1. Übung zum Vorkurs Physik

Wintersemester 2005/2006

1. Aufgabe

Mit dem Anfangspunkt $P_1=(3,2)$ und dem Endpunkt $P_2=(7,5)$ ist ein Repräsentant des Vektors \vec{a} gegeben.

- a) Wie lässt sich der Vektor \vec{a} schreiben?
- b) Zeichnen Sie den Vektor \vec{a} gemäß obiger Beschreibung als Verbindungsvektor zwischen P_1 und P_2 .
- c) Geben Sie den Endpunkt P_2' eines weiteren Repräsentanten dieses Vektors \vec{a} an, wenn der Anfangspunkt $P_1' = (-3, -1)$ ist.
- d) Gegeben seien die Vektoren $\vec{a}=\begin{pmatrix}3\\2\end{pmatrix}$ und $\vec{b}=\begin{pmatrix}2\\-5\end{pmatrix}$. Geben Sie den Summenvektor $\vec{c}=\vec{a}+\vec{b}$ an.
- e) Die Koordinaten (x,y) gehen in die Koordinaten (x',y') über, indem der Koordinatenursprung 0 um den Vektor $\vec{s}=(-1,3)$ verschoben wird. Berechnen Sie die neuen Koordinaten der Punkte $P_1=(-3,4),\ P_2=(-5.5,0),\ P_3=(3,5.5),\ Q_1=(1,2),\ Q_2=(2.5,-4)$ und $Q_3=(-2.5,-1.5).$
- f) Berechnen Sie die Verbindungsvektoren $\overrightarrow{P_jQ_j}$ zwischen P_j und Q_j für j=1,2,3. Wie unterscheiden sich die Verbindungsvektoren $\overrightarrow{P_jQ_j}$ von den $\overrightarrow{P_jQ_j}$?

2. Aufgabe

In der Vorlesung wurde der Betrag eines Vektors $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ definiert als $|\vec{v}| = \sqrt{v_1^2 + v_2^2}$. Der Einheitsvektor in diese Richtung ist $\vec{e}_{\vec{v}} = \frac{1}{|\vec{v}|} \vec{v}$. Ferner stellen $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ die Einheitsvektoren eines rechtwinkligen Koordinatensystems dar.

- a) Die Vektoren \vec{a} und \vec{b} seien definiert durch $\vec{a} = \vec{e}_1 + \vec{e}_2$ und $\vec{b} = \vec{e}_2 \vec{e}_1$. Berechnen Sie die Länge von \vec{a} und \vec{b} sowie die Einheitsvektoren in Richtung von \vec{a} und \vec{b} .
- b) Stellen Sie \vec{e}_1 und \vec{e}_2 durch \vec{a} und \vec{b} bzw. durch $\vec{e}_{\vec{a}}$ und $\vec{e}_{\vec{b}}$ dar. Wieso ist dies möglich?
- c) Welchen Winkel α schließen $\vec{e}_{\vec{a}}$ und \vec{e}_{1} bzw. $\vec{e}_{\vec{b}}$ und \vec{e}_{2} ein? HINWEIS: Skizzieren Sie die Vektoren und beachten Sie die Definition der trigonometrischen Funktionen.
- d) Gibt es irgendeinen prinzipiellen Unterschied zwischen (\vec{e}_1, \vec{e}_2) und $(\vec{e}_{\vec{a}}, \vec{e}_{\vec{b}})$?

3. Aufgabe

- a) Was folgt aus $|\vec{v}| = 0$ für die Komponenten von \vec{v} ? Wie viele verschiedene Vektoren mit Betrag Null gibt es also?
- b) Welcher Einheitsvektor hat die y-Komponente $v_y=0.5$?
- c) Zu dem Vektor $\vec{a}=3\cdot\vec{e}_1$ werde ein Einheitsvektor $\vec{e}_{\vec{b}}$ in beliebiger Richtung \vec{b} addiert.
 - Wie lang kann der Summenvektor $\vec{v}=\vec{a}+\vec{e}_{\vec{b}}$ mindestens bzw. höchstens sein?
 - Ist es möglich, $ec{e}_{ec{b}}$ so zu wählen, dass $|ec{v}|=|ec{a}|=3$ gilt?
 - Wenn ja, wie lautet der passende Vektor $\vec{e}_{\vec{b}}$?

 HINWEIS: Der Einheitsvektor $\vec{e}_{\vec{b}}$ läßt sich als $\vec{e}_{\vec{b}} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ mit geeignetem Winkel α schreiben.