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Cluster formation and anomalous fundamental diagram in an ant-trail model
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A recently proposed stochastic cellular automaton model@J. Phys. A 35, L573~2002!#, motivated by the
motions of ants in a trail, is investigated in detail in this paper. The flux of ants in this model is sensitive to the
probability of evaporation of pheromone, and the average speed of the ants varies nonmonotonically with their
density. This remarkable property is analyzed here using phenomenological and microscopic approximations
thereby elucidating the nature of the spatiotemporal organization of the ants. We find that the observations can
be understood by the formation of loose clusters, i.e., space regions of enhanced, but not maximal, density.
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I. INTRODUCTION

Particle-hopping models have been used widely in the
cent years to study the spatiotemporal organization in s
tems of interacting particles driven far from equilibriu
@1–6#. Often such models are formulated in terms of cellu
automata~CA! @7#. Examples of such systems include v
hicular traffic @8–11# where the vehicles are represented
particles, while their mutual influence is captured by the
terparticle interactions. Usually, these interparticle inter
tions tend to hinder their motions so that theaverage speed
decreasesmonotonicallywith the increasing density of th
particles. In the usual form of the fundamental diagram, i
the flux-density relation, this nonmonotonicity correspon
to the existence of an inflection point. In a recent paper@12#,
we have reported a counter example, motivated by the flu
ants in a trail@13#, where, the average speed of the partic
varies nonmonotonically with their density because of
coupling of their dynamics with another dynamical variab
In Ref. @12# we presented numerical evidence in support
this unusual feature of the model and indicated the phys
origin of this behavior in terms of a heuristic mean-fie
argument. In this paper, we present the corresponding
tailedanalyticalcalculations, together with further numeric
results, that provide deep insight into the model.

The paper is organized as follows: The ant-trail mo
@12# is defined in Sec. II and compared with some clos
related models in Sec. III. Section IV presents results
tained from a microscopic cluster approximation. Althou
this approach does not reproduce the observed sharp c

*Permanent address: Department of Applied Mathematics and
formatics, Ryukoku University, Shiga, Japan~email address:
knishi@rins.ryukoku.ac.jp!. Electronic address: kn@thp.un
koeln.de

†Electronic address: debch@iitk.ac.in
‡Electronic address: as@thp.uni-koeln.de
1063-651X/2003/67~3!/036120~11!/$20.00 67 0361
-
s-

r

-
-

.,
s

of
s
e
.
f
al

e-

l
y
-

ss-

over it will help us to get a better understanding of the m
croscopic structure of the stationary state. A heuristic hom
geneous mean-field theory, which was sketched briefly
Ref. @12#, is presented in detail in Sec. V. This theory pr
duces better results than the cluster approximation. Howe
it accounts only for thequalitativefeatures of the fundamen
tal diagram obtained by computer simulations. Therefore
Sec. VI, we present a different approach that leads to
main results. In this section, we have computed some qu
tities that provide information as to the state of occupation
the site immediately in front of an ant. These quantities
only help us in identifyingthree regimes of density, with
corresponding characteristic features, but also provide
sights that we exploit in developing a different scheme
analytical calculations. The results of this different schem
that we call ‘‘loose-cluster approximation’’~for reasons
which will be clear in Sec. VI!, are in reasonably goodquan-
titative agreement with the data obtained from compu
simulations. The effects of replacing the parallel updating
random sequential updating is explored in Sec. VII. The
sults are summarized and conclusions are drawn in Sec. V
In two Appendices some details of the calculations for
cluster-theoretic approaches are given.

II. THE ANT-TRAIL MODEL

The ants communicate with each other by dropping
chemical~generically calledpheromone! on the substrate a
they crawl forward@14–16#. Although we cannot smell it,
the trail pheromone sticks to the substrate long enough
the other following sniffing ants to pick up its smell an
follow the trail. Ant trails may serve different purpose
~trunk trails, migratory routes! and may also be used in
different way by different species. Therefore, one-way tra
are observed as well as trails with counterflow of ants.

In Ref. @12#, we developed a particle-hopping model, fo
mulated in terms of stochastic CA@7#, which may be inter-
preted as a model of unidirectional flow in an ant trail. As
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Ref. @12#, rather than addressing the question of the em
gence of the ant trail, we focus attention here on the traffic
ants on a trail which has already been formed. Furtherm
we have assumed unidirectional motion. The effects of co
terflow, which are important for some species, will be inve
tigated in the future. Each site of our one-dimensional a
trail model represents a cell that can accomodate at most
ant at a time~see Fig. 1!. The lattice sites are labeled by th
index i ( i 51,2, . . . ,L); L being the length of the lattice. W
associate two binary variablesSi and s i with each sitei,
whereSi takes the value 0 or 1 depending on whether
cell is empty or occupied by an ant. Similarly,s i51 if the
cell i contains pheromone; otherwise,s i50. Thus, we have
two subsets of dynamical variables in this model, nam
$S(t)%[„S1(t),S2(t), . . . ,Si(t), . . . ,SL(t)… and $s(t)%
[„s1(t),s2(t), . . . ,s i(t), . . . ,sL(t)…. The instantaneous
state ~i.e., the configuration! of the system at any time i
specified completely by the set ($S%,$s%).

Since a unidirectional motion is assumed, ants do
move backward. Their forward-hopping probability is high
if it smells pheromone ahead of it. The state of the system
updated at each time step intwo stages. In stage I, ants are
allowed to move. Here the subset$S(t11)% at the time step
t11 is obtained using the full information@$S(t)%,$s(t)%#
at time t. Stage II corresponds to the evaporation of phe
mone. Here only the subset$s(t)% is updated so that at th
end of stage II, the new configuration@$S(t11)%,$s(t
11)%# at timet11 is obtained. In each stage, the dynami
rules are appliedin parallel to all ants and pheromones, re
spectively.

(a) Stage I: motion of ants.An ant in cell i that has an
empty cell in front of it, i.e.,Si(t)51 andSi 11(t)50, hops
forward with

FIG. 1. Schematic representation of typical configurations
also illustrates the update procedure. Top: configuration at timt,
i.e., beforestageI of the update. The nonvanishing hopping pro
abilities of the ants are also shown explicitly. Middle: configurati
after one possible realization ofstage I. Two ants have moved com
pared to the top part of the figure. Also indicated are the phe
mones that may evaporate in stage II of the update scheme. Bo
Configurationafter one possible realization ofstage II. Two phero-
mones have evaporated and one pheromone has been created
the motion of an ant.
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probability5H Q if s i 11~ t !51,

q if s i 11~ t !50,
~1!

where, to be consistent with real ant trails, we assumq
,Q.

(b) Stage II: evaporation of pheromones.At each cell i
occupied by an ant after stage I a pheromone will be created
i.e.,

s i~ t11!51 if Si~ t11!51. ~2!

On the other hand, any ‘‘free’’ pheromone at a sitei not
occupied by an ant will evaporate with the probabilityf per
unit time, i.e., ifSi(t11)50, s i(t)51, then

s i~ t11!5H 0 with probability f ,

1 with probability 12 f .
~3!

Note that the dynamics conserves the numberN of ants, but
not the number of pheromones.

The rules can be written in a compact form as the coup
equations

Sj~ t11!5Sj~ t !1min@h j 21~ t !,Sj 21~ t !,12Sj~ t !#

2min@h j~ t !,Sj~ t !,12Sj 11~ t !#, ~4!

s j~ t11!5max„Sj~ t11!,min@s j~ t !,j j~ t !#…, ~5!

wherej and h are stochastic variables defined byj j (t)50
with the probability f and j j (t)51 with 12 f , and h j (t)
51 with the probabilityp5q1(Q2q)s j 11(t) and h j (t)
50 with 12p. This representation is useful for the deve
opment of approximation schemes.

III. COMPARISON WITH OTHER MODELS

In this section, we compare the ant-trail model first w
the Nagel-Schreckenberg~NS! model @17# to show that in
various limits it reduces to the NS model with different ho
ping probabilities. This comparison also helps in formulati
the task of our analytical calculation from alternative pe
spectives. We also compare the ant-trail model with so
other models all of which share a common feature: the
namics of the ‘‘particles’’ are coupled to another dynamic
variable.

A. The Nagel-Schreckenberg model

The NS model@17# is the minimal particle-hopping mode
for vehicular traffic on freeways. In the general version
the NS model the particles, each of which represents a
hicle, can have a maximum speed ofVmax. However, by the
term ‘‘NS model’’ in this paper, we shall always mean th
NS model withVmax51, so that each particle can move fo
ward, by one lattice spacing, with probabilityqNS if the lat-
tice site immediately in front is empty.

The most important quantity of interest in the context
flow properties of the traffic models is thefundamental dia-
gram, i.e., the flux-versus-density relation, where flux is t
product of the density and the average speed. For a hop
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probability qNS at a given densityr5N/L, the exact flux
F(r) in the NS model is given by@8,18#

FNS~r!5
1

2
@12A124qNSr~12r!#, ~6!

which reduces toFNS(r)5min(r,12r) in the deterministic
limit qNS51.

FIG. 2. The average speed~a!, flux ~b!, and effective hopping
probability~c! of the ants, extracted from computer simulation da
are plotted against their densities for the parametersQ50.75,
q50.25. The discrete data points corresponding tof
50.0005 (L), 0.001 (s), 0.005 (d), 0.01 (n), 0.05 (h),
0.10 (3), 0.25 (1), and 0.50 (* ) have been obtained from com
puter simulations; the lines connecting these data points me
serve as the guide to the eye. In~a! and ~b!, the casesf 50 and f
51 are also displayed, which correspond to the NS model w
qeff5Q andq, respectively.
03612
Note that the expression~6! remains invariant under the
interchange ofr and 12r; this ‘‘particle-hole’’ symmetry of
the NS model leads to a fundamental diagram that is s
metrical aboutr51/2. In contrast, the fundamental diagram
of our ant-trail model@see Fig. 2~b!# do not possess this
symmetry except in the special cases off 50 and f 51. As
explained in Ref.@12#, in the two special casesf 50 and f
51 the ant-trail model becomes identical to the NS mo
with qNS5Q andqNS5q, respectively, and, hence, recove
the particle-hole symmetry in these two special limits.

The fluxF and the average speedV of vehicles are related
by the hydrodynamic relationF5rV. The density depen-
dence of the average speed in our ant-trail model is show
Fig. 2~a!. Over a range of small values off, it exhibits an
anomalous behavior in the sense that, unlike common
hicular traffic,V is not a monotonically decreasing functio
of the densityr. Instead a relatively sharp crossover can
observed where the speedincreaseswith the density. In the
usual form of the fundamental diagram~flux versus density!
this transition leads to the existence of an inflection po
@Fig. 2~b!#. Assuming that the flux in ant-trail model is give
by the equation~6! with a an effective hopping probability
qeff(r), which depends on the ant densityr, we can extract
qeff(r) by fitting the observed flux withFNS(r), i.e., from

qeff5
F~12F !

r~12r!
. ~7!

The effective hopping probabilityqeff is plotted as a function
of r for several different values of the parameterf in Fig.
2~c!. In the limit r→0, the pheromone dropped by an a
gets enough time to completely evaporate before the follo
ing ant comes close enough to smell it; therefore, the a
hopping probability is almost alwaysq. On the other hand, in
the opposite limitr→1, the ants are too close to miss th
smell of the pheromone dropped by the leading ant un
the pheromone evaporation probability is very high; con
quently, in the limit the ants hop most often with the pro
ability Q.

A proper theory of the ant-trail model should reprodu
the nonmonotonic variation of the average speed with d
sity @shown in Fig. 2~a!# and, hence, the unusual shape of t
fundamental diagram@shown in Fig. 2~b!#. In this paper, we
develope theories, which, indeed, reproduce these featu

B. Models with coupled dynamical variables

Models with coupled dynamical variables have been c
sidered earlier, for example, in the context of reactio
controlled diffusion@19#. However, in this section, we com
pare the ant-trail model with some more closely rela
models where the movement of the particles is totally asy
metric.

In the ant-trail model developed in Ref.@20# the particles,
which represent the ants, move in a ‘‘ground-potential lan
scape’’ created by the pheromones. A similar approach
also been used for studying the human trails of pedestr
@20#.
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In the CA model introduced in Ref.@21#, for pedestrian
dynamics, the floor fields, albeitvirtual, are analogs of the
pheromone fields$s% in the ant-trail model. However, thes
floor fields are ‘‘bosonic’’ in the sense that the variables,
which is by definition non-negative, has an otherwise un
stricted range. In contrast, in our ant-trail model the phe
mone field is ‘‘fermionic’’ as the variables, representing
pheromones, can take only two values, namely, 0~absence!
and 1 ~presence!.

The ant-trail model we propose here is closely related
the bus-route model@22# with parallel updating@23#. In fact,
as we will argue now, the ant-trail model and the bus-ro
model are the two opposite limits of the same generali
version of the NS model of vehicular traffic. The ants are
analogs of the buses while the cells accomodating ants in
ant-trail model are analogs of the bus stops in the bus-ro
model. Both the models involve two dynamical variables;
variablesSands in the ant-trail model are the analogs of th
variables representing the presence~or absence! of bus and
passengers, respectively, in the bus-route model. Just a
number of buses is conserved in the bus-route model,
number of ants is also conserved in our ant-trail model. Si
larly, the dynamical variable representing the presence~or
absence! of pheromone is not conserved in the ant-tr
model just as the number of passangers is not conserve
the dynamics of the bus-route model. However, there i
crucial difference between these two models; in the bus-ro
model Q,q ~as the buses mustslow downto pick up the
waiting passengers! whereas in our ant-trail modelQ.q
~because an ant is more likely to move forward if it sme
pheromone ahead of it!. In addition, the pheromone ar
droppedby ants~whereas passengers arrive at the bus st
independent of the buses!, while passengers arepicked upby
buses~whereas pheromones evaporate independently!.

IV. CLUSTER APPROXIMATION

The simulation results indicate that correlations betwe
different ants as well as between ants and pheromone pla
important role. We, therefore, develop a microscopic ‘‘
11)’’-cluster approximation@8,18,24# that allows the inclu-
sion of correlations between the occupation variab
Sj 21(t) andSj (t) of two successive sitesj 21 andj ~corre-
sponds to ‘‘2’’! and that between the variablesSj (t) and
s j (t) at the same sitej ~corresponds to ‘‘1’’! in an exact way.

The central quantities of the (211)-cluster approxima-
tion are the eight variables

P„Sj 21~ t !Sj~ t !…, PS Sj~ t !

s j~ t !
D , ~8!

corresponding to all possibilities@Sj 21(t),Sj (t),s j (t)
P$0,1%# of finding the corresponding configurations ofSand
s at a time. In Appendix A, we will show how the mast
equation for these quantities can be derived from mic
scopic considerations and how the resulting equations ca
solved consistently.

The flux is given by
03612
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F5qeffP~10!. ~9!

In Appendix A, it is shown that within the (211)-cluster
approximation considered here,F can be obtained from the
solution of the cubic equation

F22F1r~12r!H q1
~Q2q!~12 f !F

~12r! f 1~12 f !FJ 50. ~10!

The result is shown in Fig. 3. For all values off in the range
0, f ,1, the peak of the flux appears atr.1/2, in qualita-
tive agreement with the general trend observed in Fig. 2. B
this (211)-cluster approximation cannot reproduce t
sharp rise in the fluxes observed in Fig. 2. Note that in e
of the three casesQ5q, f 50, andf 51, the solution of Eq.
~10! is identical to Eq.~6! with either qNS5q or qNS5Q.
Next, let us defineP(m) as the probability of findingm-size
cluster ofants in a stationary state. Here the 1-size cluster
defined by•••010•••, and am-size cluster consists of a
string ofm of 1 between 0s. The distribution of cluster siz
is then given by~see Appendix A!

P~m!5
P~10!

r

~12P~10!/r!m21

12~12P~10!/r!rL
. ~11!

In Fig. 4, we illustrate the graphs ofP(m) given by Eq.
~11! and corresponding numerical data. There is a sharp p
at m51 at all the densities and the distributions are exp
nential. This means that large clusters of ants are rarely s
in this model. Moreover, Eq.~11! fits well with the numerical
data for allr.0.5, but it underestimates the simulations da
at lower densities.

In order to get a better understanding of the microsco
structure of the stationary state, we also calculate the p
abilities of finding an antPa , pheromonePp , and nothing
P0 in front of an ant:

Pa512
P~10!

r
, ~12!

Pp5
P~10!

r~12r!
PS 0

1D , ~13!

FIG. 3. Fundamental diagrams in the (211)-cluster approxima-
tion. The hopping probabilities areQ50.75 andq50.25. The same
symbols in Fig. 2 and in this figure correspond to the same va
of f.
0-4
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P05
1

r
P~10!2

P~10!

r~12r!
PS 0

1D . ~14!

Note that the sum of these three probabilities is 1. The res
are shown in Fig. 5. We see that only for small and la
values off ~e.g., f 50.0001 andf .0.1), the results of the
(211)-cluster approximation are in good quantitative agr
ment with the corresponding numerical results.

The results derived in this section indicate that themicro-
scopiccluster approximation is not able to capture the cor
lations which lead to the sharp crossover observed for sm
evaporation probabilitiesf. A systematic extension of thi
approximation scheme is, in principle, possible and m
correlations could be taken into account. However, this
proach will become quite cumbersome. In Appendix B,
have also tried to extend the results in this section by us
the stochastic cluster approach@25#, but the results are no
much improved. In the following we, therefore, develope
phenomenologicalmean-field theory that tries to capture th
essential effects in a simple way.

V. HOMOGENEOUS MEAN-FIELD THEORY „HMFT …

In this mean-field theory~MFT!, let us assume that all th
ants move with the mean speedV that depends on the densi
r of the ants as well as onf; although, to begin with, the
nature of these dependences are not known we will ob
these self-consistently. Unlike the usual approach of 1-clu
MFT ~i.e., factorization of the probabilities of configuration
in terms of 1-cluster probabilities!, the HMFT is a self-
consistentMFT that, as we demonstrate later in this pap
succeeds in capturing part of the correlations, albeit in
heuristic manner.

Let us consider a pair of ants having a gap ofn sites in
between. We designate the leading ant of this pair as the
ant ~LA ! and the other as the following ant~FA!. The prob-
ability that the site immediately in front of the FA contain
pheromone is (12 f )n/V. Heren/V is just the average time
passed since the LA has dropped the pheromone. There

FIG. 4. Cluster-size distribution forr50.1, 0.3, 0.5, and 0.8
Theoretical curve~solid line! given by Eq.~11! underestimates the
simulation ~broken curve! at densitiesr,0.5. Other relevant pa
rameters areQ50.75, q50.25, andf 50.005.
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in this zeroth level MFT, the effective hopping probability
given by

h05Q~12 f !n/V1q$12~12 f !n/V%. ~15!

In the mean-field approximation, we replacen by the corre-
sponding exact global mean separation^n&5(1/r)21 be-
tween successive ants, i.e., we are assuming the existen
a homogeneousstate. Moreover, sinceVmax51 the average
speedV is identical to the effective hopping probability, an
we get the equation

S h02q

Q2q D h0

5~12 f !1/r21, ~16!

which is to be solved self-consistently for gettingh0 as a
function of r for a givenf.

Before solving Eq.~16! numerically, note that this equa
tion implies that, forgiven f, lim

r→0
h05q; this reflects the

fact that, in the low-density regime, the pheromone dropp
by an ant gets enough time to completely evaporate be

FIG. 5. Probability of finding an ant~solid curve!, pheromone
~fine broken curve!, and nothing~coarse broken curve! in front of
an ant, with parametersf 50.0001, . . . ,0.5, in the (211)-cluster
approximation. Numerical data, obtained from computer simu
tions, are also plotted@ants (d), pheromone but no ant (s), and
nothing (3)]. These figures demonstrate how the predictions of
(211)-cluster approximation deviate from simulation data.
0-5
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the FA comes close enough to smell it. Equation~16! also
implies that lim

r→1
h05Q; this captures the sufficiently hig

density situations where the ants are too close to miss
smell of the pheromone dropped by the LA unless the phe
mone evaporation probabilityf is very high. Similarly, from
Eq. ~16!, we get, forgiven r, lim

f→1
h05q and lim

f→0
h0

5Q, which are also consistent with intuitive expectations
The solutions of Eq.~16!, calculated numerically by using

Newton method, are plotted in Fig. 6~b! and the correspond
ing fundamental diagram is shown in Fig. 6~a!. Clearly, the
HMFT captures thequalitative features of the ant-trai
model. However, there are significantquantitative differ-
ences between the predictions of this theory and the c
puter simulation data, especially, the sharp crossover aro
r50.5 ~Fig. 2!. One possible reason is that the HMFT a
sumes a rather homogeneous stationary state. Therefor
the following section, we will develope an approximatio
scheme that emphasizes the formation of a special kin
cluster in the steady state.

VI. ‘‘LOOSE’’ CLUSTER APPROXIMATION „LCA …

Let us consider again the probabilitiesPa , Pp , andP0,
defined in the preceding section. For the purpose of clar

FIG. 6. The fundamental diagram, obtained in the HMFT,
plotted against density in~a! while the corresponding effective hop
ping probabilityh0 is shown in~b!. The predictions of the HMFT
are shown by the continuous curves; the same symbols in Fig
and 6 correspond to the same values off. The broken curve in~a!,
corresponding to the computer simulation data forf 50.005 taken
from Fig. 2~a!, highlights the limitations of the HMFT in making
quantitativelyaccurate predictions.
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ing some subtle concepts of ‘‘clustering,’’ we replot the
probabilities for only two specific values off in Fig. 7; these
data have been obtained from computer simulations of
ant-trail model.

There is a flat part of the curves in Fig. 7 in the low
density regime; from now onwards, we shall refer to th
region as ‘‘region 1.’’ Note that in this region, in spite of low
density of the ants, the probability of finding an ant in fro
of another is quite high. This implies the fact that ants tend
form a cluster. On the other hand, cluster-size distribut
~Fig. 4!, obtained from our computer simulations, shows th
the probability of finding isolated ants are always higher th
that of finding a cluster of ants occupying nearest-neigh
sites.

These two apparently contradictory observations can
reconciled by assuming that the ants form loose cluster
the region 1. The term loose means that there are small g
in between successive ants in the cluster, and the clu
looks like an usual compact cluster if it is seen from a d
tance~Fig. 8!. In other words, a loose cluster is just a loo
assembly of isolated ants. Thus it corresponds to a sp
region with density larger than the average densityr, but
smaller than the maximal density (r51) of a compact
cluster.

Let us assume that the loose cluster becomes statio
after sufficient time has passed. Then the hopping probab

. 2

FIG. 7. Numerical results for the probabilities of finding a
ant (d), pheromone but no ant (s), and nothing (3) in front of an
ant are plotted against the density of the ants. The parameter
f 50.005@in ~a!# and f 50.01 @in ~b!#. See also Fig. 5.
0-6
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of all the ants, except the leading one, is assumed to bH,
while that of the leading one ish ~see Fig. 8!; the values ofH
and h are determined self-consistently, just as the effect
hopping probability in the HMFT was estimated se
consistently in Sec. V. Before beginning the detailed ana
sis, let us consider the properties ofH and h. If f is small
enough, thenH will be close toQ because the gap betwee
ants is quite small. On the other hand, if the density of ant
low enough, thenh will be very close toq because the phero
mone dropped by the leading ant would evaporate when
following ant arrives there.

Next we determine the typical size of the gap betwe
successive ants in the cluster. We will estimate this by c
sidering a simple time evolution beginning with an usu
compact cluster~with local densityr51) without any gap in
between the ants. Then the leading ant will move forward
one site over the time interval 1/h. This hopping occurs re
peatedly and in the interval of the successive hopping,
number of the following ants that will move one step isH/h.
Thus, in the stationary state, strings~compact clusters! of
length H/h, separated from each other by one vacant s
will produced repeatedly by the ants~see Fig. 9!. Then the
average gap between ants is

@~H/h!21#301131

H/h
5

h

H
, ~17!

which is independent of the densityr of ants. Interestingly,
the density-independent average gap in the LCA is consis
with the flat part~i.e., region 1! observed in computer simu
lations~Fig. 7!. In other words, the region 1 is dominated b
loose clusters.

Beyond region 1, the effect of pheromone of the last
becomes dominant. Then the hopping probability of lead
ants becomes large and the gap becomes wider, which
increase the flow. We call this region as region 2, in wh
the looser cluster is formed in the stationary state. It can
characterized by a negative gradient of the density dep

FIG. 8. Schematic explanation of the loose cluster.H is the
hopping probability of ants inside the loose cluster andh is that of
the leading ant.

FIG. 9. The stationary loose cluster. The average gap betw
ants becomesh/H, which is irrelevant to the density of ants.
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dence of the probability to find an ant in front of a ce
occupied by an ant~see Fig. 7!.

Considering these facts, we finally obtain the followin
equations forh andH:

S h2q

Q2qD h

5~12 f !L2 l , S H2q

Q2qD H

5~12 f !h/H, ~18!

wherel is the length of the cluster given by

l 5rL1~rL21!
h

H
, ~19!

and r and L are density and the system size, respective
These equations can be applied to the region 1 and 2,
solved simultaneously by the Newton method.

Total flux in this system is then calculated as follows. T
effective densityreff in the loose cluster is given by

reff5
1

11h/H
. ~20!

Therefore, considering the fact that there are no ants in
part of the lengthL2 l , total flux F is

F5
l

L
f ~H,reff!, ~21!

where f (H,reff) is given by

f ~H,reff!5
1

2
~12A124Hreff~12reff!!. ~22!

Above the density 1/2, ants are assumed to be unifor
distributed, in which a kind of MFT works well. We call thi
region as region 3. Thus, we have three typical regions
this model. In region 3, the relationH5h holds because al
the gaps have the same length, i.e., the state is homogen
Thush is determined by

S h2q

Q2qD h

5~12 f !1/r21, ~23!

which is the same as our previous paper, and flux is given
f (h,r). It is noted that if we putr51/2 andH5h, then Eq.
~18! coincides with Eq.~23!.

We can focus on the region 1 by assumingh5q in Eq.
~18!. Under this assumption, we can easily see that the fl
density relation becomes linear. In Fig. 10~a!, the two theo-
retical lines are almost the same, and the gradient of num
cal results are also similar among these values off, which is
quite similar to the theoretical one. In Fig. 10~b!, the results
obtained from Eq.~18! in the regionr<1/2 are shown.
Above this value of density, Eq.~23! is used. The jointed
curve fits quite well the numerical one.

en
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VII. ANT-TRAIL MODEL WITH RANDOM-SEQUENTIAL
UPDATING

In our earlier published work@12# as well as in this paper
so far we have considered only parallel updating of the st
of the model system. However, in some models differ
updating schemes are known to give rise to nontrivial diff
ences. For example, the correlations observed in the
model @17# with parallel dynamics andVmax51 totally dis-
appear when the parallel updating scheme is replaced by
dom sequential updating. In contrast, the updating sch
does not make much of difference in the bus-route mo
@22,23#. Therefore, in this section, we examine the effects
replacing the parallel updating by random sequential up
ing, particularly on the unusual features of the fundamen
diagram.

In the ant-trail model with random sequential updatin
the updating of the system is done the following way:

~1! A site is choosen randomly.
~2a! If there is no ant, but a pheromone, at the chosen

this is allowed to evaporate with probabilityf.
~2b! On the other hand, if there is an ant at the chos

site, the usual motion update is done~i.e., it cannot move
forward if the site in front is occupied by another ant; oth
wise, it moves forward with probabilityQ or q depending on

FIG. 10. ~a! Fundamental diagrams of the linear region~bold
line! together with numerical results with parametersf 50.005~bro-
ken curve! and f 50.01 ~solid curve!. ~b! The fundamental diagram
( f 50.005) of the combination of LCA and Eq.~23! ~solid curve!.
The broken curve is the numerical result forf 50.005. The system
size isL5350.
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whether the site in front contains or does not contain phe
mone!.

~3! If the ant at the randomly chosen site moves forwa
a pheromone is created at the new site without making
attempt to let the pheromone left behind in its old positi
~i.e., at the randomly chosen site! to evaporate.

The flux of the ants in this model is plotted against th
density in Fig. 11; the qualitative features of the curves,
cluding the sharp crossover from free to congested state
similar to those in the original version of this model wi
parallel updating. From these observations we conclude t
unlike the NS model, the correlations responsible for
nonmonotonic variation of the average speed with the d
sity of the ants are not artefacts of the parallel update sch
but genuine nontrivial features of the model.

VIII. CONCLUDING DISCUSSIONS

A stochastic cellular automaton model of an ant tra
which we have proposed recently@12#, has been investigate
in detail, both analytically as well as numerically, in th
paper. The model is characterized by two coupled dynam
variables, representing the ants and the pheromone. The
pling leads to surprising results, especially an anomal
fundamental diagram. This anomalous shape of the fun
mental diagram is a consequence of the nonmonotonic va
tion of the average speed of the ants with their density in
intermediate range of the rate of pheromone evaporat
These unusual features of the ant-trail model have been
lyzed in this paper using various analytical approaches
computer simulations.

It is shown that the homogeneous mean-field approxim
tions are able to capture some of the qualitative features
served in the computer simulations. However, these appr
mations cannot account for the quantitative data. Theref
we have analyzed the spatiotemporal organization of the
and pheromone in the stationary state. This provided so
insights, which we have utilized to develope a differe
scheme of calculations that we call loose-cluster approxim
tion.

By studying appropriate correlation functions, we we
able to distinguish three different regimes of density. At lo
densities~region 1!, the behavior is dominated by the exi

FIG. 11. The flux of the ants, in the ant-trail model withrandom
sequential updating, plotted against their densities for the param
etersQ50.75 andq50.25.
0-8
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tence of loose clusters that are formed through the interp
between the dynamics of ants and pheromone. In regio
occuring at intermediate densities, the enhancement of
hopping probability due to pheromone is dominant. Fina
in region 3, at large densities the mutual hindrance aga
the movements of the ants dominates the flow behavior le
ing to a homogeneous state similar to that of the NS mo

We have seen that the observed effects persist for ran
sequential updating. For this case, we also expect that e
results can be achieved by using the matrix-product te
nique @4,26#. Extensions of this model, including counte
flow and random sequential dynamics, will be reported in
future.

ACKNOWLEDGMENT

This work was supported in part by the Alexander v
Humboldt Foundation~D.C.!.

APPENDIX A: „2¿1…-CLUSTER APPROXIMATION

In this appendix, we provide details for the~211!-cluster
approximation scheme developed in Sec. IV. There we h
introduced the eight dynamical variables, Eq.~8!, which al-
low to take into account correlations between occupat
numbers of consecutive sites and between occupation n
bers of ants and pheromone.

These variables are not independent. Instead, we can
mediately write down the following six equations:

P~10!5P~01!, ~A1!

PS 1

0D 50, ~A2!

P~00!1P~01!1P~10!1P~11!51, ~A3!

PS 0

0D 1PS 0

1D 1PS 1

0D 1PS 1

1D 51, ~A4!

P~00!1P~10!512r, ~A5!

PS 0

0D 1PS 0

1D 512r, ~A6!

where r is the ant density. Equation~A1! expresses the
particle-hole symmetry condition while the Eq.~A2! is a
consequence of the definition of the model. The other eq
tions are known as Kolmogorov consistency conditions@24#.

We need two more equations in order to obtain the
pression for all the eight variables in Eq.~8!. These are ob-
tained by considering the master equations for, say,P(00)
and P(1

0). In the (211)-cluster approximation, the maste
equation forP(00) is given by
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P̄~00!5
P~00!

P~00!1P~10!
P~00!

1
P~10!

P~00!1P~10!
~12qeff!P~00!

1
P~00!

P~00!1P~10!
P~01!

P~10!

P~10!1P~11!
qeff

1
P~10!

P~00!1P~10!
~12qeff!

3P~01!
P~10!

P~10!1P~11!
qeff , ~A7!

whereP̄(00) is P(00) of the next time step, i.e., at the tim
stept11, while the probabilities on the right-hand side ref
to the time stept. The four terms in the right-hand side rhs
Eq. ~A7! comprise all the configurations and processes t
give rise to the configuration (Sj 21Sj )5(00) in the next
time step. Here we putP̄(00)5P(00) in Eq.~A7! in order to
obtain the stationary solution forP(00). Then we have

P~00!5
~12qeff!P~10!2

r2P~10!
. ~A8!

Thus substituting Eq.~A8! into Eq. ~A5! using Eq.~9!, we
obtain

F22F1qeffr~12r!50. ~A9!

Similarly, the master equation forP(1
0) is given by

P̄S 0

1D 5
P~00!

P~00!1P~10!
PS 0

1D ~12 f !

1
P~10!

P~00!1P~10!
PS 0

1D ~12qeff!~12 f !

1PS 1

1D qeffP~10!

P~10!1P~11!
~12 f !. ~A10!

Using P(1
1)5r, we obtain the stationary solution from Eq

~A10! as

PS 0

1D 5
~12 f !F

f 1
12 f

12r
F

, ~A11!

where we use the relation

F5qeffP~10!5P~10!

qPS 0

0D 1QPS 0

1D
PS 0

0D 1PS 0

1D . ~A12!

From Eqs.~A12! and ~A11!, we have
0-9
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qeff5q1~Q2q!
~12 f !F

~12r! f 1~12 f !F
. ~A13!

Finally, substituting Eq.~A13! into Eq. ~A9!, we obtain the
cubic equation~10! for the flux F.

We can also calculate the distribution of cluster sizes
fined in Sec. IV. We can write it as

P~m!5
1

C
P~01!S P~11!

P~10!1P~11! D
m21 P~10!

P~10!1P~11!

5
1

C

P~10!2

r S 12
P~10!

r D m21

. ~A14!

Here C is determined through the normalization conditi
(m51

L P(m)51, whereL is the system size, as

C5P~10!H 12S 12
P~10!

r D rLJ . ~A15!

ThusP(m) is given by Eq.~11!.
Let us also consider the the probability of finding an a

pheromone, and nothing in the front site discussed in S
VI. The probability of finding an ant is simply given b
P(11). The probability of finding pheromone without an a
and that of nothing are given, respectively, by

P~10!

PS 0

1D
PS 0

0D 1PS 0

1D , P~10!

PS 0

0D
PS 0

0D 1PS 0

1D . ~A16!

Normalizing these quantities by dividingr, we obtain each
probability by only usingP(10) andP(1

0) as given in Eqs.
~12!–~14!.

APPENDIX B: STOCHASTIC CLUSTER APPROXIMATION

Let us extend the analysis in the Appendix A followin
the approach used in analyzing the stochastic car clu
z

e,

s
e,

e,

03612
-

,
c.

,

er

model proposed in Ref.@25#. In the model, one cluster o
cars is assumed to exist in the background of stationary
form flow, while in Appendix A we only consider the uni
form flow to derive flux of ants, and neglect the clusteri
effect. The cluster-size distributionP(m) was derived as the
stationary solution of its master equation in Ref.@25#. How-
ever, since we have already obtainedP(m), we will use Eq.
~11! instead of considering the master equation. The flux
cluster is considered to be zero, thus total flux in a giv
configuration of this system is given by 03(m21)/L1Fm
3@12(m21)/L# if m-size cluster exists. HereFm repre-
sents the uniform flux under the existance ofm-size cluster,
which is defined by using Eq.~10! as

Fm
2 2Fm1rm~12rm!H q1

~Q2q!~12 f !Fm

~12rm! f 1~12 f !Fm
J 50,

~B1!

andrm is given by

rm5
r2~m21!/L

12~m21!/L
. ~B2!

In these equations, we take into account that the densit
the uniform flow is reduced due to the existance ofm-size
cluster.

Thus, the flux of this stochastic cluster approximation
finally given by

F~r!5 (
m51

L

P~m!S 12
m21

L DFm . ~B3!

Note that if only the first term on the rhs of Eq.~B3! is
retained and all the other terms are dropped, the expres
for F(r) reduces to the the fundamental diagrams obtai
in the (211)-cluster approximation~and plotted in Fig. 3!.
We have evaluated Eq.~B3! numerically by using the distri-
bution ~11!, but the results are almost the same as Fig. 3 a
therefore, not shown here. This, however, is not surprising
view of the fact that the rhs of Eq.~B3! is dominated bym
51 because of the sharp peak ofP(m) at m51.
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