
Computational Many-Body Physics

apl. Prof. Dr. R. Bulla

SS 2019

Sheet 2 - tutorial of Monday, May 6, 14:00

Exercise 1: Hamilton matrices for spin models

Consider a spin model of the form

H = −
∑

ijα

Jα
ijS

α
i S

α
j ,

with i, j = 1, . . . , N and α = x, y, z.

a) Write a program which sets up the Hamilton matrix for a model with arbitrary
N and an arbitrary list of couplings {Jα

ij}. As discussed in the lecture, the x-, y-
and z-links should be treated separately. For each link of the form −Jα

ijS
α
i S

α
j ,

the action of Sα
i S

α
j on the basis state |n〉 gives another basis state |l〉 (times a

prefactor). With the equation of l given in the lecture, the Hamiltonian matrix
can be set up very efficiently.

b) Set up the Hamilton matrices for the three models discussed in exercise 3 on
sheet 1 (the three-site clusters).

c) Calculate the eigenenergies and corresponding eigenstates for these three mod-
els.

Exercise 2: Spin correlations of one-dimensional spin models

Here we focus on one-dimensional spin models of the form

H = −
N−1
∑

i=1

∑

α

Jα
i S

α
i S

α
i+1 ,

which is just a special case of the spin models for which the Hamiltonian matrix has
been set up in exercise 1. We are interested in the spin correlations between sites l
and m in the ground state |ψg〉 of the system:

Clm = 〈ψg|~Sl · ~Sm|ψg〉 .

(For a degenerate ground state, the Clm is defined as the average over the different
ground states.)

Calculate the distance dependence of the spin correlations, i.e. the correlation be-
tween site 1 and site m: C1m (m = 2, . . . , N), for the following three models:

1



a) Jα
i = Jδαz,

b) Jα
i = J ,

c) Jα
i =

{

Jδαx : i even,
Jδαz : i odd.

The number of sites can be chosen as N = 6, 8, and 10; consider both J = +1 and
J = −1.

Exercise 3: Entropy

The many-particle spectrum of a system (classical or quantum mechanical) is as-
sumed to be of the following form:

El =
√
l , l = 1, 2, . . . , L .

Here we want to investigate how the temperature dependence of the entropy S(T )
is affected by L, the number of many-particle states.

The entropy can be calculated in the following way:

S(T ) = −∂F
∂T

,

with the free energy
F = −kBT lnZ ,

and the partition function

Z =
L
∑

l=1

e−βEl , β =
1

kBT
.

(kB can be set to 1.) Write a program which calculates the entropy S(T ) in this way.
Compare the numerical results for different values of L (such as L = 10, 100, 1000).

Exercise 4: Reduced density matrix

Consider a two-site system (with sites A and B) with a two-dimensional basis for
each site: {|i〉} = {| ↑〉A, | ↓〉A} for site A and {|j〉} for site B accordingly. A given
state |ψ〉 can be expressed in this basis as

|ψ〉 =
2

∑

i=1

2
∑

j=1

ψij|i〉|j〉 . (1)

Here we want to calculate the reduced density matrices ρ for the following three
states:

|ψ〉1 = | ↑〉A| ↓〉B ,

|ψ〉2 =
1√
2
(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B) ,

|ψ〉3 =
1

2
(| ↑〉A + | ↓〉A) (| ↑〉B + | ↓〉B) .
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a) Write the states |ψ〉i (i = 1, 2, 3) in the form given by eq. (3), i.e. determine
the matrix ψ̄ with matrix elements (ψ̄)ij = ψij.

The reduced density matrix ρ̂ is defined as

ρ̂ = TrB (|ψ〉〈ψ|) =
2

∑

j=1

〈j|ψ〉〈ψ|j〉 ,

with the matrix elements ρii′ = 〈i|ρ̂|i′〉 = ∑

j ψijψi′j.

b) Calculate the reduced density matrices (i.e. the matrix elements ρii′) for the
states |ψ〉i (i = 1, 2, 3).

The entanglement between sites A and B can be directly calculated from these
reduced density matrices – this will be discussed in one of the following exercises,
together with the extension to spin models on small clusters/chains.

Exercise 5: Rule N

The figure below shows 20 generations (at times t = 0, 1, . . . , 19) of rule N , starting
from a random initial configuration at time t = 0. The number of cells is M = 20
with periodic boundary conditions.
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a) What is the value of N?

b) Find the error!

3


