Computational Many-Body Physics

apl. Prof. Dr. R. Bulla

SS 2017

Sheet 5

Exercise 1: continued fraction representation of Green functions

The continued fraction representation of a Green function G(z) is given by

$$G(z) = \frac{1}{z - a_0 - \frac{b_0^2}{z - a_1 - \frac{b_1^2}{z - a_2 - \dots}}},$$
(1)

with a set of continued fraction coefficients $\{a_n\}$ and $\{b_n\}$. If these coefficients take constant values $a_n = a$, $b_n = b$ for all $n \ge N$, the continued fraction can be terminated via the terminator

$$T_{a,b}(z) = \frac{1}{2b^2} \left(z - a - \sqrt{(z-a)^2 - 4b^2} \right) .$$

The following exercise is about calculating G(z) (and the corresponding spectral function $A(\omega)$) for different sets of $\{a_n\}$ and $\{b_n\}$.

- a) Calculate real and imaginary part of the terminator $T_{0,1}(z = \omega + i\delta)$ for $\delta = 0.05$.
- b) Write a general program for the calculation of G(z) as in eq. (1) with $a_n = 0$ and $b_n = 1$ for all $n \ge N$ and arbitrary a_n, b_n for n < N (use the terminator from part a)). Check the program by setting $a_n = 0$ and $b_n = 1$ for all n.
- c) Now set $a_n = \alpha(-1)^n$ and $b_n = 1$ for n < N and calculate the spectral function for various values of α .
- d) With b_n again fixed to 1 for all n, the values of the a_n (for n < N) are now set to random numbers in the range [-W, W]. Investigate the structures appearing in the spectral function for various values of W and N.

Exercise 2: logarithmic discretization; broadening

Here we consider the semi-elliptic spectral function

$$A(\omega) = \begin{cases} \frac{2}{\pi}\sqrt{1-\omega^2} & : & |\omega| \le 1 \\ 0 & : & |\omega| > 1 \end{cases},$$

The idea of this exercise is to perform a logarithmic discretization on $A(\omega)$ and then apply different broadening schemes to see how well the original spectral function is recovered.

- a) Calculate the weights a_n^{\pm} and frequencies ω_n^{\pm} of the discretized spectral function $A_{\rm d}(\omega)$ for a discretization parameter $\Lambda = 2$ (for the notation, see Sec. 2.2.5 in the script).
- b) For the broadening function, use Lorentzians with fixed width b to obtain the broadenend spectral function $A_{d,b}(\omega)$.
- c) Now set the *b* of the Lorentzians to $b_n = \alpha |\omega_n^{\pm}|$, with α of the order of 0.5. What happens in the limit $\omega \to 0$ and $N \to \infty$?
- d) Finally, investigate the structures of the broadened spectral function $A_{d,b}(\omega)$ using logarithmic Gaussians as broadening functions with b = 0.3, 0.4, 0.5, 0.6 (as above, see Sec. 2.2.5 in the script for the notation).

Exercise 3: Lanczos algorithm

We consider a symmetric $(N \times N)$ -matrix H with matrix elements $H_{ij} = \sqrt{1 + i + j}$. The starting vector of the Lanczos algorithm is given by $|\Phi_0\rangle = (1, 1, ..., 1)$.

- a) Calculate the sequence of vectors $\{|\Phi_0\rangle, |\Phi_1\rangle, \dots, |\Phi_{M-1}\rangle\}$ $(M \leq N)$ with the Lanczos algorithm as defined in the lecture (N can be set to 10).
- b) Show numerically that the vectors $|\Phi_i\rangle$ obtained in this way are orthogonal. To this end, calculate the matrix $D_{ij} = \langle \Phi_i | \Phi_j \rangle$.
- c) Calculate (numerically) the matrix H_{Φ} in the basis $\{|\Phi_i\rangle\}$: $(H_{\Phi})_{ij} = \langle \Phi_i | H | \Phi_j \rangle$.
- d) Calculate the matrix elements $a_n = \langle \psi_0 | \tilde{\Phi}_n \rangle$, with the normalized vectors $|\tilde{\Phi}_n \rangle = |\Phi_n \rangle / \langle \Phi_n | \Phi_n \rangle$ and $|\psi_0 \rangle$ the actual ground state of H (the eigenvector with the lowest eigenvalue). Can one tell, from the *n*-dependence of a_n , whether the Lanczos algorithm converges quickly to the ground state?

Exercise 4: reduced density matrix and entanglement entropy

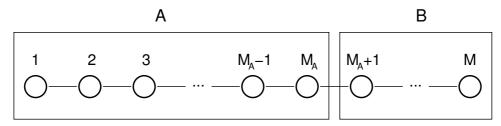
With the definition of the reduced density matrix given in exercise 4 on sheet 4, we can now proceed with calculating the entanglement entropy $S_{\rm e}$:

$$S_{\rm e} = -\operatorname{Tr}\left[\hat{\rho}\ln\hat{\rho}\right] = -\sum_{lpha} w_{lpha}\ln w_{lpha} \, ,$$

with w_{α} the eigenvalues of the reduced density matrix. The entanglement entropy is a measure of the entanglement between subsystems A and B of a quantum system; this can now be tested on the three states $|\psi\rangle_i$, i = 1, 2, 3, given in exercise 4 on sheet 4.

a) Calculate the entanglement entropy $S_{\rm e}$ for the states $|\psi\rangle_i$.

We now extend the analysis to larger systems, in particular one-dimensional spin systems with a bi-partitioning into parts A and B as shown in the figure:



The number of sites in parts A (B) is M_A (M_B), with $M_A + M_B = M$. The state of the total system in expressed in the standard basis $\{|l\rangle\}$, $l = 1, \ldots, 2^M$, with $\{|l\rangle\} = \{|\uparrow\uparrow\ldots\uparrow\rangle, |\downarrow\uparrow\ldots\uparrow\rangle, \ldots\}$:

$$|\psi\rangle = \sum_{l=1}^{2^M} a_l |l\rangle$$

- b) Consider a random state $|\psi\rangle_{\rm r}$ with \bar{a}_l random numbers in the range [-1, 1], and $a_l = \bar{a}_l / \sqrt{\sum_l \bar{a}_l^2}$. Calculate $S_{\rm e}$ for different values of $M_{\rm A}$ and M = 10.
- c) The following state has a much simpler structure:

$$|\psi\rangle_{\rm afm} = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\uparrow\downarrow\ldots\rangle - |\downarrow\uparrow\downarrow\uparrow\ldots\rangle\right) \;.$$

Calculate $S_{\rm e}$ for different values of $M_{\rm A}$ and M = 10.

d) In the following state, site 1 is entangled with site 5:

$$|\psi\rangle_{1-5} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_1|\downarrow\rangle_5 - |\downarrow\rangle_1|\uparrow\rangle_5\right) \prod_{i=2}^4 \left(|\uparrow\rangle_i + |\downarrow\rangle_i\right) \prod_{i=6}^M \left(|\uparrow\rangle_i + |\downarrow\rangle_i\right) \ .$$

How does this entanglement show up in the entanglement entropy $S_{\rm e}$ as a function of $M_{\rm A}$ (M = 10)?