
Applied Bionics and Biomechanics 2003:1(1) 11–19
© 2003 Open Mind Journals Limited. All rights reserved.

11

O R I G I N A L  R E S E A R C H

Introduction
During the last decade, considerable research has been

devoted to the topic of highway traffic using methods from

physics (Chowdhury et al 2000; Helbing 2001). However,

pedestrian dynamics (Schreckenberg and Sharma 2001) has

not been studied as extensively as vehicular traffic. One

reason is probably its generically two-dimensional nature.

Therefore, only few models exist that can reproduce the

empirically observed behaviour accurately. An important

example is the ‘social force model’ (Helbing and Molnar

1995; Helbing 2001), where pedestrians are treated as

particles1 subject to long-ranged forces induced by the social

behaviour of the individuals. This leads to (coupled)

equations of motion similar to Newtonian mechanics. Such

a description has many similarities with the modelling of

sand and other granular materials.

Due to the complexity, any pedestrian model for realistic

applications has to be treated on a computer. Efficient

computer simulations of the social force model are difficult

for large crowds consisting of hundreds or thousands of

individuals. Due to the long-ranged nature of forces, many

interaction terms have to be calculated. An additional

difficulty arises in complex geometries. It has to be checked

whether an interaction between two individuals is possible,

or whether it is blocked by walls. This requires complicated

algorithms, which slow down the speed of the simulations.

Efficient computer simulations require simple models

that nevertheless provide an accurate description of reality.

One simple class of models are so-called cellular automata

that have been studied in statistical physics for a long time

(Wolfram 1986, 2002). In a cellular automaton, space, time

and state variables are discrete, which makes them ideally

suited for high-performance computer simulations.

However, this still leaves the problem of the long-ranged

interactions. In principle, a model is needed where the

interactions are only local (restricted to the nearest

neighbourhood) so that the presence of thousands of other

people and walls does not influence performance of the

simulations. It is exactly at this point, where we can learn

from nature. The problem of transforming the effects of a

long-ranged spatial interaction into local ones has already

been solved by many insects. In fact, we will develop a

model for pedestrian dynamics that is inspired by the

formation of ant trails (Wilson 1971; Hölldobler and Wilson

1990; Camazine et al 2001; Mikhailov and Calenbuhr 2002).

Here, the phenomenon of ‘chemotaxis’ is the clue (see Ben-

Jacob (1997) for a review). The model, which is introduced

in the section Modelling pedestrian dynamics, uses a form

of ‘virtual chemotaxis’ to mediate the interactions between

the pedestrians.

To achieve complex behaviour in a simple fashion, one

often resorts to a stochastic description. A realistic situation

can seldom be described completely by a deterministic

approach. Minor events can lead to a very different

behaviour due to the complexity of the interactions involved.

For the problem of pedestrian motion this becomes evident

in the case of a panic, for example, where the behaviour of

people seems almost unpredictable. But also for ‘normal’

situations, a stochastic component in the dynamics can lead

to a more accurate description of complex phenomena, since
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it takes into account that we usually do not have full

knowledge about the state of the system and its dynamics.

Collective phenomena
One of the reasons why the investigation of pedestrian

dynamics is attractive for physicists is that many interesting

collective effects and self-organisation phenomena can be

observed. Here, we give only a brief overview; refer to

Helbing (2001) and Schreckenberg and Sharma (2001) for

a more comprehensive discussion and list of references.

Jamming
At large densities, various kinds of jamming phenomena

occur; for example, when many people try to leave a large

room at the same time, and the flow is limited by a door or

narrowing (see Figure 1). Therefore, this kind of jamming

phenomenon does not depend strongly on the microscopic

dynamics of the particles. This clogging effect is typical

for a bottleneck situation. It is important for practical

applications, especially evacuation simulations.

Other types of jamming occur in the case of counterflow

where two groups of pedestrians mutually block each other.

This happens typically at high densities and when it is not

possible to turn around and move back, eg when the flow

of people is large.

Lane formation
In counterflow, ie two groups of people moving in opposite

directions, a kind of spontaneous symmetry breaking occurs

(see Figure 2). The motion of the pedestrians can self-

organise in such a way that (dynamically varying) lanes are

formed where people move in just one direction (Helbing

and Molnar 1995). In this way, strong interactions with

oncoming pedestrians are reduced, and a higher walking

speed is possible.

Oscillations
In counterflow at bottlenecks, eg doors, one can observe

oscillatory changes in the direction of motion. Once a

pedestrian is able to pass the bottleneck, it becomes easier

for others to follow her/him in the same direction until

somebody is able to pass the bottleneck (eg through a

fluctuation) in the opposite direction (see Figure 3).

Patterns at intersections
At intersections, various collective patterns of motion can

be formed. Typical examples are short-lived roundabouts,

which make the motion more efficient. Even if these are

connected with small detours, the formation of these patterns

can be favourable since they allow for a ‘smoother’ motion.

Panic situations
In panic situations, many counter-intuitive phenomena can

occur. In the ‘faster-is-slower effect’, a higher desired

velocity leads to a slower movement of a large crowd

 a b c 

Figure 1 Clogging near a bottleneck (door). Shown are typical stages of an evacuation simulation: initial state (t = 0) (a); middle stages (b); end stage with only a few
particles left (c).

Figure 2 Lane formation in counterflow in a narrow corridor.
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(Helbing et al 2000). Such effects are extremely important

for evacuations in emergency situations.

Modelling ant trails
Before introducing our model of pedestrian dynamics, we

will discuss a model for ant trails (Chowdhury et al 2002;

Nishinari et al 2003), which shows the basic principles,

especially the influence of chemotaxis.

Ants communicate with each other by dropping a

chemical (generically called ‘pheromone’) on the substrate

as they crawl forward (Wilson 1971; Hölldobler and Wilson

1990; Camazine et al 2001; Mikhailov and Calenbuhr 2002).

Although we cannot smell it, the trail pheromone sticks to

the substrate long enough for the other following ants to

pick up its smell and follow the trail. Ant trails may serve

different purposes (trunk trails, migratory routes) and may

also be used in a different way by different species.

Therefore, one-way trails are observed as well as trails with

counterflow of ants.

Here, we consider one-dimensional trails with ants

moving only in one direction. The trail is now divided into

cells that can accommodate at most one ant at a time (see

Figure 4). The cells are labelled by the index i (i=1, 2, ..., L);

L being the length of the lattice. With each ant cell, we

associate another cell for the pheromones (Figure 4). For

simplicity, only the two states ‘pheromone present’ and ‘no

pheromone present’ are noted.

The dynamics of the model consists of two stages (see

Figure 4). In stage I, ants are allowed to move, whereas

stage II corresponds to the dynamics of the pheromone.

Stage I: motion of ants
An ant in cell i that has an empty cell in front of it moves

forward with:

  if a pheronome is present at 1
probability

  if no pheromone is present at 1 

Q i

q i

+ë
= ì +í

(1)

where, to be consistent with real ant trails, we assume q< Q.

The value of the hopping probability represents the average

velocity v of non-interacting ants. Without pheromones, a

single ant moves with v q= , whereas v Q=  in the presence

of pheromones. Thus, stage I, in a simple way, represents

the fact that ants move faster towards their destination if

they are guided by pheromones.

Stage II: evaporation of pheromones
At each cell i occupied by an ant after stage I, a pheromone

will be created. In this way, a kind of ‘pheromone trace’ is

produced by moving ants. Any ‘free’ pheromone at a site i

not occupied by an ant will evaporate with the probability f

Figure 3 Oscillations of the flow direction at a door with counterflow.

Figure 4 Schematic representation of typical configurations; it also illustrates
the update procedure. (a) Configuration at time t, ie before stage I of the update.
The non-vanishing hopping probabilities of the ants are also shown explicitly.
(b) Configuration after one possible realisation of stage I. Two ants have moved
compared with the top part of the figure. Also indicated are the pheromones
that may evaporate in stage II of the update scheme. (c) Configuration after one
possible realisation of stage II. Two pheromones have evaporated and one
pheromone has been created due to the motion of an ant.

a

b

c
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per unit time; therefore, the trace created by a moving ant

will disappear after some time if it is not renewed by other

ants.

Despite its simplicity, this model contains the basics that

describe the motion of ants in a trail (Chowdhury et al 2002;

Nishinari et al 2003). The forward motion is represented

by hopping, whereas the mutual hindrance of ants comes

from the exclusion principle that allows at most one ant per

cell. The influence of the pheromone is encoded in the

hopping probabilities q and Q, and finally it has also been

taken into account that pheromones have a finite lifetime

through the evaporation probability f. Of course, many subtle

details have been neglected. However, these details turn out

to be of less importance for an understanding of the basic

principles underlying the process of chemotaxis.

Modelling pedestrian dynamics
In the previous section, the basic principles for modelling

ant trails was presented. Based on similar principles, a model

for pedestrian dynamics was developed (Burstedde et al

2001; Kirchner and Schadschneider 2002). Guided by the

phenomenon of chemotaxis the interactions between

pedestrians are local and thus allow for computational

efficiency.

General principles
The pedestrians create a ‘virtual trace’, which then

influences the motion of other pedestrians. This allows for

a very efficient implementation on a computer since now

all interactions are local. The transition probabilities for all

pedestrians only depend on the occupation numbers and

strength of the virtual trace in the neighbourhood, ie the

long-ranged spatial interaction has been translated into a

local interaction with ‘memory’. The number of interaction

terms in other long-ranged models, eg the social-force

model, is of the order N 2 (where N is the number of

particles), whereas it is only of the order N in our model.

The idea of a virtual trace can be generalised to a so-

called ‘floor field’. This floor field includes the virtual trace

created by the pedestrians as well as a static component,

which does not change with time. The latter allows

modelling, eg preferred areas, walls and other obstacles.

The pedestrians then react to both types of floor fields.

To keep the model simple, the particles needed to be

provided with as little ‘intelligence’ as possible, and there

needed to be the formation of complex structures and

collective effects by means of self-organisation. In contrast

to other approaches, it is not necessary to make detailed

assumptions about human behaviour. Nevertheless, the

model is able to reproduce many of the basic phenomena.

The key feature to substitute individual intelligence is

the floor field. Apart from the occupation number, each cell

carries an additional quantity (field) similar to the

pheromone field in the ant trail model discussed. This field

has its own dynamics given by diffusion and decay.

Interactions between pedestrians are repulsive for short

distances. One likes to keep a minimal distance from others

to avoid bumping into them. In the simplest version of the

model, this is taken into account through hard-core

repulsion, which prevents multiple occupation of the cells.

For longer distances, the interaction is often attractive; for

example, when walking in a crowded area it is usually

advantageous to follow directly behind the predecessor.

Large crowds may also be attractive due to curiosity.

These basic principles are already sufficient to reproduce

the effects described in the section Collective phenomena,

which so far only has been achieved by the social force

model (Helbing and Molnar 1995). This shows the ability

of cellular automata to create complex behaviour out of

simple rules, and the great applicability of this approach to

all kinds of traffic flow problems (Chowdhury et al 2000).

Definition of the model and its dynamics
The area available for pedestrians is divided into small cells

of approximately 40 cm × 40 cm. This is the typical space

occupied by a pedestrian in a dense crowd. As in the ant

trail model, each cell can either be empty or occupied by

exactly one particle (pedestrian). For special situations it

might be desirable to use a finer discretisation, such that

each pedestrian occupies four cells, for example, instead of

one. Each pedestrian can move to one of the unoccupied

next-neighbour cells (i, j) (or stay at the present cell) at each

discrete time step t → t +1, according to certain transition

probabilities p
ij
 (Figure 5) as explained below.
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Figure 5 Possible target cells for a person at the next time step.
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For the case of evacuation processes, the ‘static floor

field’ S describes the shortest distance to an exit door. The

field strength S
ij
 is set inversely proportional to the distance

from the door. The ‘dynamic floor field’ D is a ‘virtual trace’

left by the pedestrians similar to the pheromone in

chemotaxis (see Ben-Jacob (1997) for a review). It has its

own dynamics, namely diffusion and decay, which leads to

broadening, dilution and finally vanishing of the trace. At

t = 0 for all sites (i, j) of the lattice, the dynamic field is zero,

ie D
ij
= 0. Whenever a particle jumps from site (i, j) to one

of the neighbouring cells, D at the origin cell is increased

by one.

The update is done in parallel for all particles

(synchronous dynamics). This introduces a time scale into

the dynamics, which can roughly be identified with the

reaction time t
reac

. From the empirically observed average

velocity of a pedestrian of about 1.3 m/s, one can estimate

that one time step in our model corresponds to approxi-

mately 0.3 s in real time. This is of the order of the reaction

time t
reac

 and thus consistent with our microscopic rules. It

also agrees nicely with the time needed to reach the normal

walking speed, which is about 0.5 s.

The update rules of our cellular automaton are divided

into five steps that have the following structure:

1. The dynamic floor field D is modified according to its

diffusion and decay rules, controlled by the parameters

α and δ. In each time step of the simulation, each single

particle of the whole dynamic field D decays with

probability δ and diffuses with probability α to one of

its neighbouring cells.

2. For each pedestrian, the transition probabilities p
ij
 for a

move to an unoccupied next-neighbour cell (i, j) are

determined by the two floor fields and one’s inertia

(Figure 5). The values of the fields D (dynamic) and S

(static) are weighted with two sensitivity parameters k
D

and k
S
:

( ) ( )( )exp exp 1ij D ij S ij ij ijp N k D k S n= − ξ (2)

with a normalisation N that guarantees 
,

1
i j

ijp =ä . ijn is

the occupation number of the target cell (i, j), ie n
ij
= 1

for an occupied cell and n
ij
= 0 otherwise. Similarly, ξ

ij

is a hindrance factor, which is 0 if a cell cannot be

reached, eg due to the presence of a wall or other

obstacle, and 1 otherwise.

3. Each pedestrian randomly chooses a target cell based

on the transition probabilities p
ij
 determined by step 2.

4. Whenever two or more pedestrians attempt to move to

the same target cell, the movement of all involved

particles is denied with probability µ ∈ [0,1] (see

Figure 6), ie all pedestrians remain at their site (Kirchner,

Nishinari et al 2003). This means that with probability

1 – µ, one of the individuals moves to the desired cell.

The one allowed to move is decided using a probabilistic

method (Burstedde et al 2001; Kirchner, Nishinari et al

2003). In the following, µ is called ‘friction parameter’,

since it has similar effects as friction between, for

example, sand grains.

5. The pedestrians who are allowed to move perform their

motion to the target cell chosen in step 3. D, at the origin

cell (i, j) of each moving particle, is increased by one:

D
ij

→ D
ij
+ 1, ie D can take any non-negative integer

value. This corresponds to an ant dropping a pheromone.

In contrast to the ant trail model, an arbitrary number of

pheromones can exist at each site so that it is possible to

model a varying strength of the trace.

The above rules are applied to all pedestrians at the same

time (parallel update). The rules and their interpretation will

be explained in more detail below.

In principle we can give each particle a preferred walking

direction. From this direction, a 3 ×3 ‘matrix of preferences’

(Burstedde et al 2001) is constructed, which contains the

probabilities for a move of the particle in a certain direction

when interactions are neglected. The probabilities can be

related to the average velocity and its longitudinal and

transversal standard deviations (see Burstedde (2001) for

details). So the matrix of preferences contains information

about the preferred walking direction and speed. In principle,

it can differ from cell to cell depending on the geometry

and aim of the pedestrians.

Interpretation of the rules
To reproduce the collective phenomena discussed in a

previous section, it is necessary to take into account the

motion of all other pedestrians in a certain neighbourhood.

This implies the introduction of non-local or longer-ranged

interactions. In some continuous models this is done using

t t + 1

µ

Figure 6 Refused movement due to the friction parameter µ.
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the idea of a social force (Helbing and Molnar 1995; Helbing

2001). The approach described above is different. Since we

want to keep the model as simple as possible we avoid using

a long-range interaction explicitly. Instead, the concept of

a ‘floor field’ was introduced that takes into account

interactions between pedestrians and the geometry of the

system (building) in a unified and simple way without

loosing the advantages of local transition rules. The floor

field modifies the transition probabilities in such a way that

a motion into the direction of larger fields is preferred.

The ‘dynamic floor field’ D is just the virtual trace left

by the pedestrians. It is modified by the presence of

pedestrians and has its own dynamics, ie diffusion and decay.

Usually the dynamic floor field is used to model a (‘long-

ranged’) attractive interaction between the particles. Each

pedestrian leaves a ‘trace’, ie the floor field of occupied

cells is increased. Diffusion and decay lead to a broadening,

dilution and, finally, the vanishing of the trace.

The ‘static floor field’ S does not evolve with time and

is not changed by the presence of pedestrians. Such a field

can be used to specify regions of space that are more

attractive, eg emergency exits or shop windows.

Since the total transition probability is proportional to

the dynamic floor field, it becomes more attractive to follow

in the footsteps of other pedestrians. This effect competes

with the preferred walking direction and the effects of the

geometry encoded in S
ij
. The relative influence of the

contributions is controlled by the coupling parameters k
S

and k
D
. These depend on the situation to be studied.

Consider, for example, a situation where people want to

leave a large room. Normal circumstances, where everybody

is able to see the exit, can be modelled by solely using a

static floor field, which decreases radially with the distance

from the door. Since transitions in the direction of larger

fields are more likely, this will automatically guarantee that

everybody is walking in the direction of the door. If,

however, the exit cannot be seen by everybody, eg in a

smoke-filled room or in the case of failing lights, people

will try to follow others, hoping that they know the location

of the exit. In this case, the coupling to the dynamic floor

field is much stronger, and the static field has a considerable

influence only in the vicinity of the door.

The influence of the friction parameter µ ∈ [0,1] (see

Kirchner, Nishinari et al (2003) for details) in step 4 of the

update rules, which describes clogging effects between the

pedestrians, will now be discussed. Due to the use of parallel

dynamics, it might happen that in step 3 two (or more)

pedestrians choose the same target cell. Such a situation is

called a ‘conflict’. Since the hard-core exclusion allows at

most one particle per cell, at most one person can move. If

friction is included, the movement of all involved particles

is denied with the probability µ, ie all pedestrians remain at

their site (see Figure 6). This means that with probability

1 – µ, one of the individuals moves to the desired cell. The

particle that actually moves is then determined by a

probabilistic method, eg by choosing one of them with equal

probabilities.

The effects of this friction parameter are similar to those

of contact friction in granular materials, which explains the

name. It can be interpreted as a moment of hesitation when

people meet and try to avoid each other. It is a local effect

that can have enormous influence on macroscopic quantities

like flow and evacuation time (Kirchner, Nishinari et al

2003). Note that the kind of friction introduced here only

influences interacting particles, not the average velocity of

a freely moving pedestrian.

Results
The model defined in the previous section is easy to

implement on a computer. Due to its simplicity, very efficient

Monte Carlo simulations, even of large crowds, are possible.

In the following, some interesting results are highlighted.

Collective effects
The model is able to reproduce various fundamental

phenomena described in the section Collective phenomena,

such as lane formation in a corridor, herding and oscillations

at a bottleneck (Burstedde et al 2001; Kirchner and

Schadschneider 2002). This is an indispensable property

for any reliable model of pedestrian dynamics, especially

for discussing safety issues.

As an example, a simulation of counterflow in a corridor

is shown in Figure 7. One can clearly see that in the lower

part of the figure lanes have formed, whereas in the upper

part the motion is still disordered.

In simulations of an evacuation process from a large

room with only one exit, three different regimes can be

observed (Kirchner and Schadschneider 2002) depending

on the values of the coupling constants k
S
 and k

D
 to the static

and dynamic field, respectively. In these simulations, the

pedestrians did not have a preferred direction of motion.

The only information about the location of the exit was
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obtained through the static floor field, which increases in

the direction of the door.

For strong coupling k
S
 and very small coupling k

D
 we

find an ‘ordered regime’. This corresponds to a situation

where all pedestrians have a good knowledge about the

location of the exit and try to go there using the shortest

path. At large densities, this leads to clogging at the door,

since many pedestrians arrive there trying to leave the room.

On the other hand, the ‘disordered regime’ is characterised

by strong coupling k
D
 and weak coupling k

S
. This describes

situations where the individuals do not know the exact

location of the exit, eg in a smoke-filled room or in the case

of failing lights. In such situations, people try to follow

others, hoping that they know better where to go. This

‘herding behaviour’ is typical for ‘panic situations’. Between

these two regimes an ‘optimal regime’ exists where the

combination of interaction with the static and the dynamic

floor fields minimises the evacuation time (Kirchner and

Schadschneider 2002).

In such evacuation simulations, counter-intuitive effects

can be observed. Usually, one would expect that increasing

the coupling k
S
 to the static field would lead to a decrease

of the evacuation time. For large k
S
 people try to use the

shortest way to the exit, whereas for small k
S
 they perform

a random motion, ie the effective velocity should increase

with k
S
. However, this is not always true.

Figure 8 shows the influence of the friction parameter

on the evacuation time T. As expected, T is monotonically

Figure 7 Snapshot from a simulation of a corridor with two groups of pedestrians moving in opposite directions. The left part shows the parameter control.
The central window is the corridor and the light and dark squares are right- and left-moving pedestrians, respectively. The right part shows the floor fields for
the two species.

Figure 8 Dependence of evacuation times on the friction parameter µ as a
function of kS for density ρ = 0.3.
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increasing with µ. For µ = 0 the evacuation time is

monotonically decreasing with increasing k
S
, as expected.

For large µ, however, T(k
S
) shows a minimum at an

intermediate coupling strength k
S
≈ 1. This behaviour is

related to clogging at the door; here, the influence on the

evacuation time. If k
S
 is large, clogging is strong since all

pedestrians arrive at the door quickly. For small and

intermediate couplings, clogging is less strong because

people arrive at very different times due to the almost

random-walk–like behaviour. Therefore, fewer conflicts

occur. Note that this observation is similar to the faster-is-

slower effect.

An application: competitive versus
cooperative behaviour
An interesting experimental result (Muir et al 1996) shows

that the motivation level has a significant influence on the

egress time from a narrow body aircraft. The experiment

was carried out with groups of 50–70 persons, where in

one case (competitive), a bonus was paid for the first 30

persons reaching the exit, and in the non-competitive

(cooperative) case, no bonus was paid. The time of the 30th

person to reach the exit was measured (t
comp

 and t
non-comp

,

respectively) for variable exit widths w. The surprising result

is t
comp

> t
non-comp

 for w < w
c
, whereas t

comp
< t

non-comp
 for w > w

c
.

The critical width was determined experimentally to be

about 70 cm (see Figure 9). This shows that competition is

beneficial if the exit width exceeds a certain minimal value.

For small exit widths, however, competition is harmful.

Within the framework of the model described above,

competition is described as an increased assertiveness (large

k
S
) and at the same time strong hindrance in conflict

situations, ie large µ. Cooperation is then represented by

small k
S
 and vanishing µ. This allows quantitatively

distinguishing competition from cooperation and comparing

the experimental results to simulations.

The experimental results have been reproduced

qualitatively using a simplified scenario (Kirchner, Klüpfel

et al 2003). Instead of a real aeroplane, an evacuation from

a room without additional internal structure was simulated.

Figure 9 shows typical average evacuation times for the non-

competitive and the competitive regime with an initial

particle density of ρ = 0.03 (116 particles). The door width

is variable and ranges from 1 to 11 lattice sites. Clearly, the

simulations are able to reproduce the observed crossing of

the two curves at a small door width qualitatively. Without

friction (µ = 0), increasing k
S
 alone always decreases t

egress
.

The effect is therefore only obtained by increasing both k
S

and µ.

Thus, there are two factors that determine the egress of

persons and the overall evacuation time in our scenario:

walking speed (controlled by the parameter k
S
) and friction

(controlled by µ). These parameters depend in a different

way on the door width: the influence of the friction

dominates for very narrow doors, which leads the crossing

shown in Figure 9.

Summary and conclusions
We have introduced a stochastic cellular automaton to

simulate pedestrian behaviour.2 The general idea of our

model is inspired by the phenomenon of chemotaxis, which

is used by certain insects for communication. However,
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Figure 9 (a) Experimental results for evacuation times for an aircraft with variable door width for competitive and non-competitive behaviour of the passengers.
(b) Results from computer simulations of the cellular automaton model.
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pedestrians leave a virtual trace rather than a chemical one.

This virtual trace has its own dynamics (diffusion and decay)

that, for example, restricts the interaction range (in time). It

is implemented as a dynamic floor field, which allows the

use of local interactions only. Furthermore, we do not need

to provide the pedestrian in the model with any

‘intelligence’. Together with the static floor field, it offers

the possibility to take different effects into account in a

unified way, eg the social forces between the pedestrians or

the geometry of the building.

The floor fields translate spatial long-ranged interactions

into local interactions with memory. The latter can be

implemented much more efficiently on a computer. Another

advantage is an easier treatment of complex geometries, eg

the formation of lanes in counterflow. Furthermore, counter-

intuitive results were found in evacuation simulations like

the faster-is-slower effect.

The example presented here shows once more that nature

has found efficient solutions to some difficult problems. In

the case of pedestrian dynamics, the precise nature of

interactions between people is difficult to determine.

Therefore, it is not entirely clear whether our approach is

just a technical trick or not. The virtual trace created by

moving pedestrians might correspond to some

representation of the path of others formed in the mind of

each individual. Nevertheless, our results so far give a strong

indication that there are more similarities between the

motion of insects and ‘intelligent individuals’ than expected.
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Notes

1 In this paper, we use ‘pedestrian’ and ‘particle’ interchangeably.
2 Further information and Java™ applets for the scenarios studied here

can be found at http://www.thp.uni-koeln.de/~as/
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