## Nonequilibrium Physics: Problem Sheet 7

www.thp.uni-koeln.de/~as/noneq13.html

#### 13. Totally Asymmetric Exclusion Process (TASEP)

In Problem 11 we have derived the stochastic Hamiltonian for the TASEP with so-called "free boundary conditions". In the standard form of the model "open boundary conditions" are applied by coupling the system to reservoirs (see figure). If site 1 is empty, with rate  $\alpha$  a particle will be inserted. If site L is occupied, the particle will be removed at rate  $\beta$ .



In the following we will study a system with just 2 sites (L = 2).

- a) Determine the boundary Hamiltonians  $\hat{h}_{\alpha}$  (acting only on site 1) and  $\hat{h}_{\beta}$  (acting only on site 2) describing these processes. Determine the full boundary Hamiltonians  $h_{\alpha} = \hat{h}_{\alpha} \otimes \mathbf{1}$  and  $h_{\beta} = \mathbf{1} \otimes \hat{h}_{\beta}$  where  $\mathbf{1}$  is the 2 × 2 unit matrix.
- b) Determine the full Hamiltonian  $\mathcal{H} = h_{\alpha} + h_{12} + h_{\beta}$  for the open system with 2 sites. Hint:  $h_{12}$  has been determined in Problem 11.
- c) Show that one can choose p = 1 by rescaling  $t \to \gamma t$  of the time variable. Determine  $\gamma$ . How are the boundary rates  $\alpha$  and  $\beta$  rescaled?
- d) Determine the eigenvalues of  $\mathcal{H}$  for the special case p = 1 and  $\alpha = \beta$ .
- e) Bonus: Determine the stationary state for the special case of c).

### 14. Cluster approximation for the TASEP

a) Use the Kolmogorov consistency equations to show that only one of the four cluster probabilities  $P(n_j, n_{j+1})$  is independent, e.g. P(1,0). How can the other three be determined once P(1,0) is known?

Hint: We assume periodic boundary conditions so that in the stationary state the probabilities become independent of j due to translational invariance. Use the mean-field results for P(0) and P(1) to relate the cluster probabilities to the density  $\rho$ .

b) By applying the cluster approximation to the exact master equation for P(1,0) one finds that it is determined by the equation

$$P(1,0) = \frac{P(1,0)P(0,0)}{1-\rho} + \frac{p^2 P^3(1,0)}{\rho(1-\rho)} + \frac{(1-p)P^2(1,0)}{1-\rho} + \frac{pP(1,0)P(1,1)}{\rho}$$

where  $\rho = P(1) = N/L$  is the particle density. Show that

$$P(1,0) = \frac{1}{2p} \left[ 1 - \sqrt{1 - 4p(1 - \rho)\rho} \right] \,.$$

c) Compare the result for P(1,0) with the mean-field result  $P(1) \cdot P(0)$ . Which one is larger? Interpret the result!

#### 15. Matrix-product Ansatz for the TASEP

The MPA for the TASEP (with p = 1) leads to the following algebra for the matrices E and D and the vectors  $\langle W |$  and  $|V \rangle$ :

$$DE = D + E,$$
  

$$\alpha \langle W | E = \langle W |,$$
  

$$\beta D | V \rangle = | V \rangle.$$
(1)

- a) Show that this algebra has a one-dimensional representation (where E, D and  $\langle W |$ ,  $|V\rangle$  are real numbers) if  $\alpha + \beta = 1$ . Determine D and E in this case.
- **b)** The density profile is defined by  $\rho_j = \langle n_j \rangle$ , i.e. the probability that site j is occupied. In the matrix-product formalism it is given by  $\rho_j = \frac{1}{Z_L} \langle w | C^{j-1} D C^{L-j} | v \rangle$  since for the expectation value the occupations of sites  $i \neq j$  are arbitrary (which gives a factor C), but for a non-zero contribution of a configuration site j has to be occupied (factor D).  $Z_L = \langle w | C^L | v \rangle$  is a normalization.

Calculate the density profile for the 1d representation.

- c) The current (between sites j and j+1) is defined by  $J = \langle n_j(1-n_{j+1}) \rangle$ , or, in matrixproduct form,  $J = \frac{1}{Z_L} \langle w | C^{j-1} DEC^{L-j-1} | v \rangle$ . Show that for arbitrary representations it is given by  $J = \frac{Z_{L-1}}{Z_L}$ .
- d) Calculate the current for the 1d representation.

e) Show that

and

$$D = \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & \\ 0 & 0 & 1 & 1 & \\ 0 & 0 & 0 & 1 & \\ \vdots & & \ddots & \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \\ 0 & 1 & 1 & 0 & \\ 0 & 0 & 1 & 1 & \\ \vdots & & \ddots & \end{pmatrix}$$
$$\langle W | = \kappa \left( 1, a, a^2, \dots \right) , \qquad |V \rangle = \kappa \begin{pmatrix} 1 \\ b \\ b^2 \\ \vdots \\ \ddots & \end{pmatrix},$$

with  $a = \frac{1-\alpha}{\alpha}$  and  $b = \frac{1-\beta}{\beta}$  is a representation of the algebra (1) in the generic case. Which value of  $\kappa$  leads to  $\langle W|V \rangle = 1$ ?

# 16. Doubly stochastic matrix

For a stochastic matrix **M** all sums of the elements in a column are zero:  $\sum_{j} M_{ij} = 0$ . A matrix is called *doubly stochastic* if also the row sums vanish:  $\sum_{j} M_{ij} = 0$  for all *i*. **a)** Show that the stationary state of a stochastic process which leads to a doubly stochas-

- a) Show that the stationary state of a stochastic process which leads to a doubly stochastic Markov matrix is *uniform*, i.e.  $P(n_1, \ldots, n_L) = const$ . independent of the state  $(n_1, \ldots, n_L)$ .
- **b)** Show that in the case of particle conservation (where  $P(n_1, \ldots, n_L) \neq 0$  only if  $\sum_{i=1}^{L} n_i = N$ ) the stationary state factorizes, i.e.

$$P(n_1,\ldots,n_L)=P(n_1)P(n_2)\cdots P(n_L).$$

This implies that mean-field theory is exact in this case.