the role of what physicists call the
quantum mechanical ‘wave function’. We denote the space of smooth sections of
π : E → X by Γ∞(E), and indicate compact support by a subscript c as before.
The scalar product of two sections ϕ , ψ ∈ Γ∞c (E) is defined to be the integral

(3.1) (ϕ , ψ) :=
∫

X

h(ϕ , ψ) dvolX .

The quantum-theoretic Hilbert space is the L2-space of square-integrable sections,
L2(X, E). If a section ψ ∈ L2(X, E) is normalized by

∫
X

h(ψ, ψ) dvolX = 1, then
the probability density for particles in the quantum state ψ is h(ψ,ψ) dvolX .

Let now the quantum particles with wave functions ψ ∈ L2(X,E) be coupled
to the U(1) gauge field of Maxwell’s theory. Since our aim is to handle a static
situation, there is no need here to set up the full-fledged apparatus of Maxwell
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electrodynamics; rather, for our purpose of studying stationary electric current
densities it suffices to have the mathematical structure of a U(1)-principal bundle
P over X. Indeed, by the postulates of Maxwell’s theory the electric current density
is paired with the magnetic gauge potential, which in turn is given by a connection
1-form iA on P . We again follow the conventions of physics: A takes values in R
so that iA takes values in u(1). Changing the magnetic field amounts to replacing
A by A + A′ where A′ is a real-valued 1-form on X. By the principle of minimal
substitution, the corresponding change of covariant derivative is ∇ → ∇+ iA′.

By Diff(E) we denote the space of differential operators on Γ∞(E). An operator
D ∈ Diff(E) always has a unique formal adjoint D† ∈ Diff(E), which is determined
by the equation

(3.2) (ϕ , Dψ) = (D†ϕ ,ψ)

for all L2-sections in the domain of D resp. D†.
In the following we consider only those differential operators D which are given

to us by a unique expression in terms of the covariant derivative ∇ and of local
tensor fields that are invariant under A → A+A′. For such operators, changing the
magnetic field ∇ → ∇ + iA′ causes D = D∇ to change as D∇ → D∇+iA′ . (When
the dependence of D on ∇ matters, we write D∇ instead of just D.)

Example 3.1. The prime example to be pursued in this paper is that of a generalized
Dirac operator D = c(dxi)∇∂/∂xi where c : T ∗X → End(E), the Clifford bundle
map, is odd w.r.t. a Z2-grading E = E+ ⊕ E− and obeys the relations

c(ei)c(ej) + c(ej)c(ei) = −2δij

for orthonormal frames {ei} of T ∗X. Variation of the magnetic gauge potential
A → A + A′ in this case results in D → D + ic(A′).

Let there now be a distinguished differential operator D = D† ∈ Diff(E), called
the Hamiltonian, which determines the evolution with time t of the quantum system
by the equation

(3.3) (D − i∂t)ψ = 0 .

Assuming that each quantum particle carries one unit of electric charge, the electric
charge density ρ can be identified with the probability density: ρ = h(ψ, ψ) dvolX .
Then from (3.3) the time derivative of ρ is

(3.4) ρ̇ =
(− ih(ψ, Dψ) + ih(Dψ, ψ)

)
dvolX .

Next we associate with ψ ∈ Γ∞c (E) (at some fixed time t) an energy Hψ ∈ R by

Hψ := (ψ, Dψ) =
∫

X

h(ψ, Dψ) dvolX .

By the principles of quantum theory, the electric current density in the quantum
state with wave function ψ is given by the first variation of Hψ with respect to the
magnetic potential. Thus, viewing the linear functional

Ω1
c(X) −→ R , A′ 7→ d

ds
(ψ, D∇+isA′ψ)

∣∣∣
s=0

as arising from integration against a twisted differential form j ∈ Ωd−1(X; L), one
defines the electric current density j by the equation

(3.5)
∫

X

A′ ∧ j :=
d

ds
(ψ,D∇+isA′ψ)

∣∣∣
s=0

.

Let us verify that this j satisfies the continuity equation dj = −ρ̇ . For that
purpose, one puts A′ = df with arbitrary f ∈ Ω0

c(X) and observes that the change
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of covariant derivative∇ → ∇+idf can be seen as a conjugation, ∇ → e−isf∇◦eisf .
One then has D∇+isdf = e−isfD∇ ◦ eisf , and partial integration gives

−
∫

X

fdj =
∫

X

df ∧ j =
d

ds
(ψ, e−isfD eisfψ)

∣∣∣
s=0

= (ψ, [D, if ]ψ) .

From this and the definition of the scalar product in (3.1) it follows that

(3.6) dj = i
(
h(ψ, Dψ)− h(Dψ, ψ)

)
dvolX .

By comparing with (3.4) one sees that the right-hand side indeed is equal to −ρ̇ .

Example 3.2. Consider the Laplacian of the bundle E , i.e., the operator expressed
in a local orthonormal frame {ei} of TX as D = δij∇†ei

∇ej
. In this case one finds

that
j = ?

(
ih(∇ψ, ψ)− ih(ψ,∇ψ)

)
,

with ? : Ω1(X) → Ωd−1(X;L) being the Hodge star operator of X.

3.2. Current operator. We shall need a slight generalization of the previous con-
struction of the electric current density. So, fixing an operator D ∈ Diff(E) (and
dropping the condition D = D† for now), let there be in addition to ψ a second
section ϕ ∈ Γ∞c (E), and consider the complex number

(ϕ , Dψ) =
∫

X

h(ϕ , Dψ) dvolX .

By varying this with respect to the magnetic gauge potential as before, we associate
with the pair of sections ϕ ,ψ a complex-valued twisted (d− 1)-form j(ψ, ϕ):

(3.7)
∫

X

A′ ∧ j(ψ,ϕ) :=
d

ds
(ϕ ,D∇+isA′ψ)

∣∣∣
s=0

.

The same computation that led to (3.6) now gives

(3.8) dj(ψ, ϕ) = i
(
h(ϕ , Dψ)− h(D†ϕ , ψ)

)
dvolX .

Notice that since D is a differential operator, if A′ is compactly supported then the
right-hand side of (3.7) makes sense (after taking d/ds inside the scalar product)
even without the assumption of compact support for ψ and ϕ .

Let us summarize this situation in terms of the current vector field of j.

Definition 3.3. For a pair of sections ϕ ,ψ ∈ Γ∞(E) let j(ψ, ϕ) ∈ Ωd−1(X; L⊗C)
be the differential form determined by (3.7). We then define the current operator
to be the mapping

Γ∞(E)⊗R Γ∞(E) → Γ∞(TX ⊗C) , ψ ⊗ ϕ 7→ v(ψ, ϕ) ,

where v(ψ,ϕ) is the vector field that results from j(ψ,ϕ) by applying the inverse
of the canonical isomorphism Γ∞(TX ⊗C) → Ωd−1(X; L⊗C), v 7→ ι(v) dvolX .

Remark 3.4. Our current operator isC-linear in the first factor of Γ∞(E)⊗RΓ∞(E)
but C-anti-linear in the second factor. Alternatively, from the viewpoint of the next
subsection where the transcription to kernels will be made, the current operator is
a C-bilinear mapping Γ∞(E)⊗CΓ∞(E∗) → Γ∞(TX⊗C). The two viewpoints are
related via the anti-linear bijection Γ∞(E) → Γ∞(E∗), ϕ 7→ h(ϕ , ·).

By the principle of (2.3), the exterior derivative of the differential form j(ψ,ϕ)
corresponds to the divergence of the vector field v(ψ, ϕ). From (3.8) one therefore
has the following consequence, which will be put to multiple use in Sect. 4.
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Proposition 3.5. The current vector field v(ψ, ϕ) has divergence

div v(ψ,ϕ) = ih(ϕ , Dψ)− ih(D†ϕ , ψ) .

In particular, if ψ and ϕ are eigensections with complex conjugate eigenvalues, i.e.,

Dψ = λψ , D†ϕ = λ̄ϕ (λ ∈ C) ,

then v(ψ, ϕ) is divergenceless.

To prepare the next step, note that if 〈v, ξ〉 ≡ ι(v)ξ denotes the function which
is obtained by contracting the vector field v with the 1-form ξ , then the current
vector field v(ψ,ϕ) has a more direct definition from (3.7) as

(3.9)
∫

X

〈v(ψ, ϕ), A′〉dvolX =
d

ds
(ϕ , D∇+isA′ψ)

∣∣∣
s=0

.

Example 3.6. Specializing to the case of a Dirac-type operator D = c(dxi)∇∂/∂xi

one obtains the formula

〈v(ψ,ϕ), A′〉 = h(ϕ , ic(A′)ψ) .

3.3. Transcription to kernels. Our next step is to transcribe the above to the
language of kernels. Let E £ E∗ denote the exterior tensor product of E with its
dual bundle. E £E∗ is a bundle over the product manifold X ×X, where the fiber
over (x, y) ∈ X×X is the space of linear transformations Ex⊗E∗

y
∼= Hom(Ey , Ex).

A section k(· , ·) ∈ Γ∞(E £ E∗) gives rise to a linear operator

(3.10) K : Γ∞c (E) −→ Γ∞(E) , ψ 7→ Kψ , (Kψ)(x) :=
∫

X

k(x, ·)ψ dvolX .

Here the integrand k(x, ·)ψ is the Ex-valued function whose value at y is obtained by
applying the linear transformation k(x, y) ∈ Hom(Ey , Ex) to the vector ψ(y) ∈ Ey .
When k ∈ Γ∞c (E£E∗), it is well known that K is a trace-class operator in L2(X, E)
and that

(3.11) TrK =
∫

X

trEx k(x, x) dvolX(x) .

Note that the composite operators DK and KD have the kernels

(3.12) (DK)(x, y) = Dxk(x, y) , (KD)(x, y) = Dt
yk(x, y) .

The notation with subscript here means that the differential operator D ≡ Dx acts
on the kernel k(x, y) as a function of its first variable. Dt ∈ Diff(E∗) is the operator
induced from D by dualization from Γ∞(E) to Γ∞(E∗), i.e., Dth(ψ, ·) = h(D†ψ, ·).

Now, adapting the previous construction of (3.9) to the present situation, we are
going to produce a vector field from a kernel k ∈ Γ∞c (E £E∗). This leads us to our
second definition of current operator.

Definition 3.7. The current operator on kernels is the linear mapping

Γ∞c (E £ E∗) −→ Γ∞(TX ⊗C) , k 7→ v(k) ,

where the current vector field v(k) is determined by the equation
∫

X

〈v(k), A′〉 dvolX =
d

ds
Tr (D∇+isA′K)

∣∣∣
s=0

for all test forms A′ ∈ Ω1
c(X). (Again, the vector field v(k) continues to exist even

when the assumption of compact support for k is dropped.)
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If f is any compactly supported test function and A′ = df , then by the same
computation as before,

∫

X

fdiv v(k) dvolX = −iTr([D, f ]K) .

Since the trace is cyclic, the right-hand side can also be written as iTr(f [D, K]).
Thus, if the linear operator K commutes with D, the current vector field v(k) is
divergenceless. More generally, by inserting the expressions (3.12) for the kernels
of DK and KD, one obtains

Proposition 3.8.

div(v(k))(x) = i trEx

(
Dxk(x, y)−Dt

yk(x, y)
) ∣∣

y=x
.

Remark 3.9. If our kernel k ∈ Γ∞(E £ E∗) satisfies Dxk(x, y) = λ k(x, y) and
Dt

yk(x, y) = µk(x, y) for λ , µ ∈ C, then the formula of Prop. 3.8 reduces to

(3.13) div(v(k))(x) = (λ− µ) trEx
k(x, x) .

Now let there be two kernels k1, k2 ∈ Γ∞c (E £E∗), with associated linear opera-
tors K1 and K2 . By iterating the procedure above, we associate to them a bi-vector
field Σ(K1,K2) as follows. A bi-vector field determines a bilinear functional on test
forms A′, A′′ ∈ Ω1

c(X) by integration over X×X. Comparing this with the bilinear
functional obtained from Tr(D∇+isA′K1D∇+itA′′K2) by linearization in s and t ,
we define Σ(K1,K2) to be the bi-vector field that makes the two functionals equal:

∫

X

∫

X

〈
Σ(K1,K2)(x, y) , (A′x , A′′y)

〉
dvolX(x) dvolX(y)

=
d2

dsdt
Tr (D∇+isA′K1D∇+itA′′K2)

∣∣∣
s=t=0

,(3.14)

for all A′, A′′. Depending on the point of view, Σ(K1,K2) is a bi-vector field or a
vector field on X ×X. It has the obvious symmetry

〈Σ(K1, K2), (A′, A′′)〉 = 〈Σ(K2 ,K1), (A′′, A′)〉 .

3.4. Conductivity bi-vector field. Let us now specialize the previous formulas
to the case of resolvents, K1 = (D − λ)−1 and K2 = (D − λ′)−1, whose kernels k1

and k2 are not smooth. Therefore we emphasize that the formulas are completely
local; in order for them to hold it is not necessary that the kernels be smooth
everywhere. In fact, Σ(K1, K2)(x, y) already exists if k1 is smooth in the point
(x, y) ∈ X ×X and k2 is smooth in the point (y, x).

We now rely on some input from the physics literature [1]. Starting from the
formalism of second quantization for many-fermion systems, and specializing to
the case of non-interacting particles with Fermi energy EF , the Kubo theory of
linear response yields the following formula for the bi-vector field of the electrical
conductivity σ. We here take this formula for granted and do not discuss its origin
in linear-response theory.

Definition 3.10. With a pair of complex numbers λ and λ′ not in the spectrum
of D, associate a bi-vector field σλ,λ′ by

σλ,λ′ = Σ
(
(D − λ)−1, (D − λ′)−1

)

− 1
2Σ

(
(D − λ)−1, (D − λ)−1

)− 1
2Σ

(
(D − λ′)−1, (D − λ′)−1

)

+ 1
2

∫ λ

λ′
Σ

(
(D − µ)−1, (D − µ)−2

)− Σ
(
(D − µ)−2, (D − µ)−1

)
dµ ,
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where the integral is along any contour in the domain of holomorphicity of the
resolvent kernel (D − µ)−1 and its derivative (D − µ)−2. Then the d.c. (or static)
linear-response electrical conductivity at the Fermi energy E ∈ R is given by

σE := lim
ε→0+

σE+iε,E−iε .

By the same argument that gave Proposition 3.8 and equation (3.13), this bi-
vector field σE satisfies postulate (2.4) of Definition (2.2). What is less clear,
however, is whether σE is smooth on the diagonal x = y. ML says we
can get enough regularity for the symmetric part of σE in order for
the proof of Proposition 2.4 to go through.

4. Dirac operator on a manifold with cylindrical contacts

In this section we study the quantum mechanical scattering problem on a d-
dimensional manifold M with cylindrical ends (interpreted as electrical contacts),
where the incoming and outgoing waves are the asymptotic running waves on the
cylinders. The dynamics is determined by a generalized Dirac operator, D . In the
language of standard scattering theory the operator D0 on the cylinders is the free
part of the Hamiltonian and the unperturbed states are its eigenfunctions satisfying
certain boundary conditions. Scattering arises from attaching the cylinders to M ,
and is determined by the operator DM on M .

One complication in this setting stems from the fact that the free Hamiltonian D0

and the scattering part DM do not operate in the same Hilbert space. Fortunately,
there exists a scattering theory of operators acting in different Hilbert spaces (cf.
[11]), and this theory applies here. The Møller operators of our problem exist and
are complete, so they provide a unitary equivalence between the absolute continuous
part of D := DM∪D0 and D0 [10, 6]. We will use the Lippmann-Schwinger equation
together with an asymptotic expansion of the resolvent kernel to express the sum
of scattering probabilities (between channels of incoming and outgoing waves in the
cylinders) as a double integral over the conductivity bi-vector field σ.

Our calculation in spirit follows that of Baranger and Stone [1], who arrived at
the same result for Schrödinger operators. Although we prove the result for the
special case of Dirac dynamics, it can be expected to hold in much wider generality.

4.1. Setup. Given a Hermitian vector bundle E over a compact Riemannian man-
ifold M with boundary Y = ∂M , let there be a Dirac-type operator DM acting on
the sections of E. We assume that DM is formally self-adjoint and on restricting
to a collar [−ε, 0]× Y of M decomposes as

(4.1) DM

∣∣
[−ε,0]×Y

=: D0 = γ

(
d

dr
+ A

)
.

Here r : [−ε, 0] × Y → [−ε, 0] is the coordinate function projecting on the first
factor. γ is the normal component of the symbol of D0 , i.e.,

(4.2) γ = [D0 , r] = c(dr) ,

and γA is the transversal part of D0 . The relations

(4.3) γ2 = −1 , γ∗ = −γ , A = A† , γA + Aγ = 0

are assumed to hold.
From (4.1) the operator D0 extends naturally to the cylinder R+×Y and hence

we get a Dirac-type operator D = DM ∪D0 on the manifold X obtained by gluing
M and R+ × Y along the common boundary,

(4.4) X = M ∪∂M (R+ × Y ) .
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Since X is complete, D is essentially self-adjoint (Wolf [13], Chernoff [5]). The
scattering problem for D on X was studied by Guillopé [6] and W. Müller [10]. The
new information conveyed in the present paper is the relation between scattering
and the electrical conductance. For the convenience of the reader, we make an
attempt to give a self-contained exposition.

In the scattering problem to be studied, D will be viewed as a perturbation
of D0 . To define the unperturbed problem governed by D0 we have yet to impose
boundary conditions at ∂(R+×Y ) = {0}×Y . (As a general reference for boundary
value problems for Dirac-type operators we refer to the book of Booß–Bavnbek
and Wojciechowski [2]). We fix a Lagrangian subspace1 V ⊂ kerA and define the
spectral projector

(4.5) P+ := 1(0,∞)(A) + PV ,

where 1(0,∞) is the characteristic function of the set (0,∞). With this we impose
generalized Atiyah–Patodi–Singer boundary conditions:

(4.6) domain(D0) := {v ∈ L2 |D0v ∈ L2, P+v
∣∣∣
r=0

= 0} .

Since Y is compact and A is elliptic, the spectrum of A is discrete. We choose
an orthonormal basis (ϕn)n∈N of imP+ with

(4.7) Aϕn = anϕn , an ≥ 0 .

By virtue of the last relation in (4.3), γϕn is an eigenvector of A with eigenvalue
−an . It follows from this and the Lagrangian property of V in (4.5) that

(4.8) γP+γ∗ = I − P+ ,

and hence (γϕn)n∈N is an orthonormal basis of im(I − P+) = kerP+ .
It will be convenient to have a name for the set of positive eigenvalues:

(4.9) S := {an |n ∈ N} \ {0} .

In S each value an is counted once, regardless of degeneracies. This distinguishes
the sum

∑
n over eigenmodes (of either sign and zero) from the summation

∑
a∈S

over positive values appearing in the spectrum.
In the next step, we turn to the (ϕ, γϕ)-basis and write D0 as a direct sum of

operators Dn acting in L2(R+ , span(ϕ, γϕ)):

(4.10) D0 =
⊕

n∈N
Dn ,

with

(4.11) Dn =

(
0 −1
1 0

)[
d

dr
+

(
an 0
0 −an

)]
.

Thus, each Dn operates on complex two-component fields

{r 7→ vn(r)} ∈ domain(Dn) , vn(r) =
(

α(r)
β(r)

)
,

and for the greater part of this section we will be interested in such fields vn(r)
only. In order to avoid introducing new symbols, we will later use the same symbol
for sections in the domain of D0 , but this change of meaning will be indicated by
explicitly giving the full dependence on (r, ξ) ∈ R+ × Y :

(4.12) vn(r) =
(

α(r)
β(r)

)
will become vn(r, ξ) := α(r)ϕn(ξ) + β(r)γϕn(ξ) .

1This means that V ⊥ = γV . The existence of V follows from the Cobordism Theorem (Palais
[12, Chap. XVII]; cf. also Lesch [9]).
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4.2. Analytic continuation of the scattering states. We denote the eigen-
functions of Dn by ψ0

n . The superscript indicates that these are solutions to the
free Dirac operator D0 . In the ϕ-basis the boundary condition (4.6) requires the
upper component of ψ0

n to be zero at r = 0 . An eigenvector ψ0
n(· ;λ) satisfying

(D0 − λ)ψ0
n(· ; λ) = 0

is

ψ0
n(r ; λ) = 2−1/2

(
sin (kn(λ)r)

λ−1an sin (kn(λ)r) + λ−1kn(λ) cos (kn(λ)r)

)
,

kn(λ) :=
√

λ2 − a2
n ,

(4.13)

where kn is called the wave number. ψ0
n(r ; λ) is an analytic (multivalued!) function

of the complex parameter λ , and has the physical interpretation of a standing wave.
Please be advised that our choice of normalization for ψ0

n is convenient, but not
standard; we will get back to this point in Remark 4.5 below.

Definition 4.1. We choose √ : C\R+ → C, z 7→ √
z , to be the principal branch

of the square root given by Im
√

z > 0 .

We now describe the analytic continuation of ψ0
n(r ; λ) in terms of the Riemann

surface of the functions
√

λ2 − a2 for a ∈ S . Since there exist infinitely many values
a ∈ S , to get a true Riemann surface with only countably many sheets2 one has to
impose a restriction for large a . More concretely, let

(4.14) CN := {(zn)n∈N | zn ∈ C}
be the space of complex sequences equipped with the topology of uniform conver-
gence. Put

(4.15) Σ :=
{

(z , {wa}a∈S)
∣∣∣ z ∈ C , w2

a = z2 − a2 for a ∈ S ,
Imwa > 0 for a large enough

}
⊂ CN.

Then Σ is a Riemann surface with the following properties:
(1) The projection π : Σ → C , (z , {wa}a∈S) 7→ z is a branched cover with

countably many sheets and ramification locus S ∪ (−S).
(2) Wa : Σ → C , (z , {wb}b∈S) 7→ wa are holomorphic functions satisfying

(4.16) Wa(Λ)2 = π(Λ)2 − a2 , a ∈ S ,

and, for fixed Λ ∈ Σ , we have Im Wa(Λ) > 0 when a is large enough.
(3) The group of deck transformations of (Σ ,C) is commutative and is gener-

ated by elements τa of order 2. More precisely,

(4.17) τa(z , {wb}b∈S) = (z , {w̃b}b∈S) where w̃b =

{
wb , b 6= a ,

−wa , b = a .

In other words, by the generator τa the functions Wb are pulled back to

(4.18) τ∗aWb =

{
Wb , b 6= a ,

−Wa , b = a .

We will, by slight abuse of notation, write τn instead of τan .
(4) For Λ , Λ′ ∈ Σ to be equal it is necessary and sufficient that

π(Λ) = π(Λ′) and ∀a ∈ S : Wa(Λ) = Wa(Λ′) .

2Note that for each z ∈ C there are uncountably many sequences {wa}a∈S with w2
a = z2−a2.
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(5) Putting

(4.19) (z , {wa}a∈S) := (z , {−wa}a∈S)

extends the operation of complex conjugation to a diffeomorphism Σ → Σ ,
Λ 7→ Λ with the properties

(4.20) (i) π(Λ) = π(Λ) , (ii) Wa(Λ) = −Wa(Λ) .

(6) The function λ 7→ ψ0
n(r ; λ) extends as a meromorphic function to the Rie-

mann surface Σ .
Although Λ ∈ Σ is not a complex number and its square is not defined, we will
mostly employ the suggestive notation

√
Λ2 − a2 for the function Wa(Λ).

Remark 4.2. Guillopé [6, Sect. 7C] uses a slightly different Riemann surface Σs.
On Σs the functions

√
Λ± a exist individually. Guillopé uses the normalization

Im
√

Λ± a > 0 for a large enough. Apart from the fact that for π(Λ) ∈ R this
can be fulfilled only with equality Im

√
Λ + a = 0 , there is a serious problem with

this normalization. In fact, it sometimes contradicts Im
√

Λ2 − a2 > 0 . Thus
on Σs we do not always have Im

√
Λ− a

√
Λ + a > 0 for a large enough. As a

consequence Σs is not a branched cover of Σ . If one modifies the normalization
of Σs to Im

√
Λ + a > 0 , Im

√
Λ− a

√
Λ + a > 0, for a large enough, and this

is apparently the normalization Guillopé wants to work with [6, p. 159, second
paragraph], then Σs is naturally a branched cover of our surface Σ . Nevertheless,
since only the functions

√
Λ2 − a2 are needed (cf. also [6, Prop. 7.7]) we prefer to

work with Σ .

If a = an ∈ S we set kn(Λ) := Wa(Λ) (although, as we emphasize, the functions
Wa are labelled by elements of S and not by modes). ψ0

n(r ; Λ) is now a meromorphic
function of Λ ∈ Σ satisfying

(4.21) (Dn − π(Λ))ψ0
n(r ; Λ) = 0 .

The domain

(4.22) FP := C \ (
(−∞,−infS] ∪ [inf S,∞)

)

is identified with an open subset of Σ , the physical sheet.
For points E ∈ R \ (S ∪ −S) we introduce the following notation:

(4.23) E± := lim
ε→0+

E ± iε ,

where the limit is taken in Σ . In other words, lying over E ∈ R\(S∪−S), the limit
E± ∈ Σ is the point which is obtained by taking the limit in Σ when approaching
E on the physical sheet from the upper/lower half plane. Since

(4.24) lim
ε→0+

√
(E + iε)2 − a2

n =





lim
ε→0+

√
(E − iε)2 − a2

n , |E| < an ,

− lim
ε→0+

√
(E − iε)2 − a2

n , |E| > an ,

by our definition of square root √ , we have

√
(E+)2 − a2

n =

{
i
√

+(a2
n − E2) , |E| < an ,√

+(E2 − a2
n) , |E| > an ,

=

{√
(E−)2 − a2

n , |E| < an ,

−
√

(E−)2 − a2
n , |E| > an ,

= −
√

(E−)2 − a2
n .

(4.25)
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Here
√

+x denotes the positive square root of x ≥ 0 . From Wa(E±) ≡
√

(E±)2 − a2
n

and the definition (4.19) we find as a consequence

(4.26) E± = E∓ .

For present use, note that as a special case of (4.18) we have

Wan
(Λ) ≡ kn(Λ) = −kn(τnΛ) .

4.3. Running waves. The standing-wave solutions ψ0
n in (4.13) can be separated

into purely exponential functions of the longitudinal cylinder coordinate r like this:
for Λ ∈ Σ consider

(4.27) φ0
n(r ; Λ) := 2−1/2

(
1

(an + ikn(Λ))/π(Λ)

)
exp (ikn(Λ)r) ,

which is easily seen to be an eigenfunction of D0 with eigenvalue π(Λ) but obviously
violates the boundary conditions. Using the deck transformation τn in (4.17) and
kn(τnΛ) = −kn(Λ), the true eigenfunction ψ0

n (which does satisfy the boundary
conditions) extends from FP to Σ as the linear combination

(4.28) ψ0
n(r ; Λ) =

1
2i

(
φ0

n(r ; Λ)− φ0
n(r ; τnΛ)

)
.

To interpret this decomposition of ψ0
n , observe that the time-dependent free

Dirac equation is (i∂t−D0)v = 0 , so that φ0
n gives rise to a time-dependent solution

(r, t) 7→ e−iπ(Λ)tφ0
n(r ; Λ) .

If E+ ∈ Σ lies over E ∈ R with |E| > an , then the phase function

(r, t) 7→ kn(E+)r − π(E+)t

is real, and its zero locus moves with growing values of t to growing values of
r. Thus, the time-dependent solution given by φ0

n has the physical meaning of
an outgoing wave in that case. By the same token, φ0

n(· ; τnE+) gives rise to an
incoming wave. We therefore refer to φ0

n(· ; Λ) and φ0
n(· ; τnΛ) summarily as running

waves (of outgoing resp. incoming type). Note that by the definition of the physical
sheet, the outgoing waves φ0

n(· ; λ) for λ ∈ FP and Im λ 6= 0 are square-integrable
on R+ while the incoming waves φ0

n(· ; τnλ) are not.

4.4. Orthogonality relations on the cylinder. Prop. 3.5 says that for two
eigensections ψ and ϕ with eigenvalues λ resp. λ̄ the current vector field v(ψ,ϕ) is
divergenceless. This circumstance gives rise to a set of fixed-energy orthogonality
relations by integration over a (d − 1)-cycle of X . We will make this explicit for
the running waves, where the integration will be over cross sections of the cylinder.

First of all, we write out the running waves (4.27) with full coordinate dependence
as anticipated in (4.12):

(4.29) φ0
n(r, ξ ; Λ) = 2−1/2

(
ϕn(ξ) + π(Λ)−1(an + ikn(Λ))γϕn(ξ)

)
eikn(Λ)r.

Then, fixing a pair of positive integers m, n we pick any two points Λ1 , Λ2 of the
Riemann surface Σ with π(Λ1,2) 6= 0 and consider the integral

(4.30) Im,n(r ; Λ1 , Λ2) :=
∫

Y

h
(
φ0

m(r, ξ ; Λ1), iγφ0
n(r, ξ ; Λ2)

)
dvolY (ξ) ,

where dvolY = ι(∂r) dvolX . From Example 3.6, and since γ = c(dr), this can also
be written as

(4.31) Im,n(r ; Λ1 , Λ2) =
∫

Y

v
(
φ0

n(· ; Λ2), φ0
m(· ; Λ1)

) ∣∣∣
r
.

We remind the reader that, if Y ⊂ X is a (d − 1)-dimensional submanifold, then
by the integral of a vector field v over Y we mean

∫
Y

v =
∫

Y
ι(v) dvolX .
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Furthermore, since (π(Λ1) − D0)φ0
m(· ; Λ1) = 0 and (π(Λ2) − D0)φ0

n(· ; Λ2) = 0 ,
the second statement of Prop. 3.5 says that v(φ0

n(· ; Λ2), φ0
m(· ; Λ1)) is divergenceless

if π(Λ1) = π(Λ2). In that case, the integral (4.31) is constant on the homology class
of Y ; in particular it is independent of r.

Substituting (4.29) into (4.30) we find for any Λ1 , Λ2 ∈ Σ that

(4.32) Im,n(r ; Λ1 , Λ2) = Im,n(0 ; Λ1 ,Λ2) e−ikm(Λ1)r+ikn(Λ2)r .

Since the ϕn constitute an orthonormal system, the integral Im,n(0 ; Λ1 , Λ2) van-
ishes for m 6= n . For m = n insertion of (4.29) into (4.30) gives

(4.33) In,n(0 ; Λ1 ,Λ2) =
kn(Λ1) + ian

2π(Λ1)
+

kn(Λ2)− ian

2π(Λ2)
.

4.4.1. The case π(Λ1) = π(Λ2). In this case there exist the two possibilities

(4.34) kn(Λ1) = ±kn(Λ2) ,

and the expression (4.33) together with (4.20) yields the following statement.

Proposition 4.3. Let π(Λ1) = π(Λ2) 6= 0 . Then Im,n(r ; Λ1 , Λ2) is independent
of r and we have

(4.35) Im,n(r ; Λ1 , Λ2) = δm,n

{
0 , kn(Λ1) = −kn(Λ2),
kn(Λ2)/π(Λ2) , kn(Λ1) = kn(Λ2) .

In particular, if Λ1 = Λ2 then Im,n(r ; Λ1 , Λ2) = 0 for all m, n.

We specialize even further to the case where Λ1,2 are two points E± ∈ Σ lying
over the same E ∈ R . By (4.25) and (4.26) we then arrive at the following result.

Proposition 4.4. Let E ∈ R \ {±am ,±an , 0}. Then

Im,n(r ; E±, E∓) = 0 ,(4.36)

Im,n(r ; E±, E±) = δm,n

{
0 , |E| < an ,

±√+(1− a2
n/E2) , |E| > an .

(4.37)

Remark 4.5. Here a comment on normalization is in order. If we had adopted the
standard (unit flux) normalization convention of scattering theory, we would have
obtained Im,n(r ; E±, E±) = ±δm,n . We did not opt for this choice of normalization
here, as it would have made the analytic properties (in λ) of the scattering waves
more complicated. The price we will have to pay is that the expression for the
conductance will not emerge in the familiar (Landauer-Büttiker) form.

4.5. Lippmann-Schwinger equation. Now we turn to the full Dirac operator D
and its eigensections x 7→ ψn(x ; Λ), where x runs through X = M ∪∂M (R+ × Y ).
As was mentioned in the introduction to this section, compared to standard scatter-
ing theory we are facing the complication that the full Hamiltonian D = DM ∪D0

and the free part D0 do not act in the same Hilbert space; D0 acts in L2(R+×Y, E)
whereas D acts in L2(X,E). While we tacitly view L2(R+×Y, E) as a subspace of
L2(X, E), the inclusion L2(R+× Y, E) ↪→ L2(X, E) does not preserve smoothness.
To mend this, we choose on the semi-infinite cylinder R+ × Y a smooth cutoff
function χ : R+ × Y → R with

(4.38) χ(x) =

{
0 , r(x) < r1 ,

1 , r(x) > r2 ,
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where 0 < r1 < r2 < 1 are fixed. Letting Mχ : L2(R+ × Y, E) → L2(X, E) be the
operation of point-wise multiplication by χ , we then define the Møller operators

(4.39) W±(D ,D0) = s- lim
t→±∞

eitDMχ e−itD0 .

It follows from the results of Guillopé [6] that the wave operators W± exist and are
complete. They establish a unitary equivalence of D0 and the absolutely contin-
uous part of D . Furthermore, Guillopé [6] proved the following important result.
To state it, we need the spaces L2

comp(X, E), L2
loc(X,E) of compactly supported

L2-sections resp. local L2-sections of E. These spaces have natural locally convex
topologies and we denote by Ls(L2

comp, L2
loc) the space of continuous linear opera-

tors between L2
comp , L2

loc equipped with the topology of point-wise convergence.

Proposition 4.6. The resolvent (D − λ)−1 of D considered as a function on the
physical sheet with values in Ls(L2

comp , L2
loc) extends meromorphically to Σ.

We denote this meromorphic extension by (D − Λ)−1, Λ ∈ Σ. More concretely,
we may think of (D − Λ)−1 as an integral operator whose kernel is obtained by
meromorphic continuation of the kernel of (D − λ)−1.

We can now set up the Lippmann-Schwinger equations for this problem. For the
following definition, note that [D , χ] = γχ′ where χ′ = ∂χ/∂r.

Definition 4.7. For Λ ∈ Σ put

(4.40) ψn( · ; Λ) := Mχψ0
n( · ; Λ)− (D − Λ)−1γMχ′ψ

0
n( · ; Λ) .

Since ψ0
n( · ; Λ) is an eigenfunction of D0 with eigenvalue π(Λ), one immediately

deduces that ψn( · ; Λ) is an eigenfunction of D with the same eigenvalue:

(D − π(Λ))ψn( · ; Λ) = (D − π(Λ))χψ0
n( · ; Λ)− [D , χ]ψ0

n( · ; Λ) = 0 .

While the functions x 7→ ψn(x ; Λ) grow at infinity in general, it has been shown that
the direct integral of the lines spanned by these functions in the limit of Λ → E+ ,
|E| > an , equals the absolutely continuous subspace of D (cf. [10, Sect. 4] for the
precise statement).

Now recall the decomposition (4.28) of the standing waves ψ0
n( · ; Λ) into run-

ning waves of outgoing and incoming type, φ0
n( · ; Λ) resp. φ0

n( · ; τnΛ). When this
decomposition is inserted into the formula of Def. 4.7 the former disappear:

(4.41) ψn( · ; Λ) = −(2i)−1
(
Mχφ0

n(· ; τnΛ)− (D − Λ)−1γMχ′φ
0
n(· ; τnΛ)

)
.

Indeed, if f ∈ L2 satisfies χ(D − λ)f = 0 for λ ∈ FP, then we have

χf = (D − λ)−1(D − λ)χf = (D − λ)−1[D , χ]f = (D − λ)−1γχ′f .

Since φ0
n( · ;λ) is an L2-eigenfunction of D0 , the claim follows a priori for λ ∈ FP

and, by analytic continuation, for all Λ .
Formula (4.41) expresses the solution in terms of the unperturbed incoming wave

φ0
n( · ; τnΛ), and holds as an equality of sections on all of X. Note that on restricting

to M ⊂ X where χ = 0 , the formula simplifies to

(4.42) ψn(x ; Λ) = (2i)−1
(
(D − Λ)−1[D , χ]φ0

n

)
(x ; τnΛ) (x ∈ M) .

4.6. Transfer coefficients and resolvent on cylinder components. We now
extend the scattering problem as follows: let Yα ⊂ Y (α = 1, . . . , N) be pairwise
disjoint, closed, connected submanifolds such that

(4.43) Y = ∪N
α=1Yα .

Points on the αth cylinder R+ × Yα will be denoted by xα := (rα , ξα). All objects
constructed previously for the cylinder R+ × Y now get an additional subscript α
to indicate that they belong to the cylinder R+ × Yα .
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The tangential operator A (cf. (4.3)) decomposes as

(4.44) A = ⊕N
α=1Aα ,

and the eigenvalues resp. eigenmodes of Aα will now be denoted by aαn resp. ϕαn .
By Σ we still denote the Riemann surface of the functions

√
λ2 − a2 where a runs

through the positive eigenvalues of A . We put kαn(Λ) =
√

Λ2 − a2
αn for Λ ∈ Σ .

The eigenmode ϕαn is supported, of course, on Yα , so that the running and
standing free waves φ0

αn and ψ0
αn are supported on R+×Yα . Note that for λ ∈ FP

the resolvent (D − λ)−1 maps L2-sections to L2-sections. Hence the Lippmann–
Schwinger equation shows that the scattering state ψαn of Def. 4.7 has the following
properties:

(1) If λ ∈ FP the restriction of ψαn(· ; λ) to the cylinder R+ × Yβ , β 6= α , is
square-integrable.

(2) On the cylinder R+ × Yα the difference ψαn(· ;λ) − ψ0
αn(· ;λ), λ ∈ FP, is

square-integrable.
The square-integrable part of ψαn(· ; λ) can be expanded in terms of the functions
φ0

αn(· ; λ). Consequently (see [6, Sec. 5,7]) we have

Proposition 4.8. There exist such meromorphic functions Tα,β
m,n(Λ) on Σ that on

R+ × Yα we have expansions

ψβn(xα ; Λ) ≈ − 1
2i





φ0
βn(xβ ; τβnΛ) +

∑
m

φ0
βm(xβ ; Λ) T β,β

m,n(Λ) , α = β ,

∑
m

φ0
αm(xα ; Λ) Tα,β

m,n(Λ) , α 6= β ,

which are to be understood as follows: for Λ ∈ FP (the physical sheet) the sum
∑

m

converges in the L2-sense and the expansion is an equality; the individual terms are
then extended meromorphically to Σ .

We refer to the functions Tα,β
m,n(Λ) as transfer coefficients (not to be confused

with matrix entries of the so-called transfer matrix). They are closely related to
scattering matrix elements, as will be explained in the last section of this paper.

The transfer coefficients Tα,β
m,n(Λ) can be calculated from the asymptotic form of

the functions ψβn(xα ; Λ) by projection onto the outgoing running waves, as follows.
Let Λ1 ,Λ2 ∈ Σ with π(Λ1) = π(Λ2), and for any rα > 0 consider the integral

(4.45) Jα,β
m,n(Λ1 , Λ2) :=

∫

Yα

h
(
φ0

αm(rα, ξα ; Λ1), iγαψβn(rα, ξα ; Λ2)
)
dξα .

By the reasoning of the proof of Prop. 4.3, this indeed is independent of rα > 0 .

Proposition 4.9. For Λ1 , Λ2 ∈ Σ with π(Λ1) = π(Λ2) 6= 0 , define Jα,β
m,n(Λ1 , Λ2)

by Eq. (4.45). Then, if α 6= β ,

(4.46) Jα, β
m,n(Λ1 , Λ2) = (−2i)−1Iα

m,m(0 ; Λ1,Λ2)Tα, β
m,n (Λ2) .

Proof. Let Λ2 ∈ FP, in which case the expansion of Prop. 4.8 for ψβn( · ; Λ2) is L2-
convergent. Inserting it, for α 6= β, into the right-hand side of (4.45) one obtains

−2iJα, β
m,n(Λ1 ,Λ2) =

∑
k
Iα
m,k(rα ; Λ1 , Λ2)T

α, β
k,n (Λ2) = Iα

m,m(0 ; Λ1 , Λ2)Tα, β
m,n (Λ2) ,

where Prop. 4.3 was used. The claim now follows by analytic continuation in Λ2. ¤
In the case of α = β there may be another term due to the incoming wave in the

expansion of Prop. 4.8. This term is absent in the following situation.

Proposition 4.10. For any pair α , β and Λ ∈ Σ we have that

(4.47) Tα, β
m,n (Λ) = − 2iπ(Λ)

kαm(Λ)
Jα, β

m,n(ταmΛ ,Λ) .
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Proof. The restriction α 6= β in Prop. 4.9 becomes void on setting Λ2 = Λ and
Λ1 = ταmΛ . Indeed, the extra term from the incoming wave in ψβn( · ; Λ) for
α = β and m = n is then proportional to Iα

n,n(0 ; ταnΛ , ταnΛ), which vanishes by
Prop. 4.3. Thus if ταmΛ1 = Λ2 formula (4.46) holds for all α , β . By using Eq.
(4.35) for Iα

m,m(0 ; ταmΛ ,Λ) we then arrive at the proposed statement. ¤

Next we discuss the asymptotic expansion of the resolvent kernel of D on the
cylinders. Notice that if we take λ ∈ FP and fix some point x ∈ X outside of the
cylinder R+ × Yα , then

R+ × Yα 3 xα 7→ (D − λ)−1 (x, xα)

is a square-integrable eigensection of D . This eigensection maps into the bundle
Ex ⊗ E∗. Hence it has an expansion in terms of the running waves φ0

αn(xα ; λ)
(n ∈ N) with coefficients in Ex :

Proposition 4.11. For x ∈ X \ (R+×Yα) and λ ∈ FP we have two L2-convergent
expansions on the cylinder R+ × Yα :

(4.48) (D − λ)−1(x, xα) =
∑

n

2π(λ)
kαn(λ)

ψαn(x ;λ)⊗ h
(
φ0

αn(xα ; λ), · ) ,

and

(4.49) (D − λ)−1(xα, x) =
∑

n

2π(λ)
kαn(λ)

φ0
n(xα ; λ)⊗ h

(
ψn(x ; λ), · ) .

Proof. On the cylinder R+ × Yα we have an L2-convergent expansion

(4.50) (D − λ)−1(x, xα) =: 2i
∑

n

Qn(x ; λ)⊗ h
(
φ0

αn(xα ; λ), · ) (λ ∈ FP),

with a priori unknown coefficients Qn(x ; λ) ∈ Ex . Substituting this expansion into
the Lippmann-Schwinger formula (4.42) we obtain

ψαn(x ;λ) =

=
∑
m

Qm(x ; λ)
∫

R+×Yα

h
(
φ0

αm(xα ; λ), γαχ′(xα)φ0
αn(xα ; ταnλ)

)
dvol(xα)

= −i
∑
m

Qm(x ; λ) lim
R→∞

∫

{R}×Yα

h
(
φ0

αm(R , ξα ; λ), iγαφ0
αn(R , ξα ; ταnλ)

)
dξα .

The second step follows after partially integrating w.r.t. the longitudinal coordinate
rα and once again using Prop. 3.5 (cf. also (4.31)). The lower boundary term
vanishes because χ is zero at rα = 0 . What we have obtained is the familiar
integral (4.31). By using Prop. 4.3 we find

ψαn(x ; λ) = −i
∑
m

Qm(x ;λ) lim
R→∞

Iα
m,n(R ;λ , ταnλ) = iQn(x ; λ) kαn(λ)/π(λ) .

Thus the coefficients in the expansion (4.50) are given by

iQn(x ; λ) =
π(λ)

kαn(λ)
ψαn(x ;λ) ,

and (4.48) is proved.
Since D is self-adjoint the resolvent kernel has the symmetry property

(4.51) (D − λ)−1(x, y) =
(
(D − λ)−1

)†
(y, x) ,

for arbitrary x, y ∈ X. Using it, (4.49) follows immediately from (4.48) by taking
adjoints. ¤
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4.7. Transport conductance and the scattering matrix. We now turn to the
conductivity bi-vector field introduced in Sect. 3.4, and compute the double flux
integral (2.17). Thus for ξ ∈ T ∗x X and η ∈ T ∗y X let

〈gΛ1, Λ2(x, y), (ξ, η)〉 := tr
(
ic(ξ) (D − Λ1)−1(x, y) ic(η) (D − Λ2)−1(y, x)

)
,

which is the contribution to the conductivity bi-vector field σλ,λ′ from the first term
on the right-hand side of the formula of Definition 3.10.

Let then Yα, Yβ be two different boundary faces, α 6= β. Our goal is to calculate
the double flux integral of the bi-vector field gΛ1, Λ2 through Yα and Yβ :

(4.52) Fβ, α(Λ1, Λ2) := −
∫

Yβ

∫

Yα

〈gΛ1, Λ2(xβ , xα), (drβ , drα)〉dξαdξβ

for π(Λ1) = π(Λ2), and in particular for Λ1 = E+ , Λ2 = E− , E ∈ R \ (S ∪ −S).
This will already yield the transport conductance, (Gtr)αβ(E) = Fα, β(E+, E−),
since all terms beyond the first one in the formula of Definition 3.10 give zero
due to the orthogonality relations of Proposition 4.4. Before stating the result, we
remind the reader that for Λ1 , Λ2 ∈ Σ with π(Λ1) = π(Λ2) and a ∈ S we have

(4.53)
√

Λ2
1 − a2 = ±

√
Λ2

2 − a2 .

Also, by the definition of the Riemann surface Σ we have Im
√

Λ2
j − a2 > 0 for a

large enough. Therefore we obtain:

Lemma 4.12. Let Λ1 , Λ2 ∈ Σ with π(Λ1) = π(Λ2). Then
√

Λ2
1 − a2 =

√
Λ2

2 − a2

for all but finitely many a ∈ S.

Theorem 4.13. Let α 6= β. Furthermore, let Λ1 , Λ2 ∈ Σ with π(Λ1) = π(Λ2).
Then the flux integral equals

(4.54) Fβ,α(Λ1, Λ2) =
∑
m,n

′ kβn(Λ1)
kαm(Λ1)

T β,α
n,m(Λ2)T β,α

n,m(Λ1) ,

where
∑′ means summation over those m, n for which kαm(Λ1) = −kαm(Λ2) and

kβn(Λ2) = −kβn(Λ1).

Remark 4.14. We explicitly point to the special case Λ1 = E+ , Λ2 = E− , where
π(Λ1) = π(Λ2) = E . In that case Theorem 4.13 yields

Fβ,α(E+, E−) =
∑

aαm, aβn<|E|

√
E2 − a2

βn√
E2 − a2

αm

∣∣T β,α
n,m(E+)

∣∣2 .

The square-root factors arise from our unconventional choice of normalization for
the scattering waves. Absorbing them into the transfer coefficients, we obtain the
Landauer-Büttiker formula

(4.55) (Gtr)βα(E) = Fβ,α(E+, E−) =
∑

aαm, aβn<|E|

∣∣Sβ,α
n,m(E+)

∣∣2 ,

where Sβ,α
n,m now are true scattering matrix elements, defined with respect to a basis

of scattering waves that satisfy the unit flux normalization rule.

The proof of Theorem 4.13 will basically follow from the expansions (4.48),
(4.49) and that of Proposition 4.8. There are, however, some technical difficulties
to overcome, which stem from the fact that the expansions are L2-convergent only
on the physical sheet FP. In fact, for the pair (Λ1, Λ2) in Theorem (4.13) at least
one of Λ1 or Λ2 will not be in FP, except in the trivial case Λ1 = Λ2 .
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Proposition 4.15. Let x ∈ X \ (R+ × Yα), η ∈ T ∗x M . Furthermore, consider Λ1 ,
Λ2 ∈ Σ with π(Λ1) = π(Λ2). Then

Fα(x, η ; Λ1, Λ2) :=
∫

Yα

〈gΛ1, Λ2(x, xα), (η, drα)〉 dξα

=
∑
m

′ 4π(Λ1)
kαm(Λ1)

h
(
ψαm(x; Λ2), ic(η)ψαm(x; Λ1)

)
.

(4.56)

Here, similarly as in Theorem 4.13 the primed sum
∑′

m denotes summation over
those m for which kαm(Λ1) = −kαm(Λ2).

Remark 4.16. Note that by the very definition of the Riemann surface Σ the con-
dition kαm(Λ1) = −kαm(Λ2) cannot be satisfied for more than finitely many m .
Thus

∑′ in Proposition 4.15 is in fact a finite sum.

Proof. Assume for the moment that Λ2 ∈ FP. Then Prop. 4.11, Eq. (4.49), yields

Fα(x, η ; Λ1, Λ2) =
∑
m

2π(Λ2)
kαm(Λ2)

×
∫

Yα

h
(
ψαm(x; Λ2) , ic(η)(D − Λ1)−1(x, xα) iγαφ0

αm(rα, ξα; Λ2)
)
dξα .

(4.57)

The integrals under the sum are certainly analytic in Λ1 and Λ2 . Now we first
evaluate the integral under the sum for the case of Λ1 ∈ FP. For that, we may
insert the asymptotic expansion (4.48) for the resolvent to find

∫

Yα

h
(
ψαm(x; Λ2) , ic(η)(D − Λ1)−1(x, xα) iγαφ0

αm(rα, ξα; Λ2)
)
dξα

=
∑

n

2π(Λ1)
kαn(Λ1)

Iα
n,m(rα; Λ1, Λ2)h

(
ψαm(x; Λ2), ic(η)ψαn(x; Λ1)

)

=
2π(Λ1)

kαm(Λ1)
Iα
m,m(0 ; Λ1, Λ2) h

(
ψαm(x; Λ2), ic(η)ψαm(x; Λ1)

)
.

(4.58)

From Proposition 4.3 we know that the integral Iα
m,m(0 ; Λ1, Λ2) vanishes unless

kαm(Λ2) = kαm(Λ1) = −kαm(Λ1). Thus it follows that

Fα(x, η ; Λ1, Λ2) =
∑
m

′ 4π(Λ1)
kαm(Λ1)

h
(
ψαm(x; Λ2), ic(η)ψαm(x; Λ1)

)
,

with the sum being restricted by kαm(Λ2) = −kαm(Λ1). By analytic continuation
we now see that for all Λ1 , Λ2 ∈ Σ with π(Λ1) = π(Λ2) the integral under the sum
on the right-hand side of (4.57) is given by (4.58). This proves the proposition. ¤

Proof of Theorem 4.13. It remains to integrate the finite sum on the right-hand
side of (4.56) over x ∈ Yβ . Hence we need to calculate

(4.59)
∫

Yβ

h
(
ψαm(rβ , ξβ ; Λ2), iγβψαm(rβ , ξβ ; Λ1)

)
dξβ .

Repeating the line of argument in the proof of Proposition 4.15 we may insert the
asymptotic expansion of Proposition 4.8 for ψαm on the cylinderR+×Yβ . Together
with Proposition 4.9 we obtain

. . . =
1
2i

∑
n

T β,α
n,m(Λ2)

∫

Yβ

h
(
φ0

βn(rβ , ξβ ; Λ2), iγβψαm(rβ , ξβ ; Λ1)
)
dξβ

=
1
4

∑
n

T β,α
n,m(Λ2)T β,α

n,m(Λ1)Iβ
n,n(0 ; Λ2, Λ1).

(4.60)
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Finally, we insert this result into (4.56) integrated over Yβ . Using once again
Proposition 4.3 we then obtain

Fβ,α(Λ1, Λ2) =
∑
m,n

kβn(Λ1)
kαm(Λ1)

T β,α
n,m(Λ2)T β,α

n,m(Λ1) ,

which is the desired result. ¤
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