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Exercise 1: single-particle and many-particle spectra

For a given single-particle spectrum {εi}, the many-particle energies can be simply
calculated via E =

∑N

i=1
niεi, with ni = 0, 1. In this project, you are supposed to

solve the reverse problem: for a given set of many-particle energies {El}:

• find out whether the many-particle spectrum can be represented at all by a
single-particle spectrum;

• if this is possible, calculate the single-particle spectrum {εi}.

As a specific example, consider the following two sets of many-particle energies:

{El}1 = −2,−1, 0(2), 1(2), 2, 3,

{El}2 = −2,−1(2), 0, 1, 2(2), 3

(The number in brackets indicate the degeneracies). To simplify the calculation,
you can assume that the εi take integer values only.

Exercise 2: Symmetries

Consider the following two-site model:

Hts =
∑

σ

εff
†
σfσ + Uf

†
↑f↑f

†
↓f↓ + V

∑

σ

(

f †
σcσ + c†σfσ

)

+
∑

σ

εcc
†
σcσ , (1)

which corresponds to a single-impurity Anderson model with only a single bath site.

a) Show that, for the model eq. (1), the total particle number is conserved,
i.e. [Hts, N̂ ]− = 0, with N̂ =

∑

σ

(

f †
σfσ + c†σcσ

)

.

b) Show that, for the model eq. (1), the z-component of the total spin is conserved,
i.e. [Hts, Ŝz]− = 0, with Ŝz = f

†
↑f↑ − f

†
↓f↓ + c

†
↑c↑ − c

†
↓c↓.

Now consider a tight-binding model on a finite chain with periodic boundary con-
ditions:

Htb =
N
∑

i=1

ǫic
†
ici +

N−1
∑

i=1

ti

(

c
†
ici+1 + c

†
i+1ci

)

+ tN

(

c
†
Nc1 + c

†
1cN

)

. (2)

1



c) Perform the following two transformations:

H ′
tb = Htb(c

†
i → ci, ci → c

†
i ) ,

H ′′
tb = H ′

tb(c
†
i → −c

†
i , ci → −ci, i even) .

Under which conditions do we have H ′′
tb = Htb?

Exercise 3: tight-binding chain; density of states

The tight-binding model on a finite chain with periodic boundary conditions is
defined as (in contrast to eq. (2), the parameters ǫ and t do not depend on i):

Htb =
N
∑

i=1

ǫc
†
ici +

N−1
∑

i=1

t
(

c
†
ici+1 + c

†
i+1ci

)

+ t
(

c
†
Nc1 + c

†
1cN

)

. (3)

a) Show that the single-particle spectrum of this Hamiltonian can be obtained
analytically via the following unitary transformation of the operators cl:

cl =
1√
N

N
∑

m=1

ei
2π

N
mldm .

(The resulting single-particle energies are given by εm = ǫ+ 2t cos(2π
N
m)).

b) Compare the analytical values for the εm obtained in a) with the eigenvalues
obtained from a numerical diagonalization of the matrix T (for the definition
of T , see Sec. 2.1E in the script).

For a given single-particle spectrum {εl}, the density of states is defined as

ρ(ε) =
∑

l

δ(ε− εl) ,

which is, for a finite system, always a collection of δ-peaks and therefore difficult to
visualize. In the following, two common ways of plotting the density of states are
used for the single-particle spectrum of the tight-binding chain.

c) One way is to replace each δ-function by a Lorentzian Lb(ω, εl) of width b and
centered at ω = εl:

Lb(ω, εl) =
1

π

b

(ω − εl)2 + b2
.

Write a program which calculates the broadened density of states for the single-
particle spectrum of part a) and various values of N and b.

d) The alternative is to divide the interval [εmin, εmax] in M equal parts and to
count the number of δ-peaks in each of these subintervals. Write a program
which calculates the resulting histogram for the single-particle spectrum of
part a) and various values of N and M .
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Exercise 4: spin-models on a three-site cluster

Consider the following (general) Hamiltonian for a spin-model on a three-site cluster:

H = −
∑

ijα

Jα
ijS

α
i S

α
j ,

with i, j = 1, 2, 3 (i < j in
∑

ij) and α = x, y, z.

:  x

:  y

:  z

2

31

To visualize the model, a colour code for the x, y and z components of the spin-
couplings turns out to be useful, see the figure.

a) Rewrite the Hamiltonian using the operators

S±
i = Sx

i ± iS
y
i , and Sz

i .

Now set up (by hand!) the 8×8 Hamilton matrices H̄ for the following three special
cases:

b) the Ising model, i.e. Jα
ij = Jδαz,

c) the isotropic Heisenberg model, i.e. Jα
ij = J , and

d) a model with Jx
12 = J

y
23 = Jz

31 = J and all other Jα
ij = 0.

One of the following exercises deals with numerical algorithms to set up these Hamil-
ton matrices.
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