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Exercise 1: entanglement entropy for one-dimensional spin models

The entanglement entropy Se has been introduced in exercise 4 on sheet 5 and
applied to various states |ψ〉 for a system of M spins, with a bi-partitioning into
parts A (with MA sites) and B. In this exercise, the state |ψ〉 is taken as the ground
state of the spin models defined in exercise 3 on sheet 4, i.e.

H = −

M−1
∑

i=1

∑

α

Jα
i S

α
i S

α
i+1 ,

and different choices for the Jα
i .

Calculate Se as a function of MA (MA = 1, 2, . . . ,M − 1) for fixed M and the state
|ψ〉 given as the ground state of the following three models:

a) Jα
i = Jδαz,

b) Jα
i = J ,

c) Jα
i =

{

Jδαx : i even,
Jδαz : i odd.

The total number of sites can be fixed toM = 8; consider both J = +1 and J = −1.
If the ground state happens to be degenerate, the calculations should be performed
for one of the ground states.

Exercise 2: integral representation of the single-impurity Anderson model

The Hamiltonian of the single-impurity Anderson model in the ‘integral representa-
tion’ has the following form:

H = Himp +Hbath +Himp−bath ,

with

Himp =
∑

σ

εff
†
σfσ + Uf

†
↑f↑f

†
↓f↓ , (1)

Hbath =
∑

σ

∫ 1

−1

dε g(ε)a†εσaεσ , (2)

Himp−bath =
∑

σ

∫ 1

−1

dε h(ε)
(

f †
σaεσ + a†εσfσ

)

. (3)
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a) Use the equation of motion method to show that the impurity Green function
Gσ(z) = 〈〈fσ, f

†
σ〉〉z for the case U = 0 is given by

Gσ(z) =
1

z − εf − ∆̄(z)
, with ∆̄(z) =

∫ 1

−1

dε
h(ε)2

z − g(ε)
. (4)

(The derivation is analogous to the one shown in Sec. 2.2.4 in the lecture.)

b) Starting from the expression for ∆̄(z) in eq. (4), show that the hybridization
function ∆(ω) = − limδ→0 Im∆̄(z = ω + iδ) is given by

∆(ω) = πh(g−1(ω))2
d

dω
g−1(ω) .

(One can assume here that the function f(ε) = ω − g(ε) is zero for a single
value of ε only.)

Exercise 3: logarithmic discretization of the single-impurity Anderson

model

The conduction electron part of the Hamiltionian, Hbath (see eq. (2) in exercise 2),
can be written in the form

Hbath =
∑

npσ

(

ξ+n a
†
npσanpσ + ξ−n b

†
npσbnpσ

)

+
∑

n,p 6=p′,σ

(

α+
n (p, p

′)a†npσanp′σ − α−
n (p, p

′)b†npσbnp′σ

)

,

(5)

with the definitions of the operators anpσ and bnpσ given in the lecture. For a constant
hybridization function ∆(ω) = ∆ we can simply set the dispersion as g(ε) = ε. Show
that in this case the quantities ξ±n and α±

n are given by:

ξ±n = ±
1

2
Λ−n(1 + Λ−1) ,

α±
n (p, p

′) =
1− Λ−1

2πi

Λ−n

p′ − p
exp

[

2πi(p′ − p)

1− Λ−1

]

.

Exercise 4: flow diagrams for the tight-binding model

Consider the following quantum impurity model defined on a chain with N+1 sites:

H = εf †f + V
(

f †c1 + c
†
1f
)

+
N−1
∑

n=1

tn

(

c†ncn+1 + c
†
n+1cn

)

. (6)

This model corresponds to a tight-binding model of spinless fermions with a special
choice of parameters, in particular, the hoppings tn are assumed to fall off exponen-
tially: tn = Λ−n/2 with Λ = 2. As the Hamiltonian eq. (6) is non-interacting, it
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can be diagonalized via an orthogonal transformation (see Sec. 2.1 in the lecture).
This gives the single-particle spectrum from which the many-particle energies can
be constructed.

The lowest-lying many-particle energies EN(r) (r = 1, . . . , rmax and we assume
EN(r) ≤ EN(r + 1)) for a chain with N bath sites can now be used to plot the
energy-level flow diagram, i.e. ΛN/2EN(r) as a function of N .

a) Plot the five (rmax = 5) lowest-lying many-particle energies in this way for
ε = 0, V = 0.1, and N in the range N = 3, . . . , 20.

b) Investigate the effect of the value of ε on the flow diagram by varying ε in the
range [-2,2].

Exercise 5: flow diagrams for the one-dimensional Heisenberg model

Now consider a somewhat artificial model, the one-dimensional Heisenberg model
with nearest-neighbour interactions decaying exponentially:

H = −

N−1
∑

n=1

∑

α

Jα
nS

α
nS

α
n+1 ,

with Jα
n = JΛ−n/2.

a) Calculate the energy-level flow diagram, i.e. plot ΛN/2EN(r) for the lowest-
lying energies EN(r) as a function of N for 2 ≤ N ≤ 10, Λ = 2, J = ±1 via
the full diagonalization of the Hamilton matrix for each N separately (not via
an iterative diagonalization scheme as in the NRG).

b) Investigate the effect of a local perturbation of the form

H ′ = −γSx
1S

x
2 ,

on the flow diagram for various values of γ.
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