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1. Maximum likelihood and Bayes’ theorem

Following the model discussed in the lecture, generate a vector of i.i.d random
entries x1, x2, . . . , xN . xi = 1 is chosen with probability λ, and xi = 0 with
probability 1 − λ. For each xi = 1, pick Ei randomly from a distribution Q(E),
and for xi = 0 from P (E). Q(E) and P (E) might be Gaussian ensembles of
variance one and mean zero and one, respectively.

The task is to infer the hidden information λ and {xi}. (Of course, during
this computer experiment, you know this information.)

Background: The setup mimics transcription factor binding sites on DNA. In some
cases, the binding energy of a stretch of DNA to a transcription factor is known as a
function of the sequence. Then we can hope to identify functional binding sites, since
binding sites have a higher binding energy than stretches of DNA which do not bind
to transcription factors (non-binding sites). Of course binding energies both of binding
sites and of non-binding sites vary. Suppose the energies E of binding sites have a given
distribution Q(E), those of non-binding sites have a distribution P0(E).

a) Write down the likelihood given {Ei} as a function of λ. For a given set {Ei},
plot the likelihood against λ and compare the position λ? of its maximum with
the value of λ you used to generate the data for both small and large values of
N . (You may find it easier to plot the logarithm of the likelihood.)

b) Use Bayes’ theorem to evaluate the probability Pr(Q|E) that a given value
of E was generated from the ensemble Q(E). Compare the result to the fraction
of i with xi = 1 as a function of E. (A practical way is to bin the values of E
according to a discrete grid).
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