
Highway Traffic 



Introduction 

•  Traffic = macroscopic system of interacting 
particles  (driven or self-driven) 

•  Nonequilibrium physics: 
 Driven systems far from equilibrium 

•  Collective phenomena      physics! 



Empirical Results 



Spontaneous Jam Formation 

Phantom jams 
start-stop-waves 
interesting collective 
phenomena 

space 

time 

jam velocity: 
-15 km/h   (universal!) 



Experiment 

(Tokai TV) 



Experiment 

Experiment for WDR television, 2006 



  Floating cars: Data taken 
from special cars inside 
the flow 

  All measured quantities 
are time and spatial 
averages  

  Density is calculated 
from mean distance 

  Aerial photography 
  All measured quantities 

are spatial averages, 
especially velocity and 
density 

  Inductive loops integrated 
in the lane 

  All measured quantities 
are typically time averages 

  Some inductive loops 
provide single vehicle data 

Frame Template 
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Empirical data 



Frame Template  

Single Vehicle Measurements 
Single vehicle measurement: detect each vehicle, no aggregation 

– 
8 

Empirical data 

•  Time (in hundredth seconds) at which the vehicle reaches the detector 
•  Lane of the vehicle 
•  Type of the vehicle (truck, car) 
•  Velocity in km/h   (lower bound = 10 km/h) 
•  Length in cm with an accuracy of 1 cm 



Detectors 

2-loop detectors 

velocity: 

temporal 
headway: 

spatial 
headway: 



Density  

•  from time of occupation tB,n:                                 (occupancy) 

                               density: 

•  from hydrodynamic relation J=ρv: 

Problem: determination of density from local measurements    

generically:  density is underestimated! 

(N cars passing in time T) 



Fundamental diagram  
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congested flow (jams) 
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Relation:  current (flow) vs. density 

more detailed features? 



Metastable States 

metastable high-flow states 

hysteresis 



3-Phase Theory 
 free flow 
 (wide) jams 
 synchronized traffic 

3 phases 

non-unique flow-
density relation 

(metastable) high-flow states 

(Kerner 1997) 



Synchronized Flow 

New phase of traffic flow    (Kerner – Rehborn 1996) 

States of 
•  high density and relatively large flow 
•  velocity smaller than in free flow 
•  small variance of velocity (bunching) 
•  similar velocities on different lanes (synchronization) 
•  time series of flow looks „irregular“ 
•  no functional relation between flow and density 
•  typically observed close to ramps 



free flow 

jam 

synchro 

free flow, jam: 

Cross-correlation 
function: 

Objective criterion for 
classification of traffic 
phases 

Synchronized traffic 

synchronized traffic: 



Time Headway 

many short headways!!! density-dependent 

free flow synchronized traffic 



Traffic Models 



Classification of models: 
•  description: microscopic ↔ macroscopic 
•  dynamics: stochastic ↔ deterministic 
•  variables: discrete ↔ continuous 
•  interactions: rule-based ↔ force-based 
•  fidelity: high ↔ low 
•  concept: heuristic ↔ first principles 
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Modelling approaches 



Modelling approaches 

Various modelling approaches:  

•  hydrodynamic 
•  gas-kinetic 
•  force-based 
•  cellular automata 

macroscopic 

microscopic 



  Using queuing or renewal 
theory, cluster or 
aggregation theory and gas 
kinetic theory 

  quantity of interest: f (x, v, t), 
where f (x, v, t)dxdv is the 
probability to find a car  
between x and x + dx with 
velocity between v and v + 
dv at time t 

  Examples: 
  Gas-kinetic models 

  Model equations for the 
macroscopic flow, similar to 
hydrodynamics 

  Basis is continuity equation 
(= car conservation)  

  Additional dynamic equation 
for mean velocity v(x, t)  

  Requires empirical flow 
density relation as input 

  Examples: 
  Lighthill-Whitham model 

  Kerner-Konhäuser model 

  Model equations for each 
vehicle i at time t 

  Variables are position xi(t), 
velocity vi(t) and acceleration 
ai(t) 

  Flow quantities are 
calculated building mean 
values 

  Examples: 
  Optimal velocity models 

  Car-following models 
  Cellular automata 

Microscopic 

Frame Template 

microscopic:                         macroscopic:                                 mesoscopic: 

– 
2
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Modelling approaches 



Cellular Automata 

Cellular automata (CA) are discrete in 
•  space 
•  time 
•  state variable   (e.g. occupancy, velocity) 

•  often: stochastic dynamics 

Advantages:  
•  efficient implementation for large-scale computer simulations 
•  intuitive rule-based definition of dynamics 
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Modelling of Traffic Flow 



Cellular Automata Models 

Discrete in  
•  Space: 7.5m 
•  Time: 1 sec 
•  State variable (velocity) velocity 

dynamics:    Nagel – Schreckenberg (1992) 



Update Rules 

Rules  (Nagel, Schreckenberg 1992) 

1)   Acceleration:       vj     min (vj + 1, vmax) 

2)   Braking:               vj     min ( vj , dj)    

3)   Randomization:   vj     vj – 1   (with probability p) 

4)   Motion:                xj     xj + vj 

(dj = # empty cells    
in front of car j) 



Example 
Configuration at time t: 

Acceleration (vmax = 2): 

Braking: 

Randomization (p = 1/3): 

Motion (state at time t+1): 



Interpretation of the Rules 
1)   Acceleration: Drivers want to move as fast as possible (or allowed) 

2)   Braking: no accidents 

3)   Randomization: 
a)   overreactions at braking 
b)  delayed acceleration 
c)   psychological effects (fluctuations in driving) 
d)   road conditions 

4)  Driving: Motion of cars 



Realistic Parameter Values 

•  Standard choice:         vmax=5, p=0.5 

•  Free velocity:     120 km/h  ≅ 4.5 cells/timestep 

•  Space discretization:    1 cell ≅ 7.5 m 
  1 timestep ≅ 1 sec 

•  Reasonable: order of reaction time (smallest relevant timescale) 



Spontaneous jam formation in NaSch model 

space-time plot 



Simulation of NaSch Model 

•  Reproduces structure of traffic on highways 
    - Fundamental diagram 
    - Spontaneous jam formation 

• Minimal model: all 4 rules are needed 

• Order of rules important 

•  Simple as traffic model, but rather complex as stochastic model 



Fundamental Diagram (p=0.25) 

no particle-hole 
symmetry for 
vmax>1 



Fundamental Diagram (vmax=5) 

No particle-hole symmetry 



VDR model 

Modified NaSch model:  VDR model   (velocity-dependent randomization) 

•  Step 0: determine randomization p=p(v(t)) 

                p0      if  v = 0 
 p(v) =                                      with  p0 > p 
                p        if  v > 0 

                        Slow-to-start rule 



NaSch model 

VDR-model: phase separation  

Jam stabilized by Jout < Jmax 

VDR model 

Jam Structure 



Brake-light model 
•  Nagel-Schreckenberg model 

1.   acceleration  
2.   braking  
3.   randomization  
4.   motion 

•  plus: 
–  slow-to-start rule 
–  velocity anticipation 
–  brake lights 
–  interaction horizon 
–  smaller cells 
–  … 

brake-light model 
a.k.a. 

comfortable driving model 

(Knospe-Santen-Schadschneider-Schreckenberg 2000) 

good agreement with 
single-vehicle data 



More realistic CA models 
   NaSch model 

slow-to-start rule 

•  metastable high-flow states 

•  hysteresis 

•  capacity drop 

VDR model 

•  synchronized flow 

•  short headways 

•  OV function 

•  … 

•  anticipation 

•  comfortable driving 

• mechanical restrictions 

•  free-flow + jammed regime 

•  spontaneous jamming 



2-Lane Traffic 

• Rules for lane changes (symmetrical or asymmetrical) 
•  Incentive Criterion: Situation on other lane is better 
•  Safety Criterion: Avoid accidents due to lane changes 



•  “interpolation” based on online data: online simulation 
•  30’ and 60’ forecast 

classification 
into 4 states 

(www.autobahn.nrw.de) 
Traffic Forecasting 



Finally! 

Sometimes „spontaneous 
jam formation“ has a rather 
simple explanation! 

Bernd Pfarr, Die ZEIT 


