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Motivation

Comparable to talk two we want to identify thermodynamic quantities at stochastic processes. There-
fore we look at stochastic processes that are governed by the so called master equation and identify
the stochastic entropy production. For specific types of states we formulate the famous fluctuation
theorems and give some examples for observable non-equilibrium steady states.
At the beginning we want to look at a dummy system to motivate the master equation. Let us consider
a particle on a finite lattice of size N with hardcore walls that can jump to the left or right with fixed
rates W+ and W−. We can ask: Given an initial distribution for the particle, what is the probability
to find the particle at site n at time t. The probability changes according to the following equation:

∂tPn (t) = W+Pn−1 (t) +W−Pn+1 (t)− (W+ +W−)Pn (t)

For a free particle both rates should equal which can be expressed as W+
W−

= 1. In this setup we will
get an equilibrium distribution for the particle P sn = 1

N .
Now we apply a constant force F that pulls the particle to the right. Classically this constant force
is the gradient of some potential and therefore we can associate an energy with each lattice site.
We expect to observe the Boltzmann distribution as the equilibrium steady state distribution of
this system. In equilibrium we expect no probability flow between sites which is called local detailed
balance. This leads to transition rates of the form P s

n
P s

n−1
= W+

W−
= exp (βFa) with a the lattice constant.

Since the force is constant the system will relax to a new equilibrium state, in the intermediate time
it is in a NETS.

p

∂tPn = 0 = W+Pn−1 +W−Pn+1 − (W+ +W−)Pn
= WPn−1 +W exp (−βFa)Pn+1 −W (1 + exp (−βFa))Pn

⇒ Pn+1 = (exp (βFa) + 1)Pn − exp (βFa)Pn−1

With the condition on the boundaries we get:

∂tP0 = W−P1 −W+P0

⇒ P1 = exp (βFa)P0

∂tPN−1 = W+PN−2 −W−PN−1

⇒ PN−1 = exp (βFa)PN−2

y
Using induction we finally get P sn = P0 exp (βFan) with P0 a proper normalization constant. This
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means that it is highly likely to find the particle on the right. We can now identify the associated
energy εn with εn = −Fan.
In a third setup we connect the ends of our lattice and make it a circle. Additionally we apply the
same force as in the second setup. Because of the boundary conditions there is a stationary state
with P sn = 1

N again which does not fulfil the detailed balance condition W+
W−

= exp (βFa) 6= 1. Such a
steady state is called a generic NESS (non-equilibrium steady state). In this setup we can identify the
logarithm of the transition rates as the dissipated heat divided by temperature and therefore associate
an entropy production with it.

log
(
W+
W−

)
= βFa = q

T

In the following we want to generalize these considerations and combine them with known results.

W+W−

F
W

+

W
−

F

Single particle on lattice under different boundary conditions

Master equation

The prototype process above can be generalized to a discrete stochastic process in continuous time.
Dynamics should be of Markovian type so that only the current state influences the next state of the
system. The transition rates are given as Wnm resulting in the full master equation:

∂tPn (t) =
∑
n6=m

WmnPm (t)−WnmPn (t)

One can also introduce the corresponding diagonal elements Wnn = −
∑
m,n 6=mWnm and interpret the

master equation as a continuity equation with local probability flow jnm (t) = WmnPm (t)−WnmPn (t).
Examples for systems that can be described with this equation are networks or a chemical reaction.

Reversibility

Now we want to put our system under external control. Normally the transition rates Wnm would
not be explicitly time dependent. By changing the external parameter λ (t) e.g. a magnetic field we
change the transition rates Wnm (t) = Wnm (λ (t)). To assure that the microscopic reversibility is
given the probability rates for a given external parameter must fulfil the condition of detailed balance
for the corresponding steady state:

Wnm (λ (t))
Wmn (λ (t)) = P sn (λ (t))

P sm (λ (t))

This condition is equivalent to observing no local probability flow in the steady state. That implies
that for every time t and corresponding parameter λ (t) we have a steady state probability distribution
which fulfils ∂tP sn (λ (t))|λ(t)=const. = 0.
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Trajectories

Before introducing the notion of energy and stochastic entropy we want to introduce the concept of a
trajectory. Comparable to the continuous case we define a trajectory Γ as a sequence of states starting
at ni at time ti and ending at nf at time tf . The jumps occur at intermediate times tk für k ∈
{1, ...,M}.

t
ti t1 t2 t3 tft4

n (t)

Example trajectory

Energy

For systems that obey the detailed balance condition at all times we can define an energy using the
corresponding steady states:

εn (λ (t)) = −T log (P sn (λ (t)))

The energy difference along a trajectory is given as 4ε = εnf
(tf ) − εni (ti) and with the first law of

thermodynamics can be split into two contributions work and heat. They are related to the shifting
in energy levels (tuning of λ but no jump) and the jumps in energy levels (constant λ but jump).

w = [εni (t1)− εni (ti)] + ...+
[
εnf

(tf )− εnf
(tM )

]
q =

M∑
k=1

εnk
(tk)− εnk−1 (tk)

With this definition we can associate the logarithm of the transition rates with a heat flow by plugging
in the definition for the energy and the detailed balance condition.

q

T
=

M∑
k=1

log
(
P snk−1 (tk)
P snk

(tk)

)

=
M∑
k=1

log
(
Wnk−1nk

(tk)
Wnknk−1 (tk)

)

From thermodynamics we know that a heat flow divided by temperature can be interpreted as an
entropy.

Entropy

We now want to define stochastic entropy along a trajectory:

s (t) = − log
(
Pn(t) (t)

)
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This quantity depends on the initial distribution and is time dependent due to two effects (relaxation
and time-dependence of jumps). Therefore we can divide the total entropy along a trajectory [ti, tf ]
into two parts (total and medium):

4s = − log
(
Pnf

(tf )
)

+ log (Pni (ti))

= 4stot −4smed

The definition for the medium entropy change is motivated by the results for the definition of exchanged
heat. It adds the contributions from the jumps and is as follows:

4smed =
M∑
k=1

log
(
Wnk−1nk

(tk)
Wnknk−1 (tk)

)

This results in an total entropy production along a trajectory:

4stot = 4s+4smed = − log
(
Pnf

(tf )
)

+ log (Pni (ti)) +
M∑
k=1

log
(
Wnk−1nk

(tk)
Wnknk−1 (tk)

)

Fluctuation Theorem

We now want to consider the inverse process and ask ourselves in which way the probabilities for
forward and backward process equal each other. We start with the forward process in the time
interval [ti, tf ] starting from a given initial distribution Pn (ti). We want to assume that jumps occur
at times tk and therefore the state does not change in the intermediate time. The probability for the
trajectory P (Γ) is then given as the product of probabilities for the jumps, the intermediate periods
of staying in one state and beginning/end (identifying t0 = ti and tM+1 = tf ).

P (Γ) = Pni (ti) exp
(∫ t1

ti

Wnini (t) dt
)( M∏

k=1
Wnk−1nk

(tk) exp
(∫ tk+1

tk

Wnknk
(t) dt

))

In the backward process we start at the final distribution of the forward process and evolve to its
initial distribution. The rates run backward in time and are therefore given as Wnknk−1 (tk). The
probability for the reverse trajectory Γ̃ in the backward process is P̃

(
Γ̃
)
. The contributions to the

reverse trajectory are more or less the same resulting in the ratio of both as:

log

 P (Γ)
P̃
(
Γ̃
)
 = log (Pni (ti))− log

(
Pnf

(tf )
)

+
M∑
k=1

log
(
Wnk−1nk

(tk)
Wnknk−1 (tk)

)

This can be identified as 4stot and therefore we get:

log

 P (Γ)
P̃
(
Γ̃
)
 = 4stot

If we now average this probability over all possible trajectories we get the integral fluctuation theorem:

〈exp (−4stot)〉Γ =
〈
P̃

P

〉
Γ

=
∑
Γ
P (Γ) P̃ (Γ)

P (Γ) = 1
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With Jensen’s inequality we get the usual second law of thermodynamics4Stot = 〈4stot〉 ≥ 0. We can
also ask what is the probability to find a change in total stochastic entropy given a specific process.

P (4stot) =
∑
Γ
P (Γ) δ

4stot − log

 P (Γ)
P̃
(
Γ̃
)


= exp (4stot)
∑
Γ
P̃
(
Γ̃
)
δ

4stot − log

 P (Γ)
P̃
(
Γ̃
)


= exp (4stot)
∑
Γ̃

P̃
(
Γ̃
)
δ

−4stot − log

 P̃
(
Γ̃
)

P (Γ)


= exp (4stot) P̃ (−4stot)

⇒ P (4stot)
P̃ (−4stot)

= exp (4stot)

This means that it is exponentially more likely to see a stochastic entropy increase 4stot in a process
than to see the corresponding decrease in the reversed process. This equation is named detailed
fluctuation theorem.
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