Pedestrian

Dynamics

Introduction

Pedestrian dynamics more complex than vehicular traffic:

- motion is 2-dimensional
- counterflow
- interactions "longer-ranged"

Collective phenomena

jamming or clogging (e.g. at exits)

no real challenge for modelling!

Lane Formation in Counterflow

Oscillations of flow direction

Fundamental diagram: Guidelines

Fundamental diagram: Empirical results

Possible explanation for the large discrepancies:

- uni- vs. bidirectional flow
- measurement techniques, density definition
- fluctuations
- cultural influence
- demographics of test group
- psychological factors

Bottleneck scenario

bottlenecks = flow limitations (e.g. doors, narrow corridors, stairs)

Bottleneck flow

dependence of bottleneck capacity on width:

linear or stepwise??

Bottleneck flow

stepwise:

linear:

"zipper effect"

Bottleneck flow

Bottleneck flows significantly larger than maximum of fundamental diagram !!

→ "contradiction" with physics !!

Origin of this surprising result?

- finite-size effects
- fluctuations
- non-stationary flow
- psychology

Evacuation and motivation

(K. Nishinari)

evacuation times for different
motivation levels (cooperative vs. competitive)
exit widths

surprising result: for narrow exits cooperation is better!!!

Modeling approaches

Classification of models:

- description: microscopic ↔ macroscopic
- dynamics: stochastic ↔ deterministic
- variables: discrete ↔ continuous
- interactions: rule-based ↔ force-based
- fidelity: high \leftrightarrow low
- concept: heuristic ↔ first principles

Rule-based vs. force-based

rule-based dynamics:

- pedestrians make decisions on basis of current state (in some neighbourhood)
- intuitive consideration of psychological effects
- often stochastic

Rule-based vs. force-based

presence of other persons leads to changes in direction of motion (acceleration)

social forces f_{ik}^(soc)

- repulsive ("private sphere")
- violate Newton's 3. law ("actio = reactio")
- physical forces f_{ik}^(phys)
 - friction

elastic forces

→ forces

Rule-based vs. force-based

- Social-force model: continuous (Helbing/Molnar, 1995)
- Newtonian equations of motion with

 $f_{jk} = f_{jk}^{(soc)} + f_{jk}^{(phys)}$

- social forces: $f_{jk}^{(soc)} \propto exp(-r_{jk}/\xi)$
- O(N²) interactions ("molecular dynamics")
- forces often "cut off"

Hydrodynamic models

analogy with streamlines "exotic fluid" macroscopic model

Navier-Stokes-type equations with driving term $\frac{v_0 - v}{\tau}$

relaxation towards "desired velocity"

Cellular automata models

- Cellular automata: discrete in space, time, state variable
- generically: stochastic, rule-based dynamics
- Space divided into cells (40*40 cm²)
- Exclusion principle: at most one pedestrian per cell
- Discrete time: parallel (synchronous) dynamics
 - natural timescale
 - calibration and <u>quantitative</u> predications possible!!

Transition probabilities

stochastic dynamics:

transition probability p_{ij} in direction (i,j)

depend on the occupation of neighbouring cells

Types of interactions

Behaviour of pedestrians determined by

- route choice
- person person interactions
- person infrastructure interactions

incorporate all interactions in unified way?

Floor Field Cellular Automaton

- Floor field CA: stochastic model, defined by transition probabilities, only local interactions
- reproduces collective effects (e.g. lane formation)

Interaction: virtual chemotaxis

(not measurable!)

dynamic + static floor fields

interaction with pedestrians and infrastructure

Floor Field Model

Burstedde, Klauck, Schadschneider, Zittartz 2001; Schadschneider 2001

- Free motion: specified by average velocity v
- Floor field = virtual field, modifies transition probabilities
- 2 types:
 - Dynamic floor field: motion of pedestrians creates "pheromone trace")
 - Static floor field: determined by infrastructure

General principle: motion into direction of larger fields is preferred

Matrix of Preferences

M _{-1,-1}	M_1,0	M_1,1
<i>M</i> _{0,-1}	$M_{0,0}$	<i>M</i> _{0,1}
<i>M</i> _{1,-1}	<i>M</i> 1,0	<i>M</i> _{1,1}

M_{ij} = probability for motion in direction (i,j)

- can be expressed by measurable quantities:
 - -Average velocity: $\langle \vec{\vec{v}}_i \rangle$
 - -Variance: $\sigma^2 = \langle (\vec{\mathbf{v}}_i)^2 \rangle \langle \vec{\mathbf{v}}_i \rangle^2$

Transition probabilities

Transition probability p_{ij} in direction (i,j):

- M_{ij} = matrix of preferences
- D_{ij} = dynamic floor field
- **S**_{ij} = static floor field
- k_D, k_S = coupling strength
- N = normalization $(\sum p_{ij} = 1)$

(route choice, desired velocity)(interaction between pedestrians)(interaction with geometry)

Dynamic Floor Field

- Motion increases field strength in starting cell
- pedestrians change dynamic field
- motion creates a trace
- Dynamic floor field has dynamics: diffusion + decay
- → broadening and dilution of trace

Static Floor Field

- Not influenced by pedestrians
- no dynamics (constant in time)
- modelling of influence of infrastructure
- Example: Ballroom with one exit

Conflict: 2 or more pedestrians choose the same target cell

- Consequence of discreteness in space and time!!
- Conflicts have to be resolved in some way

Lane formation in FF model

velocity profile

Conflict: 2 or more pedestrians choose the same target cell

Friction: not all conflicts are resolved!

friction constant μ = probability that no one moves

Artefact or Real Effect ?

- conflicts reduce efficiency of simulations
- sometimes avoided by special update choice
- However: Conflicts and friction correspond to real effects, e.g. physical contact, moment of hesitation

Friction at Exits

"Friction" at exits increases evacuation times by reducing the outflow

Granular materials: Arching

Evacuation Scenario With Friction Effects

Evacuation and motivation

(K. Nishinari)

evacuation times for different
motivation levels (cooperative vs. competitive)
exit widths

surprising result: for narrow exits cooperation is better!!!

Experiments: Egress from airplane

(Muir/Bottomley,/Marisson, 1996)

Model Approach

(Kirchner, Klüpfel, Nishinari, Schadschneider, Schreckenberg 2003)

status of empirical results unsatisfactory

large-scale laboratory experiments (more than 300 persons) performed at

- Bergische Kaserne Düsseldorf
- Düsseldorf exhibition center
- Esprit Arena Düsseldorf

organized by FZ Jülich and Wuppertal University

Experiments: Fundamental diagram

corridor, periodic

 Wuppertal University
 FZ Jülich

Universität zu Köln

Influence of culture

India vs. Germany

Automated video analysis

automated determination of trajectories from video

pasteboard for detection and height correction

PeTrack: software tool for video analysis (M. Boltes, FZ Jülich)

Automated video analysis

-40

(University Wuppertal, FZ Jülich)

Densities via Voronoi diagram

$$\rho_{\text{Voronoi}} = \frac{\int_{A} p(\vec{x}) d\vec{x}}{|A|} \quad \text{mit } p(\vec{x}) = \begin{cases} 1/A_i : \vec{x} \in A_i \\ 0 : \text{else} \end{cases}$$

Hermes project

cooperation between

- police and fire department Düsseldorf
- Esprit Arena Düsseldorf
- University of Cologne, Bonn and Wuppertal
- Jülich Supercomputing Centre
- several industrial partners
- sponsored by BMBF

HERMES

Esprit Arena, Düsseldorf

multifunctional arena (66 000 spectators) site of Eurovision Song Contest 2011

Evacuation assistent

Hermes Evacuation Assistent

cameras for counting provide "initial condition" for simulation

Esprit Arena: Experiment

(M. Boltes)

Communication Modul

Universität zu Kola

The deterministic limit of pedestrian dynamics!

